Multipoint Thermal Sensing System for Power Semiconductor Devices Utilizing Fiber Bragg Gratings
<p>Schematic of a three-phase inverter.</p> "> Figure 2
<p>Thermal network of a single IGBT module referenced to FBG sensor.</p> "> Figure 3
<p>Thermal resistance network of multiple IGBTs.</p> "> Figure 4
<p>Schematic of the calibration setup.</p> "> Figure 5
<p>Temperature–wavelength correlation of FBG sensors.</p> "> Figure 6
<p>(<b>a</b>) FBG array in a single optical fiber. (<b>b</b>) Installation settings of the sensors in the inverter circuit (<b>c</b>) FIBER1; vertical sensor configuration along the rectifier/IGBT baseplate. (<b>d</b>) FIBER2; horizontal sensor configuration along the rectifier/IGBTs baseplate.</p> "> Figure 7
<p>(<b>a</b>) Tabletop experimental setup. (<b>b</b>) Thermal imaging of the IGBT.</p> "> Figure 8
<p>Observed reflection spectra for the FBG sensors on the optical spectrum analyzer.</p> "> Figure 9
<p>FBG temperature response to varying load power.</p> "> Figure 10
<p>FBG temperature response to varying load power with minimized airgap effect.</p> "> Figure 11
<p>(<b>a</b>) Thermal imaging of IGBT at time T1. (<b>b</b>) Thermal imaging of IGBT at time T2 (where T2 > T1).</p> "> Figure 12
<p>Predictions of hotspots using neural networks.</p> ">
Abstract
:1. Introduction
2. FBG Temperature Sensing Principle
2.1. Heat Transfer Model
2.1.1. Single-Point Model
2.1.2. Multipoint Model
3. Sensors’ Calibration and Installation
3.1. Calibration of FBG Sensors
3.2. FBG Sensors Installation
4. Experimental Setup
FBG Array Installation and Multiplexing
5. Results and Discussion
5.1. Load Power vs. IGBT Temperature
5.2. Effect of Airgap
5.3. Prediction Using AI
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Jiang, D.; Li, M.; Ning, P.; Wang, F.F.; Liang, Z. Development of Si IGBT Phase-Leg Modules for Operation at 200 °C in Hybrid Electric Vehicle Applications. IEEE Trans. Power Electron. 2013, 28, 5557–5567. [Google Scholar] [CrossRef]
- Liu, B.; Chen, G.; Lin, H.C.; Zhang, W.; Liu, J. Prediction of IGBT junction temperature using improved cuckoo search-based extreme learning machine. Microelectron. Reliab. 2021, 124, 114267. [Google Scholar] [CrossRef]
- Zhang, J.; Du, M.; Jing, L.; Wei, K.; Hurley, W.G. IGBT Junction Temperature Measurements: Inclusive of Dynamic Thermal Parameters. IEEE Trans. Device Mater. Reliab. 2019, 19, 333–340. [Google Scholar] [CrossRef]
- Luo, H.; Chen, Y.; Sun, P.; Li, W.; He, X. Junction Temperature Extraction Approach with Turn-Off Delay Time for High-Voltage High-Power IGBT Modules. IEEE Trans. Power Electron. 2016, 31, 5122–5132. [Google Scholar] [CrossRef]
- Falck, J.; Andresen, M.; Liserre, M. Active thermal control of IGBT power electronic converters. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; IEEE: Piscataway, NJ, USA; Volume 000001, pp. 1–6. [Google Scholar]
- Chen, G.; Han, D.; Mei, Y.-H.; Cao, X.; Wang, T.; Chen, X.; Lu, G.-Q. Transient Thermal Performance of IGBT Power Modules Attached by Low-Temperature Sintered Nanosilver. IEEE Trans. Device Mater. Reliab. 2012, 12, 124–132. [Google Scholar] [CrossRef]
- Sathik, M.H.M.; Pou, J.; Prasanth, S.; Muthu, V.; Simanjorang, R.; Gupta, A.K. Comparison of IGBT junction temperature measurement and estimation methods—A review. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT 2017), Singapore, 24–26 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Sathik, M.; Jet, T.K.; Gajanayake, C.J.; Simanjorang, R.; Gupta, A.K. Comparison of power cycling and thermal cycling effects on the thermal impedance degradation in IGBT modules. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 1170–1175. [Google Scholar]
- Almubarak, A.A. The Effects of Heat on Electronic Components. Int. J. Eng. Res. Appl. 2017, 07, 52–57. [Google Scholar] [CrossRef]
- Choi, U.-M.; Blaabjerg, F. Separation of Wear-Out Failure Modes of IGBT Modules in Grid-Connected Inverter Systems. IEEE Trans. Power Electron. 2018, 33, 6217–6223. [Google Scholar] [CrossRef]
- Isa, R.; Mirza, J.; Ghafoor, S.; Mustafa Khan, M.Z.; Qureshi, K.K. Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review. Micromachines 2023, 14, 1636. [Google Scholar] [CrossRef] [PubMed]
- Avenas, Y.; Dupont, L. Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions—Comparison with infrared measurements. Microelectron. Reliab. 2012, 52, 2617–2626. [Google Scholar] [CrossRef]
- Blackburn, D.L. Temperature measurements of semiconductor devices—A review. In Proceedings of the Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11 March 2004; Volume 20, pp. 70–80. [Google Scholar]
- Kim, M.K.; Yoon, Y.D.; Yoon, S.W. Actual Maximum Junction Temperature Estimation Process of Multichip SiC MOSFET Power Modules with New Calibration Method and Deep Learning. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 5602–5612. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, C.; Luo, H.; Lu, Z.; Li, W.; He, X.; Ma, J.; Chen, G.; Tian, Y.; Yang, E. IGBT junction temperature measurement via combined TSEPs with collector current impact elimination. In Proceedings of the ECCE 2016—IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar]
- Isa, R.; Abido, M.; Qureshi, K.K. Junction Temperature Measurement in High Power Electronic Applications Using Fiber Bragg Grating-based Sensors. In Proceedings of the 28th International Conference on Optical Fiber Sensors, ACT CITY, Hamamatsu, Japan, 20–24 November 2023; Optica Publishing Group: Washington, DC, USA, 2023; p. W4.34. [Google Scholar]
- Bryant, A.; Yang, S.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P.; Palmer, P.R. Investigation Into IGBT dV/dt During Turn-Off and Its Temperature Dependence. IEEE Trans. Power Electron. 2011, 26, 3019–3031. [Google Scholar] [CrossRef]
- Bęczkowski, S.; Ghimre, P.; de Vega, A.R.; Munk-Nielsen, S.; Rannestad, B.; Thøgersen, P. Online Vce measurement method for wear-out monitoring of high power IGBT modules. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–7. [Google Scholar]
- Kim, Y.-S.; Sul, S.-K. On-line estimation of IGBT junction temperature using on-state voltage drop. In Proceedings of the Conference Record of 1998 IEEE Industry Applications Conference, Thirty-Third IAS Annual Meeting (Cat. No. 98CH36242), St. Louis, MO, USA, 12–15 October 1998; Volume 2, pp. 853–859. [Google Scholar]
- Motto, E.R.; Donlon, J.F. IGBT module with user accessible on-chip current and temperature sensors. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 176–181. [Google Scholar]
- Wang, R.; Sabate, J.; Mainali, K.; Sadilek, T.; Losee, P.; Singh, Y. SiC Device Junction Temperature Online Monitoring. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE 2018), Portland, OR, USA, 23–27 September 2018; pp. 387–392. [Google Scholar]
- Zarebski, J.; Górecki, K.; Bisewski, D. A New Electrothermal Model of the Power MOSFET for SPICE. In Proceedings of the 11th International Conference Mixed Design of Integrated Circuits and Systems, Szczecin, Poland, 24–26 June 2004; pp. 1–5. [Google Scholar]
- Chen, S.; Vilchis-Rodriguez, D.; Djurovic, S.; Barnes, M.; McKeever, P.; Jia, C. FBG Head Size Influence on Localized On-Chip Thermal Measurement in IGBT Power Modules. IEEE Sens. J. 2022, 22, 21684–21693. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, P.; Simpson, R.A.; Tarr, C.; Nicholson, M.; Bell, D.; Sun, T.; Grattan, K.T.V.; Fabian, M.; Ribeiro, B.C.R. Semiconductor Device. WO 2022/223101 A1, 27 October 2022. [Google Scholar]
- Vestas Wind System. Optical Sensor System and Detecting Method for an Enclosed Semiconductor Device Module. U.S. Patent 2011/0267598 A1, 3 November 2011. [Google Scholar]
- Siemens. Assembly Consisting of Electronic Components and Comprising a Temperature Sensor. WO 2001/71301 A1, 27 September 2001. [Google Scholar]
- Chen, S.; Vilchis-Rodriguez, D.; Barnes, M.; Djurovic, S. Direct On-chip IGBT Thermal Sensing using Adhesive bonded FBG Sensors. IEEE Sens. J. 2023, 23, 22507–22516. [Google Scholar] [CrossRef]
- He, J.; Xu, B.; Xu, X.; Liao, C.; Wang, Y. Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications. Photonic Sens. 2021, 11, 203–226. [Google Scholar] [CrossRef]
- Drexhage, P.; Wintrich, A. Calculating Junction Temperature Using a Module Temperature Sensor. 2020. Available online: https://www.semikron-danfoss.com/service-support/downloads/detail/semikron-application-note-calculating-junction-temperature-using-a-module-temperature-sensor-en-2020-01-29-rev-02.html (accessed on 2 June 2024).
- SEMIKRON. Power Semiconductors Discrets and Stacks. 2019. Available online: https://www.semikron.com/products/product-lines/discrete-diodes-thyristors.html (accessed on 20 June 2024).
- Chen, S.; Vilchis-Rodriguez, D.; Djurovic, S.; Barnes, M.; McKeever, P.; Jia, C. Direct on Chip Thermal Measurement in IGBT Modules Using FBG Technology—Sensing Head Interfacing. IEEE Sens. J. 2022, 22, 1309–1320. [Google Scholar] [CrossRef]
Settings | FIBER1 | FIBER2 | ||||||
---|---|---|---|---|---|---|---|---|
Intercept | Ambient Temp. (°C) | MSE | R2 | Intercept | MSE | R2 | Ambient Temp. (°C) | |
FBG1 | 1529.7 | 21.9 | 0.00628 | 0.9997 | 1529.7 | 0.00679 | 0.9996 | 21.9 |
FBG2 | 1539.85 | 21.9 | 0.00329 | 0.9999 | 1539.86 | 0.00321 | 0.9999 | 21.9 |
FBG3 | 1555.04 | 21.9 | 0.0044 | 0.9999 | 1555.01 | 0.00497 | 0.9998 | 21.9 |
Load Power (kW) | Temperature (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 22.10 | 22.1 | 0.00 | 22.8 | 22.8 | 0.00 | 22.60 | 22.6 | 0.00 |
0.5 | 25.51 | 26.2 | 0.69 | 27.68 | 27.8 | 0.12 | 25.24 | 24.6 | 0.64 |
1 | 28.93 | 29.0 | 0.07 | 31.33 | 31.5 | 0.17 | 27.01 | 26.9 | 0.11 |
1.5 | 33.49 | 34.3 | 0.79 | 34.85 | 34.6 | 0.25 | 28.55 | 29.5 | 0.95 |
2 | 38.32 | 38.2 | 0.12 | 37.50 | 37.4 | 0.10 | 33.18 | 33.5 | 0.32 |
2.5 | 44.44 | 44.9 | 0.46 | 41.02 | 40.6 | 0.42 | 36.71 | 36.5 | 0.21 |
3 | 48.2 | 48.56 | 0.36 | 44.55 | 45.2 | 0.65 | 39.35 | 39.5 | 0.15 |
3.5 | 53.2 | 53.68 | 0.48 | 50.72 | 50.5 | 0.22 | 40.89 | 41.4 | 0.51 |
4 | 56.84 | 57.85 | 1.1 | 55.8 | 56.2 | 0.4 | 43.76 | 44.2 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa, R.; Iqbal, N.; Abido, M.; Mirza, J.; Qureshi, K.K. Multipoint Thermal Sensing System for Power Semiconductor Devices Utilizing Fiber Bragg Gratings. Appl. Sci. 2024, 14, 11328. https://doi.org/10.3390/app142311328
Isa R, Iqbal N, Abido M, Mirza J, Qureshi KK. Multipoint Thermal Sensing System for Power Semiconductor Devices Utilizing Fiber Bragg Gratings. Applied Sciences. 2024; 14(23):11328. https://doi.org/10.3390/app142311328
Chicago/Turabian StyleIsa, Ridwanullahi, Naveed Iqbal, Mohammad Abido, Jawad Mirza, and Khurram Karim Qureshi. 2024. "Multipoint Thermal Sensing System for Power Semiconductor Devices Utilizing Fiber Bragg Gratings" Applied Sciences 14, no. 23: 11328. https://doi.org/10.3390/app142311328
APA StyleIsa, R., Iqbal, N., Abido, M., Mirza, J., & Qureshi, K. K. (2024). Multipoint Thermal Sensing System for Power Semiconductor Devices Utilizing Fiber Bragg Gratings. Applied Sciences, 14(23), 11328. https://doi.org/10.3390/app142311328