Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach
<p>Framework and portfolio aligned with the research objectives for offshore maintenance optimisation.</p> "> Figure 2
<p>The design science research approach was adapted from Vom Brocke et al. [<a href="#B22-applsci-14-10902" class="html-bibr">22</a>].</p> "> Figure 3
<p>Screen flow and user interactions for the APM tool.</p> "> Figure 4
<p>Visualisation of the platform created with the 3D CAD/CAE tool and items.</p> "> Figure 5
<p>Home screen of APM: inspection spreadsheet input.</p> "> Figure 6
<p>Initial exploratory visualisation screen of the platform’s condition.</p> "> Figure 7
<p>Simulation configuration screen.</p> "> Figure 8
<p>Results visualisation screen.</p> "> Figure 9
<p>Visualisation of the painting plan.</p> "> Figure 10
<p>Visualisation of a 3D CAD/CAE model of the platform.</p> "> Figure 11
<p>Remaining average corrosion (comparison of strategies).</p> "> Figure 12
<p>Remaining regulatory demand index (comparison of strategies).</p> "> Figure 13
<p>Criticality index of selected items (comparison of strategies).</p> "> Figure 14
<p>PH limit index (comparison of strategies).</p> "> Figure 15
<p>Painted area (comparison of strategies).</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Research Gaps and Questions
1.2. Research Aims and Contributions
2. Literature Review: Offshore Maintenance and Asset Management
2.1. Design Science Research for Developing Maintenance Solutions
2.2. Decision Support Systems for Offshore Maintenance and Asset Management
3. Materials and Methods
3.1. Integration of Components in the APM Prototype
3.2. Case Studies Conducted
4. Results
- Input data: These include system identifiers (ID, module, sector), painting area, productivity, corrosion levels, environmental conditions (temperature, humidity, wind), and regulatory demands (RDs). It comprehensively overviews the platform’s initial condition and maintenance requirements.
- Pre-painting data: This section calculates the current and projected corroded areas, estimates corrosion progression using machine learning, determines the required person-hours, assesses the criticality indices, and determines maintenance priorities. It uses the input data to generate projections and prioritise maintenance tasks.
- Results: This section details the optimised painting plan, including waterjet centres’ locations, assigned teams, areas to be painted, person-hours used, post-maintenance corrosion status, and remaining RDs. It also shows the anticipated impact of the proposed maintenance plan.
Comparison of the Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osheyor Gidiagba, J.; Daraojimba, C.; Ayo Ogunjobi, O.; Anthony Ofonagoro, K.; Adepoju Fawole, A. Advancing Offshore Oil and Gas Facilities: A Comprehensive Review of Innovative Maintenance Strategies for Enhanced Reliability and Efficiency. Econ. Growth Environ. Sustain. 2023, 2, 84–95. [Google Scholar] [CrossRef]
- Hameed, A.; Raza, S.A.; Ahmed, Q.; Khan, F.; Ahmed, S. A decision support tool for bi-objective risk-based maintenance scheduling of an LNG gas sweetening unit. J. Qual. Maint. Eng. 2019, 25, 65–89. [Google Scholar] [CrossRef]
- Iannuzzi, M.; Frankel, G.S. The carbon footprint of steel corrosion. Npj Mater. Degrad. 2022, 6, 101. [Google Scholar] [CrossRef]
- Martinez-Monseco, F.J. Analysis of maintenance optimization in a hydroelectric power plant. J. Appl. Res. Technol. Eng. 2020, 1, 23–29. [Google Scholar] [CrossRef]
- Braglia, M.; Castellano, D.; Gallo, M. A novel operational approach to equipment maintenance: TPM and RCM jointly at work. J. Qual. Maint. Eng. 2019, 25, 612–634. [Google Scholar] [CrossRef]
- Sattari, F.; Lefsrud, L.; Kurian, D.; Macciotta, R. A theoretical framework for data-driven artificial intelligence decision making for enhancing the asset integrity management system in the oil & gas sector. J. Loss Prev. Process Ind. 2022, 74, 104648. [Google Scholar] [CrossRef]
- Elmas, F.R.; Rios, M.P.; de Almeida Lima, E.R.; Caiado, R.G.G.; Santos, R.S. Prediction of external corrosion rate in Oil and Gas platforms using ensemble learning: A Maintenance 4.0 approach. Braz. J. Oper. Prod. Manag. 2023, 20, 1952. [Google Scholar] [CrossRef]
- Afridi, Y.S.; Ahmad, K.; Hassan, L. Artificial intelligence based prognostic maintenance of renewable energy systems: A review of techniques, challenges, and future research directions. Int. J. Energy Res. 2022, 46, 21619–21642. [Google Scholar] [CrossRef]
- Zarei, E.; Khan, F.; Abbassi, R. How to account artificial intelligence in human factor analysis of complex systems? Process Saf. Environ. Prot. 2023, 171, 736–750. [Google Scholar] [CrossRef]
- Wong, S.Y.; Ye, X.; Guo, F.; Goh, H.H. Computational intelligence for preventive maintenance of power transformers. Appl. Soft Comput. 2022, 114, 108129. [Google Scholar] [CrossRef]
- Al-Harbi, T.A.; Al-Owaifeer, M.M.; Al-Ismail, F.S. Development of Reliability Centered Maintenance System Using Artificial Intelligence. In Proceedings of the 2022 Saudi Arabia Smart Grid (SASG), Riyadh, Saudi Arabia, 12–14 December 2022; pp. 1–6. [Google Scholar]
- Alvarez-Alvarado, M.S.; Donaldson, D.L.; Recalde, A.A.; Noriega, H.H.; Khan, Z.A.; Velasquez, W.; Rodríguez-Gallegos, C.D. Power System Reliability and Maintenance Evolution: A Critical Review and Future Perspectives. IEEE Access 2022, 10, 51922–51950. [Google Scholar] [CrossRef]
- Imran, M.M.H.; Jamaludin, S.; Mohamad Ayob, A.F. A critical review of machine learning algorithms in maritime, offshore, and oil & gas corrosion research: A comprehensive analysis of ANN and RF models. Ocean Eng. 2024, 295, 116796. [Google Scholar] [CrossRef]
- Zhang, Y.; Oldenburg, C.M.; Zhou, Q.; Pan, L.; Freifeld, B.M.; Jeanne, P.; Rodríguez Tribaldos, V.; Vasco, D.W. Advanced monitoring and simulation for underground gas storage risk management. J. Pet. Sci. Eng. 2022, 208, 109763. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O.; Houshyar, A.; Almatared, M.; Alhawiti, A. Data Fusion for Smart Civil Infrastructure Management: A Conceptual Digital Twin Framework. Buildings 2023, 13, 2725. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Silva, B.C.D.S.; Ferreira, C.V.; Sampaio, R.R.; Machado, B.A.S.; Coelho, R.S. Adding Technology Sustainability Evaluation to Product Development: A Proposed Methodology and an Assessment Model. Sustainability 2021, 13, 2097. [Google Scholar] [CrossRef]
- George, B.; Loo, J.; Jie, W. Recent advances and future trends on maintenance strategies and optimisation solution techniques for offshore sector. Ocean Eng. 2022, 250, 110986. [Google Scholar] [CrossRef]
- Sindi, A.; Kim, H.J.; Yang, Y.J.; Thomas, G.; Paik, J.K. Advancing digital healthcare engineering for aging ships and offshore structures: An in-depth review and feasibility analysis. Data-Centric Eng. 2024, 5, e18. [Google Scholar] [CrossRef]
- Odili, P.O.; Daudu, C.D.; Adefemi, A.; Ekemezie, I.O.; Usiagu, G.S. Integrating Advanced Technologies in Corrosion and Inspection Management for Oil and Gas Operations. Eng. Sci. Technol. J. 2024, 5, 597–611. [Google Scholar] [CrossRef]
- Collins, M.; Lee, R.; Vasileff, C.; Kobelak, M. Challenging Inspection Methodologies and Benefits–Recommended Scenarios for UT, MFL, and Robotics. In Proceedings of the 2022 14th International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, Calgary, AB, Canada, 26–30 September 2022. [Google Scholar] [CrossRef]
- Contreras Lopez, J.; Chiachío, J.; Saleh, A.; Chiachío, M.; Kolios, A. A cross-sectoral review of the current and potential maintenance strategies for composite structures. SN Appl. Sci. 2022, 4, 180. [Google Scholar] [CrossRef]
- vom Brocke, J.; Hevner, A.; Maedche, A. Introduction to Design Science Research. In Design Science Research. Cases; Progress in IS; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–13. ISBN 978-3-030-46781-4. [Google Scholar]
- Teixeira, J.G.; Patrício, L.; Tuunanen, T. Advancing service design research with design science research. J. Serv. Manag. 2019, 30, 577–592. [Google Scholar] [CrossRef]
- Scales, J. A design science research approach to closing the gap between the research and practice of project scheduling. Syst. Res. Behav. Sci. 2020, 37, 804–812. [Google Scholar] [CrossRef]
- Ågerfalk, P.J. Whither design science research? Eur. J. Inf. Syst. 2018, 27, 127–128. [Google Scholar] [CrossRef]
- Mahdavi, M.; Alhelou, H.H.; Hatziargyriou, N.D.; Jurado, F. Reconfiguration of Electric Power Distribution Systems: Comprehensive Review and Classification. IEEE Access 2021, 9, 118502–118527. [Google Scholar] [CrossRef]
- Schmitt, U. Projectability and Heritage Management of Design Knowledge: A Grass-Roots Artefact Perspective of a Longitudinal Research Project for Knowledge Management System Innovation. Sustainability 2021, 13, 13033. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, Y.; Zhu, J.; Cui, W. Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting. Sustainability 2024, 16, 333. [Google Scholar] [CrossRef]
- Rincon, L.F.; Moscoso, Y.M.; Hamami, A.E.A.; Matos, J.C.; Bastidas-Arteaga, E. Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings 2024, 14, 562. [Google Scholar] [CrossRef]
- Masoumi, M. Machine Learning Solutions for Offshore Wind Farms: A Review of Applications and Impacts. J. Mar. Sci. Eng. 2023, 11, 1855. [Google Scholar] [CrossRef]
- Díaz, G.; Herrera, R.F.; Muñoz-La Rivera, F.; Atencio, E. Generative Design for Dimensioning of Retaining Walls. Mathematics 2021, 9, 1918. [Google Scholar] [CrossRef]
- Gil-García, I.C.; Ramos-Escudero, A.; Molina-García, Á.; Fernández-Guillamón, A. GIS-based MCDM dual optimization approach for territorial-scale offshore wind power plants. J. Clean. Prod. 2023, 428, 139484. [Google Scholar] [CrossRef]
- McMorland, J.; Collu, M.; McMillan, D.; Carroll, J.; Coraddu, A. Opportunistic maintenance for offshore wind: A review and proposal of future framework. Renew. Sustain. Energy Rev. 2023, 184, 113571. [Google Scholar] [CrossRef]
- Tusar, M.I.H.; Sarker, B.R. Maintenance cost minimization models for offshore wind farms: A systematic and critical review. Int. J. Energy Res. 2022, 46, 3739–3765. [Google Scholar] [CrossRef]
- Kausar, M.; Ishtiaq, M.; Hussain, S. Distributed Agile Patterns-Using Agile Practices to Solve Offshore Development Issues. IEEE Access 2022, 10, 8840–8854. [Google Scholar] [CrossRef]
- de Mattos Nascimento, D.L.; Quelhas, O.L.G.; Meiriño, M.J.; Caiado, R.G.G.; Barbosa, S.D.J.; Ivson, P. Facility Management using digital Obeya Room by integrating BIM-Lean approaches—An empirical study. J. Civ. Eng. Manag. 2018, 24, 581–591. [Google Scholar] [CrossRef]
- Raveendran, A.; Renjith, V.R.; Madhu, G. A comprehensive review on dynamic risk analysis methodologies. J. Loss Prev. Process Ind. 2022, 76, 104734. [Google Scholar] [CrossRef]
- Ibrahim, C.; Mougharbel, I.; Kanaan, H.Y.; Daher, N.A.; Georges, S.; Saad, M. A review on the deployment of demand response programs with multiple aspects coexistence over smart grid platform. Renew. Sustain. Energy Rev. 2022, 162, 112446. [Google Scholar] [CrossRef]
- Cunha, M.D.C. Water and Environmental Systems Management Under Uncertainty: From Scenario Construction to Robust Solutions and Adaptation. Water Resour. Manag. 2023, 37, 2271–2285. [Google Scholar] [CrossRef]
- Bakare, M.S.; Abdulkarim, A.; Zeeshan, M.; Shuaibu, A.N. A comprehensive overview on demand side energy management towards smart grids: Challenges, solutions, and future direction. Energy Inform. 2023, 6, 4. [Google Scholar] [CrossRef]
- Cacereño, A.; Greiner, D.; Galván, B. Simultaneous optimization of design and maintenance for systems using multi-objective evolutionary algorithms and discrete simulation. Soft Comput. 2023, 27, 19213–19246. [Google Scholar] [CrossRef]
- Diaz Schery, C.; Caiado, R.; Aguilar Vargas, S.; Rodriguez Vignon, Y. Paths to BIM-based digital transformation: A bibliometric and systematic review of critical factors. Eng. Constr. Archit. Manag. 2024. [Google Scholar] [CrossRef]
- Rajora, G.L.; Bobi, M.Á.S.; Domingo, C.M. Application of machine learning methods for asset management on power distribution networks. Emerg. Sci. J. 2022, 1, 905–920. [Google Scholar] [CrossRef]
- Koohmishi, M.; Kaewunruen, S.; Chang, L.; Guo, Y. Advancing railway track health monitoring: Integrating GPR, InSAR and machine learning for enhanced asset management. Autom. Constr. 2024, 162, 105378. [Google Scholar] [CrossRef]
- Payette, M.; Abdul-Nour, G. Machine Learning Applications for Reliability Engineering: A Review. Sustainability 2023, 15, 6270. [Google Scholar] [CrossRef]
- Ferreira, C.; Gonçalves, G. Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. J. Manuf. Syst. 2022, 63, 550–562. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Hossain, M.J.; Alam, M.M. Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects. Renew. Sustain. Energy Rev. 2024, 190, 114088. [Google Scholar] [CrossRef]
- Xia, J.; Zou, G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean Eng. 2023, 268, 113322. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach. Sci. Rep. 2022, 12, 4260. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, G.; Thies, P.R.; Johanning, L. Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies 2021, 14, 2484. [Google Scholar] [CrossRef]
- García-Orozco, S.; Vargas-Gutiérrez, G.; Ordóñez-Sánchez, S.; Silva, R. Using Multi-Criteria Decision Making in Quality Function Deployment for Offshore Renewable Energies. Energies 2023, 16, 6533. [Google Scholar] [CrossRef]
- Schery, C.A.; Vignon, Y.; Caiado, R.; Santos, R.; Congro, M.; Corseiul, E.; Roehl, D. BIM critical factors and benefits for public sector: From a systematic review to an empirical fuzzy multicriteria approach. Braz. J. Oper. Prod. Manag. 2023, 20, 1837. [Google Scholar] [CrossRef]
- Yang, C.; Jia, J.; He, K.; Xue, L.; Jiang, C.; Liu, S.; Zhao, B.; Wu, M.; Cui, H. Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey. Energies 2023, 16, 5562. [Google Scholar] [CrossRef]
- de Paula Vidal, G.H.; Caiado, R.G.G.; Scavarda, L.F.; Ivson, P.; Garza-Reyes, J.A. Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network. Comput. Ind. Eng. 2022, 174, 108777. [Google Scholar] [CrossRef]
- Turner, C.J.; Emmanouilidis, C.; Tomiyama, T.; Tiwari, A.; Roy, R. Intelligent decision support for maintenance: An overview and future trends. Int. J. Comput. Integr. Manuf. 2019, 32, 936–959. [Google Scholar] [CrossRef]
- Psarommatis, F.; May, G.; Azamfirei, V. Envisioning maintenance 5.0: Insights from a systematic literature review of Industry 4.0 and a proposed framework. J. Manuf. Syst. 2023, 68, 376–399. [Google Scholar] [CrossRef]
- Cocchi, N.; Dosi, C.; Vignoli, M. Stage-Gate Hybridization Beyond Agile: Conceptual Review, Synthesis, and Research Agenda. IEEE Trans. Eng. Manag. 2024, 71, 6435–6453. [Google Scholar] [CrossRef]
- Edison, H.; Wang, X.; Conboy, K. Comparing Methods for Large-Scale Agile Software Development: A Systematic Literature Review. IEEE Trans. Softw. Eng. 2022, 48, 2709–2731. [Google Scholar] [CrossRef]
- Zare, F.; Jakeman, A.J.; Elsawah, S.; Guillaume, J.H.A. Bridging practice and science in socio-environmental systems research and modelling: A design science approach. Ecol. Model. 2024, 492, 110719. [Google Scholar] [CrossRef]
- Ciancarini, P.; Ergasheva, S.; Farina, M.; Mubarakshin, D.; Succi, G. Agile methodologies between software development and music production: An empirical study. Front. Comput. Sci. 2023, 5, 1181041. [Google Scholar] [CrossRef]
- Khan, A.A.; Akram, M.U.; Butt, W.H.; Sirshar, M. An Enhanced Agile V-Model: Conformance to regulatory bodies and experiences from model’s adoption to medical device development. Heliyon 2024, 10, e26928. [Google Scholar] [CrossRef]
- Apiola, M.; Sutinen, E. Design science research for learning software engineering and computational thinking: Four cases. Comput. Appl. Eng. Educ. 2021, 29, 83–101. [Google Scholar] [CrossRef]
- Fernández-Diego, M.; Méndez, E.R.; González-Ladrón-De-Guevara, F.; Abrahão, S.; Insfran, E. An Update on Effort Estimation in Agile Software Development: A Systematic Literature Review. IEEE Access 2020, 8, 166768–166800. [Google Scholar] [CrossRef]
- Ormerod, R. The pragmatic logic of OR consulting practice: Towards a foundational view. J. Oper. Res. Soc. 2020, 71, 1691–1709. [Google Scholar] [CrossRef]
- Sánchez-Silva, M.; Calderón-Guevara, W. Flexibility and adaptability within the context of decision-making in infrastructure management. Struct. Infrastruct. Eng. 2022, 18, 950–966. [Google Scholar] [CrossRef]
- Huybrechts, I.; Declercq, A.; Verté, E.; Raeymaeckers, P.; Anthierens, S. The Building Blocks of Implementation Frameworks and Models in Primary Care: A Narrative Review. Front. Public Health 2021, 9, 675171. [Google Scholar] [CrossRef]
- Ricketts, K.D.; Palmer, J.; Navarro-Garcia, J.; Lee, C.; Dominik, S.; Barlow, R.; Ridoutt, B.; Richards, A. Bridging organisational discourse and practice change: Exploring sustainable procurement portfolios for Australian beef. Sustain. Account. Manag. Policy J. 2023, 14, 265–288. [Google Scholar] [CrossRef]
- Loke, Z.X.; Goh, S.L.; Kendall, G.; Abdullah, S.; Sabar, N.R. Portfolio Optimization Problem: A Taxonomic Review of Solution Methodologies. IEEE Access 2023, 11, 33100–33120. [Google Scholar] [CrossRef]
- Peinado Gonzalo, A.; Benmessaoud, T.; Entezami, M.; García Márquez, F.P. Optimal maintenance management of offshore wind turbines by minimizing the costs. Sustain. Energy Technol. Assess. 2022, 52, 102230. [Google Scholar] [CrossRef]
- Si, H.; Kavadias, S.; Loch, C. Managing innovation portfolios: From project selection to portfolio design. Prod. Oper. Manag. 2022, 31, 4572–4588. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Mar. Struct. 2020, 71, 102718. [Google Scholar] [CrossRef]
- Gasparini, G.; Brunelli, M.; Chiriac, M.D. Multi-period portfolio decision analysis: A case study in the infrastructure management sector. Oper. Res. Perspect. 2022, 9, 100213. [Google Scholar] [CrossRef]
- Farquhar, J.; Michels, N.; Robson, J. Triangulation in industrial qualitative case study research: Widening the scope. Ind. Mark. Manag. 2020, 87, 160–170. [Google Scholar] [CrossRef]
- Pagone, B.; Primogerio, P.C.; Dias Lourenco, S. Pedagogic and assessment innovative practices in higher education: The use of portfolio in economics. J. Int. Educ. Bus. 2024, 17, 228–245. [Google Scholar] [CrossRef]
- de Souza, D.G.B.; dos Santos, E.A.; Soma, N.Y.; da Silva, C.E.S. MCDM-Based R&D Project Selection: A Systematic Literature Review. Sustainability 2021, 13, 11626. [Google Scholar] [CrossRef]
- Silva, N.F.; dos Santos, M.; Gomes, C.F.S.; de Andrade, L.P. An integrated CRITIC and Grey Relational Analysis approach for investment portfolio selection. Decis. Anal. J. 2023, 8, 100285. [Google Scholar] [CrossRef]
- Animah, I.; Shafiee, M. Condition assessment, remaining useful life prediction and life extension decision making for offshore oil and gas assets. J. Loss Prev. Process Ind. 2018, 53, 17–28. [Google Scholar] [CrossRef]
- Hinrichs, M.; Prifti, L.; Schneegass, S. Data-driven decision-making in maintenance management and coordination throughout the asset life cycle: An empirical study. J. Qual. Maint. Eng. 2023, 30, 202–220. [Google Scholar] [CrossRef]
- Nardy, L.; Pinheiro, O.; Lepikson, H. Computer System Integrated with Digital Models for Reconstruction of Underwater Structures with High Definition. IEEE Lat. Am. Trans. 2022, 20, 283–290. [Google Scholar] [CrossRef]
- Galar, D.; Kans, M. The Impact of Maintenance 4.0 and Big Data Analytics Within Strategic Asset Management. In Proceedings of the Maintenance Performance and Measurement and Management 2016 (MPMM 2016), Luleå, Sweden, 28 November 2017; pp. 96–104. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63821 (accessed on 1 August 2024).
- Prat, N.; Comyn-Wattiau, I.; Akoka, J. A Taxonomy of Evaluation Methods for Information Systems Artifacts. J. Manag. Inf. Syst. 2015, 32, 229–267. [Google Scholar] [CrossRef]
- Venable, J.; Pries-Heje, J.; Baskerville, R. FEDS: A Framework for Evaluation in Design Science Research. Eur. J. Inf. Syst. 2016, 25, 77–89. [Google Scholar] [CrossRef]
- Zhuang, Y.; Lu, M.-Y. Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation. IEEE Access 2022, 10, 14418–14428. [Google Scholar] [CrossRef]
- Woods, C.; Selway, M.; Bikaun, T.; Stumptner, M.; Hodkiewicz, M. An ontology for maintenance activities and its application to data quality. Semant. Web 2024, 15, 319–352. [Google Scholar] [CrossRef]
- Komorniczak, J.; Ksieniewicz, P. problexity—An open-source Python library for supervised learning problem complexity assessment. Neurocomputing 2023, 521, 126–136. [Google Scholar] [CrossRef]
- Alamri, A.H.; Alhazmi, N. Development of data driven machine learning models for the prediction and design of pyrimidine corrosion inhibitors. J. Saudi Chem. Soc. 2022, 26, 101536. [Google Scholar] [CrossRef]
- El-Amin, M.F.; Alwated, B.; Hoteit, H.A. Machine Learning Prediction of Nanoparticle Transport with Two-Phase Flow in Porous Media. Energies 2023, 16, 678. [Google Scholar] [CrossRef]
- de Miranda, M.A. Um Modelo de Otimização Inteira Mista Na Programação de Produção de Mangueiras Hidráulicas. January 2016. Available online: http://hdl.handle.net/11449/139251 (accessed on 1 August 2024).
- Yin, R. Case Study Research and Applications: Design and Methods. November 2017. Available online: https://www.semanticscholar.org/paper/Case-Study-Research-and-Applications%3A-Design-and-Yin/4469b120f6665e4454c1c324ce06bc756f98d032 (accessed on 6 November 2023).
- Tian, G.; Zhang, L.; Fathollahi-Fard, A.M.; Kang, Q.; Li, Z.; Wong, K.Y. Addressing a Collaborative Maintenance Planning Using Multiple Operators by a Multi-Objective Metaheuristic Algorithm. IEEE Trans. Autom. Sci. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Denzin, N.K. The Research Act: A Theoretical Introduction to Sociological Methods; Routledge: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Jin, L.; Kim, D.; Abu-Siada, A. State-of-the-art review on asset management methodologies for oil-immersed power transformers. Electr. Power Syst. Res. 2023, 218, 109194. [Google Scholar] [CrossRef]
- Flick, U. The SAGE Handbook of Qualitative Data Collection; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2017; pp. 1–736. [Google Scholar]
- Dellermann, D.; Lipusch, N.; Ebel, P.; Leimeister, J.M. Design principles for a hybrid intelligence decision support system for business model validation. Electron. Mark. 2019, 29, 423–441. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Zhang, Z.; Ma, X.; Zhao, Y. Operations & Maintenance Optimization of Wind Turbines Integrating Wind and Aging Information. IEEE Trans. Sustain. Energy 2021, 12, 211–221. [Google Scholar] [CrossRef]
- Ferreira, C.; Barrelas, J.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Impact of Environmental Exposure Conditions on the Maintenance of Facades’ Claddings. Buildings 2021, 11, 138. [Google Scholar] [CrossRef]
# | Module | Description |
---|---|---|
1 | Scope (problem) definition | This module sets the initial parameters of the maintenance project, laying the foundation for effective planning. |
2 | Degradation progress prediction | This module employs machine learning models, specifically the Random Forest algorithm, to predict corrosion progression based on environmental and operational factors. |
3 | Exploratory analysis of the current situation | Provides a detailed view of the platform’s pre-maintenance condition, using KPIs and graphical visualisations to facilitate understanding of the current situation and the projected scenario if no maintenance actions are taken. |
4 | Objective definition (strategies) | Allows for the selection of various optimisation strategies, each focused on different critical aspects of maintenance:
|
5 | Maintenance plan generation and 2D graphic analysis | Produces optimised plans and provides visualisations to facilitate understanding and decision-making. |
6 | 3D visualisation of the maintenance plan | Integrates the results with 3D CAD/CAE models for a more comprehensive spatial representation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios, M.P.; Caiado, R.G.G.; Vignon, Y.R.; Corseuil, E.T.; Santos, P.I.N. Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach. Appl. Sci. 2024, 14, 10902. https://doi.org/10.3390/app142310902
Rios MP, Caiado RGG, Vignon YR, Corseuil ET, Santos PIN. Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach. Applied Sciences. 2024; 14(23):10902. https://doi.org/10.3390/app142310902
Chicago/Turabian StyleRios, Marina Polonia, Rodrigo Goyannes Gusmão Caiado, Yiselis Rodríguez Vignon, Eduardo Thadeu Corseuil, and Paulo Ivson Netto Santos. 2024. "Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach" Applied Sciences 14, no. 23: 10902. https://doi.org/10.3390/app142310902
APA StyleRios, M. P., Caiado, R. G. G., Vignon, Y. R., Corseuil, E. T., & Santos, P. I. N. (2024). Optimising Maintenance Planning and Integrity in Offshore Facilities Using Machine Learning and Design Science: A Predictive Approach. Applied Sciences, 14(23), 10902. https://doi.org/10.3390/app142310902