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Abstract: The fluid—structure interaction effect should not be disregarded when examining the
vibration characteristics of hydraulic pipeline systems. The transfer matrix method (TMM) is an
efficacious method for analyzing the vibration characteristics of hydraulic pipelines in the frequency
domain, offering advantages such as simplicity and efficiency. However, the TMM suffers the problem
of high frequency instability when dealing with long-span hydraulic pipelines, which restricts its
practical application. Currently, several modified transfer matrix methods face challenges such as low
computational efficiency and difficulties in handling complex boundaries. In response to these issues,
this paper proposes a novel modified transfer matrix method known as the mixed variable transfer
matrix method. This innovative method possesses clear physical significance and effectively prevents
the transfer matrix from becoming singular without necessitating the subdivision of the pipeline
length. Consequently, it addresses high-frequency instability while maintaining high computational
efficiency. Moreover, this method is capable of addressing complex boundary problems by integrating
boundary matrices, thereby demonstrating enhanced applicability compared to existing methods.
The performance of the proposed method was validated through the utilization of classic Dubee
pipeline impact test data, and the result shows maximum errors of 3.03% relative to the public data.
Subsequently, an experiment was conducted on a section of hydraulic piping within a ship’s steering
system. A hydraulic fluid noise generator was established to induce fluid pulsation excitation to
the pipeline, thereby simulating the actual boundary conditions encountered in a ship’s hydraulic
pipeline system so as to corroborate the efficacy of the proposed method in predicting the frequency
domain vibration characteristics of a real hydraulic pipeline system. The experimental results indicate
that the proposed method offers significant advantages in terms of high precision, efficiency, and
stability, shows maximum errors of 4.35% relative to experimental data, and demonstrates promising
prospects for engineering applications.

Keywords: hydraulic pipeline; fluid—structure interaction; frequency domain vibration characteristics;

mixed variable transfer matrix method

1. Introduction

Hydraulic pipeline systems offer significant advantages, including high power density
and exceptional stiffness under load. They are extensively utilized in the fields of aviation,
aerospace, and the ship industry for the efficient transfer of power flow, energy flow, and
mass flow [1-3]. In the ship industry, the design of hydraulic pipeline systems has his-
torically prioritized function, often neglecting the critical aspects of vibration and noise.
In reality, hydraulic pipeline systems have emerged as significant sources of vibrational
radiation within ship environments. This is primarily due to factors such as pump-induced
flow pulsations, environmental vibration, and fluid—structure interaction characteristics [4].
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As underwater vessels, including submarine and unmanned underwater vehicles, increas-
ingly demand high levels of acoustic stealth performance, it has become imperative to
investigate the vibration and noise characteristics of hydraulic pipeline systems, as well as
their control methods.

Fluid-structure interaction (FSI) is a critical aspect that must not be overlooked when
examining the vibration of hydraulic pipeline systems. In the past decades, many scholars
have studied pipeline FSI regarding many aspects, such as mechanism explanation [5,6],
model construction [7] and engineering applications [8]. Pipeline FSI belongs to one of
the general FSI. For hydraulic pipeline systems, the noise excitation source is usually the
pulsating pressure of the fluid, so the nonlinear effect is usually ignored in the analysis
process while the fluid-solid interaction between the pipeline and the fluid medium in
the linear domain is emphasized. There are three types of interaction between fluid and
the pipeline: Poisson coupling, friction coupling, and junction coupling. Poisson coupling
and friction coupling exert their effects on the entire pipeline and can be described using
first-order partial differential equations. In contrast, junction coupling primarily occurs
at points of discontinuity in the pipeline or where there is a change in the direction of
fluid flow; it must be expressed in conjunction with the pipeline equation and relevant
boundary conditions. The pipeline FSI model has evolved from a classical water hammer
model, which solely accounts for the characteristics of fluid pressure waves, to a compre-
hensive 14-equation model based on the Timoshenko beam theory. This advanced model
incorporates not only the axial and lateral motions but also the torsional dynamics of the
pipeline [9,10]. In terms of computational methods, it primarily encompasses the method
of characteristics (MOC), the finite element method (FEM), and the transfer matrix method
(TMM). The MOC is a widely utilized method for addressing hyperbolic partial differential
equations. In the domain of pipeline FSI, it is frequently employed for the time-domain
transient response analysis of pressure waves within the pipeline. Wiggert et al. [7] applied
the MOC to investigate the pressure and stress responses in a spatially filled pipe featuring
an elbow joint when the valve closes abruptly based on a 14-equation model. Tijsseling
etal. [11] integrated an eight-equation model with the MOC to analyze the impact response
of a planar liquid-filled elbow, providing an in-depth discussion on various boundary con-
ditions. Xu and Jiao [12] introduced an MOC based on the modified compatibility equation,
and this method improved algorithm accuracy by circumventing simplifications associated
with this equation. Nevertheless, the MOC is subject to multiple interpolation errors related
to characteristic lines and presents challenges in managing complex boundary conditions
within pipeline systems, which constrains its broader engineering applications [13]. The
FEM is a powerful tool for analyzing the modal and dynamic response of structures, with
numerous applications in the field of pipeline FSI. Based on the finite element theory,
Luczko and Czerwinski [14] employed spline functions as shape functions to develop a
motion model for a three-dimensional liquid-filled pipeline. Based on the 14-equation
beam model, Sreejith et al. [15] developed a finite element expression for pipelines that
incorporated both Poisson coupling and junction coupling. The study focused on the water
hammer effect as the target scenario. The findings indicate that neglecting FSI can lead to an
overestimation of the calculated structural velocity. Furthermore, through recognizing the
advantages of the MOC in addressing fluid dynamic characteristics alongside the efficacy
of the FEM in handling structural vibration, many researchers have utilized the MOC-FEM
to investigate pipeline FSI characteristics [16,17]. However, it is important to note that the
FEM represents both pipe movement and fluid behavior through nodes and elements; thus,
its accuracy and efficiency are contingent upon the number of discrete elements utilized.
For complex long-span pipelines, the FEM incurs substantial computational costs, which
remains a primary factor limiting its broader engineering application.

For ship hydraulic pipeline systems, frequency domain response characteristics are
of paramount importance. The TMM serves as an effective tool for analyzing the fre-
quency domain vibration characteristics of chain-linked systems. This method discretizes
the system into a series of sets comprising domain transfer matrices and point transfer
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matrices. By sequentially connecting these matrices, a global transfer matrix is formed,
which incorporates boundary conditions to facilitate the realization of system modes and
responses. This approach offers significant advantages in terms of both simplicity and
efficiency. Tentarelli [10] examines the impact of frequency-domain-related friction terms,
categorizing the state variables in the 14-equation model into a pair of conjugate groups.
He derives the transfer matrix for pipes based on the general solution form of the wave
equation. Liu and Li [18] transformed the axial, transverse, and torsional vibration models
of straight pipes from multivariate first-order equations to one-dimensional high-order
equations, thereby obtaining analytical solutions for each state variable and subsequently
deriving the transfer matrix; however, this approach is limited to straight pipes. Zhang
et al. [19] utilized the decoupling method of the MOC and introduced the L-MOC to derive
the transfer matrix for the axial four equations governing straight pipe sections. This
methodology has since become a classic technique for constructing transfer matrices in
liquid-filled pipes. Building upon Zhang et al.’s work, Xu et al. [20] developed a solution
addressing pipeline frequency-domain characteristics that incorporates complex constraints
and extended the L-MOC method to encompass the 14-equation model.

In fact, although the methods for constructing transfer matrices in the aforementioned
literature differ, they all address partial differential equations to derive the transfer relation-
ships of state variables at both ends of the pipeline and are fundamentally interconnected.
Several studies have indicated that numerical instability arises when calculating the fre-
quency domain characteristics of long-span liquid-filled pipelines using the TMM based on
the 14-equation model. Research conducted by De Jong [21] and Li [22] highlighted that
this instability primarily occurs during calculations involving lateral vibrations of pipelines.
Furthermore, investigations by Deng et al. [8] demonstrated that in systems containing
curved pipes, axial excitation can also induce instability due to the coupling between axial
and lateral vibrations within these curved structures.

In order to address the high-frequency instability issues associated with the TMM, various
enhanced methods have been proposed sequentially. Tanaka et al. [23] introduced the concept
of branching within the original system, which enhances TMM stability by integrating a side
branch system into the boundary of the main path system, thereby shortening the transfer
distance between variables. Wang [24] elaborated on this method’s calculation process in detail
based on Tanaka’s theory; however, it necessitates constructing a complex intermediate matrix
and is not universally applicable. The Riccati Transfer Matrix Method (RTMM) offers a means
to reduce the dimensions of the transfer matrix while simultaneously improving stability by
transforming a two-point boundary value problem into a one-point initial value problem.
Nonetheless, this approach is limited to simple boundary conditions and proves unsuitable
for intricate hydraulic pipelines [13,25]. Uhrig et al. [26] and Tentarelli et al. [5,6] proposed
corresponding enhancement strategies for applying the TMM to tackle instability challenges
in structural dynamics and the pipeline fluid—structure interaction (FSI). Although their
computational processes differ, they all fundamentally segment the original system into
distinct sub-elements to minimize the “characteristic length”. This treatment methodology
is uniformly referred to as the Piecewise Transfer Matrix Method (PTMM) herein. De
Jong and Li proposed a foundational framework for dividing subunits in the context of
liquid-filled piping problems using the PTMM [21,27]. Subsequently, Deng et al. [8] applied
the PTMM to analyze the frequency domain characteristics of aviation hydraulic piping
systems. Similar to the FEM, the accuracy and stability of the PTMM are contingent upon
the number of sub-elements. As pipeline system complexity increases, the dimensions
of the global transfer matrix derived from the PTMM also expand, leading to decreased
efficiency and thereby limiting its applicability. In addressing elastic wave propagation
in layered media, Zhang et al. [28] introduced a method known as the mixed variable
transfer matrix method. The central premise involves transforming the traditional transfer
matrix into a mixed variable transfer matrix. Here, “mixed variable” refers to utilizing
potential variables at one end of the system alongside flow variables at the opposite end
as fundamental parameters. Cao et al. [29] were pioneers in applying this method within
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pipeline FSI contexts and demonstrated its effectiveness; however, their investigations
were confined to simple straight pipes under ideal boundary conditions, leaving further
exploration regarding this method’s broader applicability unaddressed.

Ship hydraulic pipelines typically span long distances in space. Given this context,
it is essential to develop an efficient, accurate, and stable method for analyzing the FSI
frequency domain characteristics of long-span hydraulic pipelines. This paper constructs
the frequency-domain transfer matrix for a typical hydraulic pipeline based on the FSI
14-equation model and employs the concept of mixed variable matrices. Furthermore, we
derived a recursive algorithm for the mixed variable transfer matrix, enabling the effec-
tive prediction of the frequency domain vibration response of the hydraulic pipeline by
incorporating the matrix representation of complex boundary constraints. This approach
is also referred to as the mixed variable transfer matrix method (MVTMM) in this paper.
The proposed method was validated using FSI test data published by Dubee University
and through an FSI module developed within commercial finite element software. Sub-
sequently, we conducted experiments on a section of a U-shaped pipeline utilized in a
ship’s steering device. It is important to note that previous experiments concerning FSI in
pipelines predominantly involved free boundary conditions based on force hammer impact
methods [30,31], which differ significantly from the operational environment encountered
in actual hydraulic pipeline systems. In relation to steering gear applications, fluid pulsa-
tions at the pipe’s terminus represent a primary source of radiated noise. Therefore, this
study simulates realistic boundary conditions pertinent to ship hydraulic pipeline systems
and completes an experimental investigation into the frequency domain vibration response
of the target pipeline under fluid excitation combined with a fluid noise generator. This
work substantiates the engineering applicability of our proposed method.

The structure of this paper is organized as follows: In the Section 2, an FSI 14-equation
model for a hydraulic pipeline, incorporating Friction coupling, is established. Addition-
ally, the theory of the classical TMM is summarized and its instability mechanisms are
analyzed. After that, the fundamental principles of the MVTMM, including the recursive
algorithm and matrix representation for complex boundaries, culminating in a compre-
hensive frequency-domain characteristic analysis method tailored for FSI in pipelines is
described in detail. Section 3 validates the performance of the proposed method using
data from the Dubee pipeline and the FEM. In Section 4, an experimental investigation into
the FSI vibration characteristics of a U-shaped hydraulic pipeline under fluid excitation is
conducted to demonstrate the engineering applicability of this method. Section 5 concludes
with final remarks.

2. Overview of the TMM
2.1. The 14-Equation Model for FSI in Hydraulic Pipelines

The 14-equation model, based on the Timoshenko beam, comprehensively charac-
terizes the dynamic relationship between potential variables (force, moment) and flow
variables (velocity, angular velocity) across each degree of freedom in the hydraulic pipeline.
This model currently represents the most complete framework for describing the FSI char-
acteristics inherent to pipelines. It comprises four equations that address axial vibrations
of the pipeline, eight equations pertaining to transverse vibrations, and two equations
related to torsional vibrations. Figure 1 illustrates both the force analysis diagram of a
microelement within the elbow section and a schematic representation of axial friction
coupling between the pipe and fluid. By considering the force conditions acting on the
microelement of both the pipe and fluid, a 14-equation model that incorporates friction
coupling can be established, while the detailed derivation process of the model can be
found in reference [10], which is not described in detail in this paper due to space reasons.
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Figure 1. A schematic representation of force for a liquid-filled pipeline microelement.

The equations of axial motion are as follows:

90 _ _, 0% 2T
al — Frar ripy
@_(_l_(l_yZ)(Zri—i—e))aip_i_ 2u of,  uy

K Ee ot ' EA, 3t Ry

ofz _ o, ‘ fy
ar =~ rPrgp Re
ou; 1 df; wuridp Uy

0z EAp, ot Eedt R

The equations of lateral motion in the y-z plane are as follows:

fy fo _ Ay
= (orAs +ppA )at R, TR,

du, 1 0fy

3l ~ KGA, ot "’“E

om 0
TZX = (PPIP‘FPfIf)TtX + fy

M

@)

®)

(4)

©)

(6)

@)



Appl. Sci. 2024, 14, 10847 6 of 25

0Py oy
ol A ®)
The equations of lateral motion in the x-z plane are as follows:
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The equations of motion about the z axis are as follows:
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where k? = 2 4:3’; is identified as the shear constant. E4 denotes the bending rigidity of
_ I

the pipe. E4 = ETP applies when the object is a straight pipe, while E4 = 7 1, pertains to
cases involving a curved pipe. ff represents the rigidity correction factor, which is stated
in Equation (15). It is worth noting that the meaning of all the variables involved in the
theoretical derivation of this paper can be found in the nomenclature.

1.6577
ff == (15)

It can be observed from Equations (1) to (14) that both friction coupling and Poisson
coupling are present in the axial four equations. In the transverse plane, the fluid exerts
an additional mass effect on the pipe. For straight pipes, axial and transverse vibrations
are decoupled; however, for curved pipes, these vibrations are coupled with one another.
Consequently, the vibration characteristics of curved pipes exhibit greater complexity.

2.2. The Classic TMM and the Analysis of Its Instability Mechanism

The derivation of the classical TMM has been completed by previous researchers,
and the details can be seen in Appendix A [19,20]. This is not the main innovation of this
paper, so it will not be elaborated here. It can be observed from the derivation presented
in Appendix A that the field transfer matrix of the pipeline includes an exponential term,
denoted as exp(—sl/A), whose value is significantly influenced by both the length and
frequency of the pipeline. When the frequency remains constant, an increase in the pipeline
length leads to exponential changes in the values of corresponding elements within the
transfer matrix; some elements may experience a sharp increase while others approach
zero. This phenomenon results in an escalation of the condition number of the transfer
matrix towards singularity, which can cause instability during matrix inversion operations
on a computer. Similarly, when maintaining a constant length, variations in frequency
also induce exponential changes in element values within the transfer matrix. The same
instability arises with increasing analysis frequencies. Thus, fundamentally speaking,
stability issues associated with the transfer matrix represent a mathematical challenge. Li
et al. [25] have mathematically demonstrated that for FSI involving pipelines, the condition
number of the axial transfer matrix is consistently equal to 1; conversely, it has been
established that there exists a positive correlation between both the length and frequency
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and the condition number of transverse transfer matrices. Consequently, for a simple
straight pipeline, instabilities related to this method primarily manifest during solutions
concerning transverse vibration.

2.3. The Theory of the MVTMM

To enhance the high-frequency stability of the TMM, numerous studies have embraced
a segmented approach. This involves subdividing the pipeline system into several shorter
sub-segments based on specific criteria, followed by increasing the matrix dimensions
through node coupling, which is called the PTMM. This strategy aims to improve algo-
rithmic stability, albeit at the cost of computational efficiency. The introduction of the
PTMM can be found in Appendix B. As indicated in Equation (A13), the dimension of
the node-coupling matrix increases with the number of tube segments. Specifically, this
matrix is a square matrix with a dimension of 14 x (N + 1), whereas the transfer matrix
consistently maintains a dimension of 14 x 14. Consequently, the efficiency of the PTMM
is inferior to that of the TMM. For long-span hydraulic piping systems, it is imperative to
develop a new method that balances both efficiency and accuracy.

2.3.1. The Construction of the Mixed Variable Transfer Matrix

The 14 frequency-domain state variables of the hydraulic pipeline system are or-
ganized into pairs of conjugate variable groups based on symmetry, specifically Var =
{P,E., Uy, My, Fx,py, M.} and Var. = {V, U, F,, {x, UxM,, ¢ }. The concept of symme-
try is discussed in the literature [10]. Subsequently, Equations (1)—(14) can be uniformly
expressed in the following matrix form after applying Laplace transformation:

ro 0 0 0 0 0 0 DD, 0O 0 0 0 01
P 0o 0 0 0 0 0 0 DyDf 0 0 0 0 [[P]
F; 0o 0 0 o0 0 0 0 0 & =& -1 0 0 0 F;
w 4
Uy o 0o o o 0 0 0 0 0 1 Ds 0 0 o0 ||W
Alfx o 0 o0 0 0 0 0 0 0 0 0 D¢ 0 0 Alfx
lpx o 0 0 0 0 0 0 0 0 0 0 0 sEy 1le
Y —1 Y
9 M| _ E)s ng ,01 ° ’ o0 0l 0 T M- (16)
glv| = # & 0o o o 0o 0 0 0 0 0 0 0|y
U, D7 = 0 0 0 0 0 0 0 0 0 0 0 U,
Byl L pgo 0o 0o 0o 0o 0o 0o o0 0 0o o
Zx O 0 0 sE4 O 0 0 0 0 0 0 0 0 0 z"
M’; 0 0 0 0 g 1 0 0 0 0 0 0 0 0 M’;
1
) 00 0 0 -1 D5 0 0 0 0 0 0 0 |||
o0 0o 0 0o o g g o 0o 0o 0 0 0 0]
where R
_ 2p0¢s N 20¢s _ 2mpyris
Dl = (pfs + ﬂl(jri\/s/ivf)72)' D2 - 191(]‘1’[\/8/72))()72’ D3 - 191(]'1’[\/8/72)'[)72’
27Tpfri25 spr;

Dy = Appps + 7191(#:’@)—2’ Ds = spplp +spslf, and Dg = sppAf +sppAp, D7 = — g1
Equation (16) can be abbreviated as follows:

2a(s) = T'(s)@(Ls) 17)

where ®(I,s) = [\\7]:11<(li,ss))]’T*(s) _ [TZ?(S) T%(S)}

o) == | 5 ] 18)



Appl. Sci. 2024, 14, 10847

8 of 25

|

Var(ly,s)
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Var(ly,s)
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T is a 14 x 14 square matrix that encapsulates all parameter information of the FSI
14-equation model. Furthermore, T satisfies Equation (18), which implies that T is a
Hamiltonian matrix. According to the properties of Hamiltonian matrices, half of its
eigenvalues correspond to the mechanical wave propagation constants traveling forward
along the pipeline element, while the other half represent those propagating backward
along the same element. Consequently, T can be expressed as follows:

A(s) = S(s) " T(s)S(s) (19)
u uu up
where A(s) = /\(g) N ((s)) D] is a square matrix with eigenvalues, S(s) = [:Ezg DU :Ez; DD

is a square matrix composed of the corresponding eigenvectors, and the superscripts U and D
denote forward and reverse directions along the pipeline, respectively.

The process described is analogous to the decoupling procedure outlined in Equation (A4)
and is derived through the transformation of Equation (17):

In(s) = S(5) ' TES (L) = Alsn(l,s) (20)

The solution to Equation (20) can be articulated as follows:

n(Ls) = {exp()\uéz—lo)) exp()\D(zlll))} Eg] 1)

where [y and [} denote the initial and final positions of the pipeline system, respectively,
while A*Y and A*P represent the amplitudes of the incident and reflected mechanical
waves within the pipeline. Therefore, the following is true:

var(L,s)]  [S(s)" s(s)"P | [exp(AU (I = Iy)) 0 AU
[Varc(l,s)]_[s(s)l)u S(s)DD[ 0 exp(AD(l—ll))} {A*D] (22)

Let A(s)Y = exp(A(s)Y'L) and A(s)P = exp(—A(s)PL), where L = I; — I, represents
the length of the pipeline. This is in conjunction with the boundary conditions established
at both ends of the pipeline:

]_ S(s)"Y s(s)UP [1 0 }{A*'U} s s(s)UPA(s)P [A*'u} )
- S(S)DU S(S)DD 0 A(S)D A*,D - S(S)Du S(S)DDA(S)D A*,D
]_ S(s)™ s(s)? [A(s)u o] [A*'U] _[S(e)THAY s(s)HP {A*ﬂ} 24
- S(S)Du S(S)DD 0 I A*,D - S(S)DUAU S(S)DD A*,D
Based on Equations (23) and (24), we can conclude the following:
Var(ll,s) . Xllflo _Z11/10 Var(lo,s) 5
[Varc(lo,s)] o |:Yl1,lo Wllrloil [Varc(ll,s)] ( )

,lo} _ [SUU(S)A(S)U S(s)"P 26)

S(s)PY  s(s)PPA(s)P

s(s)UY S(s)UPA(s)P ]
S(s)"YA(s)Y S(s)””

lp

Z;, ;, and Y, ; canbe interpreted as the impedance matrix and the admittance matrix of
the pipeline, respectively. As indicated in Equation (25), the state vectors on both sides of the
equation consist of variables at both ends of the pipeline; thus, they are referred to as mixed
variable vectors. The corresponding transfer matrix is termed the mixed variable transfer
matrix. From Equation (26), it is evident that the diagonal elements of the inverse matrix
on its right side do not include exponential terms. Consequently, when the length of the
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pipeline is substantial, this matrix remains non-singular. Conversely, for shorter pipelines,
this matrix corresponds to an eigenvector matrix derived from the Hamiltonian matrix,
which retains invertibility due to inherent properties associated with Hamiltonian matrices.
Furthermore, by applying the recursive algorithm pertaining to mixed variable transfer
matrices, we can derive a global transfer matrix for chain systems without necessitating
additional operations involving inverse matrices. Therefore, employing mixed variable
transfer matrices instead of traditional transfer matrices effectively mitigates high-frequency
instability issues commonly encountered in long pipelines.

2.3.2. FSI Frequency Domain Solution of Hydraulic Pipeline Based on MVTMM

a. Boundary conditions

The boundary conditions play a crucial role in determining the characteristics of a
pipeline. Figure 2 illustrates the schematic representation of the boundaries and constraints
within the hydraulic pipeline system. In such systems, fluid boundary conditions are
typically induced by pulsating pressure at one end, while they are constrained by a throttle
valve at the opposite end. The pipeline’s boundary condition must be established based
on the actual installation state of the pipeline, which can be modeled as a spring-damping
system with six degrees of freedom. This paper focuses on the hydraulic pipeline associated
with ship steering gear, where boundary conditions at both ends of the pipeline can be
considered as fixed constraints.

| L

I I
Pressure pulsation ﬁ
——»
J= ()Ql\\'/ =L
Boundary constraint

Fluid excitation

[—— Time domain|

A -

0 100 200 300
Frequency/Hz

Amplitude

= ———=

Amplitude
e
=~

Figure 2. A schematic diagram of hydraulic pipeline boundaries and constraints.

The boundary conditions and excitations can be expressed in the form of a boundary
matrix and an excitation vector. For the system illustrated in Figure 2:
The boundary conditions and excitation vector at I = 0 are as follows:

0 0 00 0 00 0 0 0O 0 0 0]

1.0 00 0 00 —Zs 0 0 0 0 0

0 -Zs 00 0 00 0 1 0 0 0 0

0 0 10 0 00 0 0 Y 0 0 0 (27)
0 0 01 0 00 0 0 0 =—Zy 0 0

0 0 00 Y 00 0 0 0 0 1 0

0 0 00 0 10 0 0 0 0 0 —Yul,,,

Q,(s)=[P 0 0 0 0 0 0 (28)
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The boundary conditions and excitation vector at [ = L are as follows:
m o o0 00 0 0 -2 0 0 0 O 0 07
01 0 00 0 0O O Z, O O 0 O O
00 Z., 00 0 0 © 0 1.0 0 0 O
De(s)=10 0 0 1 0 0 0 O 0 0 Yee O O O (29)
00 0 01 0 0 O 0 0 0 Ze 0 O
00 0 0O0Y 0 O 0 0 0 0 1 O
0o o0 0 00 0 1 0 0 0 0 0 0 Yal, 4
Qe(s)=[0 0 0 0 0 0 O (30)
ki
Zi:;+ci+ms 31)
ki
Y, = . + ¢4+ Jis (32)

In Equations (31) and (32), Z; and Y; denote the velocity impedance coefficients and
angular velocity impedance coefficients, respectively, i = x,y,z. Additionally, k, ¢, k¢, c;, m, |
represent linear stiffness, linear damping, rotational stiffness, rotational damping, mass,
and the moment of inertia. For the boundary conditions of fixed constraint, it is sufficient
to assign maximum values to k and k;, with a value of 1 x 1012 utilized in this study. Here,
P signifies the Laplace transform of the fluid excitation signal and Z, represents the fluid
impedance associated with the throttle valve, which can be expressed as follows:

Zy =2A fAQP (33)

where AP represents the pressure differential across the throttle valve, and Q denotes the
flow rate within the piping system.

b. The recursive algorithm of MVTMM

For the chain system illustrated in Figure Al, it is necessary to derive a recursive
algorithm to obtain the global transfer matrix. The mixed variable transfer matrix for the
pipeline segment i can be expressed as follows:

{ Var(l;, s) } _ {Xi_i—1 _Zi_i—l] [Var(li—ll 5)] (34)
Var(li_1,s) Yiic1 Wi ]| Varc(lis)
The mixed variable transfer matrix for the pipeline segment i 4 1 can be expressed
as follows:
|:Var(li+l/s):| — |:xi+l_i _Zi+l_i] [ Var(li/ S) ] (35)
Vare(lj, s) Yir1i Wipii] [Vare(lity,s)

Combining Equations (34) and (35) yields the following;:

{Var(liﬂfs)} _ {Xi—'rl_i—l _Zi+l_i—1] [Var(li—hs)} (36)
Var(l;_1,5) Yiv1i1 Wivri1 ]| Vare(liy1,s)

where
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Xip1io1 = Xitni (T4 Zii 1 Yie10) Xiia
Ziv1io1 = Zig1i+ Xii(Z + Yi-&-l,i)_lxg-l,i 37)
Yiprio1 = Y+ X0 (Y + Zi,ifl)ilxi,z‘fl
Wistior = Wi (T4 Yig1,Zii1) " Wi,
Therefore, the global transfer matrix for a hydraulic pipeline comprising N pipe
segments is as follows:

Var(ly,s)| Var(lp,s) | _ [Xno —Znol [ Var(lp,s)
{Varc(lo,s) = MVTgiobal Varc(In,s)|  |Yno Wno | |Varc(ln,s) (38)
-1
Xn_o = XN(I+Zy_19YN) XNfll,O
Zy o =ZV + XNz, + YY) WY
1 -1
Yn.o = Yn-1,0+ Wn-10((YN) 1+ Zn-10) XN-10
Wy o =Wno10(I+YNZy_19) WV

(39)

In Equation (39), X" denotes the transfer matrix of the n-th pipe segment, and Xy_1
signifies the global transfer matrix of the preceding N — 1 pipe segments. Consequently, the
global transfer matrix for the entire pipeline system can be derived by iteratively applying
Equations (34)—(37). Furthermore, Equations (27)—(30) are modified in accordance with the
principles governing conjugate variables, as illustrated in Equation (40). Equation (41) can
then be resolved through integration with Equation (39). Notably, the dimension of the
global coefficient matrix in (41) remains constant at 28 x 28, irrespective of the number of
pipe segments involved. This characteristic contributes to a higher computational efficiency
for the MVTMM compared to the PTMM.

DY (s)Var(ly,s) + DY (s)Varc(lo, s) = Qq(s)

40
DY (s)Var(ly,s) + DY (s)Var(Iy,s) = Qq(s) (40)
0 DY DY 0 Var(ly,s) Qs (s)
Ivz 0 Xno —Zno Vare(lo, s) _| 0 41)
0 Iz Yno Wno Var(lo, s) 0

Ve
Dy 0 0 Dg 28%28 VarC(lN/s) 28%1 Qe(s) 28x1

Based on the above theoretical derivation, the process of the MVTMM-based research
method for FSI frequency-domain vibration characteristics of hydraulic pipelines proposed
in this paper can be intuitively expressed using Figure 3:
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The construction of 14-equation model

The acquisition of conjugate variable groups
Var=(PEUM.Ey. M|  Var,={V.U.F,.y, UM,y

IR

The construction of transfer matrix for individual piping unit

Pipe 1
Var(/,,s) ( @ Var(/,s)
Var (l,,s) Var,(l,,s)
0 ll

Var(l,,s) | X, Ly, |[ Var(,,s)
Var(l,.9) | | Y, W, |[Var.(.s)

l

The construction of global transfer matrix based on recursive

algorithm

Pipe 1 Pipe 2 Pipe N
(¢ O Q-+ @)

Node I Node N-1

4 1 [ Iy

|:Var(lN,S):|: XN7(> _ZNJ) {Var(lms):|
Var,(,,s) YNJ) WNJ) Var,(/y,s)

The combination of boundary condition and global transfer matrix

o DO 4 To o b0 TV
NW Pressure pulsation % L, 0 Xy, —Zy, | Va(.s) _
A Q(S) Q(S)K 0 L, Yy, W,| Var(.s)
I Iy D 0o 0 D |Va(.s

Q)
0
0

Q)

Frequency domain response of a certain point in a pipeline
under excitation

1000

100

H-P2/P1

0.01
100 200 300 400 500 600 700 800 900 1000

Frequency/Hz

Figure 3. A flow chart of the proposed method.

3. Model Verification

Dubee University has conducted numerous classic FSI experiments on liquid-filled
pipelines, encompassing both straight and elbow pipelines [32]. The resulting data have
provided effective support for researchers to validate the accuracy of their models. In this
section, we focus on a straight pipeline and an L-shaped elbow pipeline as examples to
assess the performance of the proposed method. Both types of pipes are free-hanging,
water-filled structures with closed ends. One end of the straight pipeline is subjected to a
transverse exciting force, while one end of the elbow pipeline experiences an axial exciting
force, as illustrated in Figure 4. The parameters for both the pipeline and fluid are detailed
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104

s)

Straight pipeline transverse velocity/(m/

in Table 1. The selection of these two cases was motivated by their representativeness
and their ability to directly demonstrate the instability phenomena present in the TMM.
To comprehensively evaluate the theoretical method’s performance, we employed an FSI
module integrated into commercial finite element software to predict the frequency domain
response of liquid-filled pipelines for cross-verification purposes. The parameter settings
of the simulation model are the same as those described in the literature [8]. As depicted in
Figure 5, the TMM effectively predicts the frequency domain response of pipelines within
low-frequency ranges, aligning closely with the prediction results of the FEM. However,
when assessing the transverse velocity response of the straight pipeline at frequencies
exceeding 800 Hz, significant instability is observed. Similarly, instability arises in the
frequency domain response of the L-elbow pipeline above 500 Hz. This indicates that the
TMM possesses inherent limitations when addressing long-span pipelines; the explanations
regarding these deficiencies can be found in Section 2.2.

Force excitation
Plug Cap

1 |
! Lo ! —_—

Force excitation |

(a) (b)

Figure 4. The liquid-filled pipelines used in the Dubee University experiment. (a) Straight pip—line,
(b) L—elbow pipeline.

——FEM
——TMM

| The unstable frequency and The unstable frequendy band

S

2

I
|
|
I
1
I
I
1
|

s

L-elbow pipeline pressure/Pa
=

——FEM | §l | '-}-+-----
10°F ——TMM

400

600

0 200 400 600 800 1000
Frequency/Hz Frequency/Hz
(a) (b)

r
The ynstable frequency band:

@
g
=
=
i3}
Q
E
—10*
.8
g
0 107
8
E |

-6
5.10 :
2 |
2107 —d o ]
[}
~ otk ——FEM

—— TMM
10—9 n n n n
0 200 400 600 800 1000
Frequency/Hz
(c)

Figure 5. Frequency domain response of Dubee pipelines. (a) Transverse velocity response of straight
pipeline, (b) Pressure response of L—elbow pipeline, (c) Axial velocity response of L—elbow pipeline.
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Straight pipeline transverse velocity/(m/s)

Table 1. The parameters of the pipeline and fluid.

Pipeline

Density: 7985kg/ m3 L0: 4.502 m Inner radius: 0.02601 m
Young’s modulus: 168 GPa L1:4.435m Wall thickness: 0.003945 m
Poisson’s ratio: 0.29 Rw: 0.1013 m

Shear coefficient: 0.53 L2:1.263 m

Fluid

Density: 999 kg/ m3 Bulk modulus: 2.14 GPa

The instability observed is associated with both the length of the pipeline and the
frequency band utilized for solving. To address this instability issue, the MVTMM is
employed to predict the frequency domain response of Dubee pipelines. The results are
presented in Figure 6. It is evident that the processing outcomes from the MVTMM and the
FME are largely consistent, effectively mitigating the instability problem.

——FEM

= MVTMM

<,
&

<,

<
IS

<

L-elbow pipeline axial velocity/(m/s)
3

<,
o

——FEM
—— MVTMM

<
%

200

400

600 800 1000 200 400 600 800 1000

Frequency/Hz Frequency/Hz

(a)

(b)

L-elbow pipeline pressure/Pa
=)

——FEM
—— MVTMM
107 : . : :
0 200 400 600 800 1000
Frequency/Hz

(c)

Figure 6. Frequency domain response of Dubee pipelines. (a) Transverse velocity response of straight
pipeline, (b) Pressure response of L-elbow pipeline, (c) Axial velocity response of L-elbow pipeline.

Tables 2 and 3 provide a comparison between the natural frequencies calculated using
the MVTMM, the TMM, the FEM, and those obtained from experiments. It can be seen
that the results calculated by the FEM are basically consistent with the experiment, which
proves the correctness of the simulation model. Then, it can be observed that the maximum
error between the MVTMM and the experimental model is 3.03%, which substantiates
that not only does our method resolve the instability issue, but it also demonstrates high
predictive accuracy. In addition, it is worth noting that the calculation results in the stable
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frequency band of the TMM are completely consistent with those of the MVTMM, which
indicates that the main advantage of the MVITMM over the TMM is its ability to overcome
its instability.

Table 2. Natural frequency of straight pipes: comparison between calculation and experiment.

The MVTMM TMM FEM
Experimental Natural Relative Error to Natural Relative Error to Natural Relative Error to
Result (Hz) Frequency (Hz)  Experiment (%)  Frequency (Hz)  Experiment (%)  Frequency (Hz)  Experiment (%)
13 13 0 13 0 13 0
36 36 0 36 0 36 0
70 71 1.43 71 1.43 71 1.43
116 117 0.86 117 0.86 117 0.86
173 174 0.58 174 0.58 174 0.58
241 242 0.41 242 0.41 242 0.41
320 319 0.31 319 0.31 321 0.31
411 407 0.97 407 0.97 409 0.48
510 504 1.18 504 1.18 507 0.59
619 610 1.45 610 1.45 614 0.81
737 725 1.63 - - 730 0.95
864 847 1.97 - - 854 1.16
999 977 2.2 - - 986 1.3
Table 3. Natural frequency of L-elbow pipes: comparison between calculation and experiment.
The MVTMM TMM FEM
Experimental Natural Relative Error to Natural Relative Error to Natural Relative Error to
Result (Hz) Frequency (Hz)  Experiment (%)  Frequency (Hz)  Experiment (%)  Frequency (Hz)  Experiment (%)
9 9 0 9 0 9 0
17 17 0 17 0 17 0
35 36 2.86 36 2.86 37 5.71
66 68 3.03 68 3.03 68 3.03
104 105 0.96 105 0.96 106 1.92
124 124 0 124 0 124 0
136 135 0.74 135 0.74 134 1.47
168 171 1.79 171 1.79 172 2.38
231 231 0 231 0 231 0.00
239 238 0.42 238 0.42 238 0.42
303 305 0.66 305 0.66 307 1.32
346 346 0 346 0 346 0
361 356 1.39 356 1.39 355 1.66
401 405 1 405 1 407 1.50
473 476 0.63 476 0.63 472 0.21
483 489 1.24 489 1.24 488 1.04
499 499 0 499 0 502 0.60

4. Experimental Research
The Introduction of the Testing Equipment

In order to further validate the engineering application value of the proposed method,
this section focuses on a DN25 U-elbow pipeline utilized in ship steering gears as the
subject of experimental research. The configuration of the pipeline is illustrated in Figure 7.
The material of the pipe is 304 stainless steel, and the fluid employed is No. 46 anti-wear
hydraulic oil. The relevant parameters for both the pipeline and fluid are presented in
Table 4. To obtain flue and structure vibration data, two high-precision pressure pulsation
sensors, designated P1 and P2, were installed at both ends of the U-elbow pipeline to mea-
sure fluid noise within it. Additionally, an acceleration sensor labeled A1l was positioned at
the midpoint of L2 to assess the transverse vibration of the pipeline. A significant challenge
associated with FSI experiments lies in accurately establishing boundary conditions. To
achieve a wide-band response from the U-elbow pipeline under fluid pulsation excitation,
a dedicated fluid noise generator was developed for this study; its schematic representa-
tion can be found in Figure 8. The operational principle of this device is as follows: The
motor-pump unit serves as a flow source that provides necessary flow and pressure for the
system; concurrently, a vibration exciter drives a low-friction hydraulic cylinder acting as a
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fluid noise source to generate pressure pulsation throughout the pipeline. Furthermore,
a throttle valve located within an end rigid mass block supplies impedance loading for
the pipeline. The primary advantage offered by this fluid noise generator lies in its ability
to precisely adjust sinusoidal excitation frequencies via an upper computer to attain the
desired frequencies of fluid pulsation while minimizing motor pump group-generated
noise through the implementation of both pulsation attenuators and a long flexible hose.
This configuration effectively decouples both the noise source and the flow source, thereby
ensuring the acquisition of high signal-to-noise ratio (SNR) fluid noise across the entire

frequency spectrum.
L1=1500mm .

—
Fluid excitation

R=38mm

1500mm

P: Pressure pulsation sensor

A: Vibration acceleration sensor

L2

L3=1100mm

Load impedance

Figure 7. The configuration of the measured pipeline.

Table 4. The parameters of the pipeline and fluid.

Pipeline (Stainless Steel)

Density: 7985 kg/m? L1: 15m R: 0.038 m

Young’s modulus: 206 GPa L2:1.5m Inner radius: 0.0125 m
Poisson’s ratio: 0.29 L3:1.1m Wall thickness: 0.0045 m

Fluid (Hydraulic oil)

Density: 876 kg/m? Bulk modulus: 1.68 GPa Kinematic viscosity: 46 mm?/s

-------- Fuid nofse souree | £

1 1
! |
1
' ' Experiment pipetine. | 7
|
i |Vibration I L
i - Hydrallic ¢ylinder |}
1| exciter '
- | -
! 1
! 1
) 1
T S B ez ey o S N
i
'
Long flexible hose :
i
Pressure pulsation| :
attenuator ]
|
1
1
|

Motor-pump unit

Figure 8. A schematic diagram of the fluid noise generator.
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The experiment platform, illustrated in Figure 9, primarily comprised three compo-
nents: the flow source and noise source, the data acquisition equipment, and the measured
pipeline. Both ends of the pipeline were connected to a rigid mass block with sufficient
weight, which can be considered as providing fixed constraints. During the experiment, the
throttle valve was closed off while the system pressure was regulated via the relief valve
located at the pump outlet. At this juncture, the impedance at the fluid’s end approached
infinity, effectively simulating a rigid boundary condition. Prior to the initiating test, the
system operated under constant conditions for half an hour to mitigate any interference
caused by bubbles within the pipeline. Throughout the experiment procedures, the temper-
ature was maintained at 24 °C, with a flow rate of 36 L/min and a pressure of 10 MPa. The
fluid noise generator delivered wide-band fluid excitation ranging from 100 Hz to 1 kHz for
the measured pipeline; sweeping occured in increments of 5 Hz with each single-frequency
line spectrum held for a duration of 1.5 s. The time-frequency waterfall diagram recorded
at point P1 is presented in Figure 10. It reveals that amplitude fluctuations in pressure
occur periodically across various frequencies—this phenomenon correlates with specific
distribution parameter characteristics inherent to the pipeline structure. Overall, it can be
concluded that the fluid noise generator produces relatively high SNR fluid noise within
the frequency band of 100 Hz to 1 kHz, thus serving as an effective excitation source for
evaluating pipeline systems.

Flow source and noise source Data acquisition equipment

. Temperature sensor
. Pressure sensor

. Throttle valve

Figure 9. The experiment platform.

In order to evaluate the advantages of this method regarding computational stability,
the two transfer functions defined in Table 5 were utilized as verification indicators. The
pipeline was modeled using commercial finite element software. Both ends of the pipeline
were subjected to fixed constraints, with the fluid end configured as a closed port. The input
excitation applied was a unit of sound pressure. A comparison of the calculation results
from the classical TMM, the MVTMM proposed in this paper, and the FEM is presented
in Figure 11. As illustrated in Figure 11a, for the indicator H-P2/P1, the TMM exhibits
instability within a frequency range above 600 Hz, rendering it incapable of accurately
predicting the vibration characteristics of fluid dynamics in that frequency domain. In
contrast, the MVTMM maintains stability across all frequencies and aligns closely with
the FEM results. This observation underscores the MVTMM’s advantage in enhancing
result stability. Furthermore, it should be noted that the resonance peak values calculated
via the FEM tend to be generally higher than those obtained through the TMM and the
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MVTMM due to neglecting viscous friction effects within fluid modeling. Figure 11b further
demonstrates that the TMM remains unstable at frequencies exceeding 500 Hz, making
accurate predictions regarding pipeline flow-induced vibrations infeasible. Conversely,
the MVTMM continues to exhibit stability throughout all frequency bands; its predicted
natural frequencies align closely with those derived from the FEM analysis. A comparative
assessment between theoretical predictions and simulation outcomes clearly indicates that
the MVTMM possesses significant advantages over the TMM concerning stability.

2.0x10°
e Euob oot I k1 IR I T S N 1.6x10*

= = e i Do S R L S L i S i i 1.2x10*

8.0x10°

Amplitude/Pa

100 200 300 400 500 600 700
Frequency/Hz

Figure 10. A time—frequency diagram of the pressure pulsation at point P1.

Table 5. The verification indicators.

Transfer Function

Mathematical Definition Physical Significance

H-P2/P1

H-A1/P1

Pipeline outlet pulsating pressure/inlet
pulsating pressure
Pipeline vibration acceleration/pipeline
inlet pulsating pressure

Vibration characteristics of fluid inside pipeline

Fluid-induced vibration characteristics of pipeline

5 10°
10 = ——FEM
—— MM . ;\%I}IIMM
2 ——MVTMM
102
' =
= 10 e 10?
3 <
T - =10t
10°
10"
10
102 7
100 200 300 400 500 600 700 800 900 1000 U100 200 300 400 500 600 700 800 900 1000
Frequency/Hz Frequency/Hz
(a) (b)

Figure 11. The comparison of theory and simulation. (a) Comparison of H-P2/P1, (b) Comparison of
H-A1/P1.

In order to further validate the accuracy of the proposed method for predicting the
FSI frequency domain vibration characteristics of the pipeline, we compared the calculated
results with the experimental results, as illustrated in Figure 12. The comparison of modal
data across various orders is presented in Table 6. As shown in Figure 12a, the trend of
fluid vibration characteristics predicted by our method aligns closely with the experimental
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results, with a maximum error of only 3.83% between the theoretical and experimental
outcomes. In addition, it can be seen from Figure 12a that there is an anti-resonance peak at
760 Hz, which is caused by the FSI, but the anti-resonance peak obtained by the experiment
is significantly higher than that obtained by the theoretical calculation. The reason for the
difference may be that the pipe boundary condition adopted by the theoretical method is
the ideal anchored boundary, which cannot be achieved completely in practice. Similarly,
Figure 12b indicates that the pipeline flow-induced vibration characteristics predicted by
our method are largely consistent with those observed in the experiment, exhibiting a
maximum error of 4.35%. Notably, a formant at 460 Hz is detected in the experimental
results for H-A1/P1, which is not anticipated by our theoretical model. It is speculated that
this discrepancy may arise from boundary conditions within the actual pipeline failing to
achieve absolute fixed support and rigid boundaries.

10

——MVTMM
Experiment;

——MVTMM
Experiment|

P2/P1

10° o U

H

o'

102 N N N "
0 200 400 600 800 1000 200 400 600 800 1000

Frequency/Hz
(a) (b)

Figure 12. A comparison of the theory and the simulation. (a) Comparison of H-P2/P1, (b) Compari-
son of H-A1/P1.

Frequency/Hz

Table 6. A comparison of the theory and the experiment.

The MVTMM FEM
Experimental Natural Relative Error to Natural Relative Error to
Result (Hz) Frequency (Hz) Experiment (%) Frequency (Hz) Experiment (%)

115 116 0.87 110 4.35
155 158 1.94 156 0.65
195 200 2.56 198 1.54
235 244 3.83 244 3.83
305 302 0.98 296 2.95
355 360 1.41 346 2.54
380 386 1.58 386 1.58
395 398 0.76 400 1.27
535 530 0.93 528 1.31
555 560 0.90 560 0.90
610 622 1.97 616 0.98
670 680 1.49 654 2.39
700 700 0.00 700 0.00
760 772 1.58 770 1.32
870 862 0.92 860 1.15
880 876 0.45 878 0.23
940 932 0.85 932 0.85

To illustrate the necessity of considering FSI in the analysis of hydraulic pipeline
vibration characteristics, the H-P2/P1 index was utilized as a case to compare the outcomes
of the classical water hammer model with those of the FSI model. The results are presented
in Figure 13. It is evident that the classical water hammer model fails to account for
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Poisson coupling and junction coupling; consequently, its predictions encompass only fluid
vibration modes characterized by specific periodic patterns, neglecting pipeline vibration
modes induced by FSI effects. Furthermore, the Poisson effect leads to a shift in fluid
vibration modes towards lower frequencies.

100

—— FSI model
Classical water hammer model

H-P2/P1

0.1}

001 L 1 1 1
200 400 600 800 1000

Frequency/Hz
Figure 13. A comparison of the FSI model and the classical water hammer model.

5. Conclusions

In order to address the issue of high-frequency instability encountered when em-
ploying the TMM for long-span hydraulic pipeline systems, this paper first analyzes the
instability mechanism from a mathematical perspective. Subsequently, a mixed variable
approach is introduced to enhance the expression form of the transfer matrix, leading to
the construction of a mixed variable transfer matrix specifically for pipeline units. By inte-
grating this with the matrix representation of boundary conditions and utilizing a recursive
algorithm for the mixed variable transfer matrix, an optimization technique known as the
MVTMM is proposed. The stability and accuracy of this method are validated using data
from Dubee pipelines alongside the measured vibration data from a real hydraulic pipeline
system. The main conclusions drawn from this study are as follows:

(1) The MVTMM effectively mitigates high-frequency instability associated with the
TMM, maintaining a global coefficient matrix dimension consistently at 28 x 28. This
ensures sustained efficiency, even when handling long-span hydraulic pipelines.

(2) The MVTMM can accurately predict frequency domain vibration characteristics of
hydraulic pipelines, demonstrating maximum errors of 3.03% when compared to
Dubee pipeline data and 4.35% relative to experimental data based on fluid excitation
within real hydraulic pipeline systems.

(3) Data obtained from the fluid excitation-based pipeline experiment indicate that FSI
significantly influences frequency domain vibration characteristics in pipelines; thus,
it should not be overlooked during predictive analyses.

The theoretical framework presented herein shows promise for engineering applica-
tions following validation and can be utilized for precise predictions regarding frequency
domain vibration characteristics in ship-based long-span hydraulic pipeline systems. Fu-
ture work will aim to extend this methodology into ship pipeline scenarios while consider-
ing complex constraints.
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Nomenclature

Uppercase letters

cross-sectional area
mechanical wave amplitude
Young’s modulus

pipe shear force

shear modulus

moment of inertia

polar moment of inertia

fluid bulk modulus

length of pipe

pipe moment

fluid pressure

pipe velocity

pipe angular velocity

fluid velocity

angular velocity impedance coefficient
velocity impedance coefficient
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Subscripts
end
fluid
inner
pipe
top
LY lateral coordinates
axial coordinate

N R O S B

Superscripts

D reverse direction

H transposed

u forward direction

1% state variable

Ve conjugate state variable
Lowercase letters

c damping

thickness of pipe wall
pipe shear force

fluid friction force
stiffness

pipe node

pipe moment

fluid pressure

radius of cross section
pipe velocity

fluid velocity

fluid kinematic viscosity
Poisson’s ratio
density

fluid shear force

pipe angular velocity

*
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A eigenvalue

Matrices and vectors

A,B,C coefficient matrix of FSI model

D boundary matrix

I identity matrix

Q excitation vector

S eigenvector matrix

T transfer matrix

T* FSI parameter matrix

X,Y,ZW mixed variable transfer matrix

() state vector of 14 variables in time domain
] state vector of 14 variables in frequency domain

Appendix A. The Class TMM

The fundamental principle of class TMM is exemplified through the application of
the L-MOC.

When the effect of the friction term is disregarded, Equations (1)—(14) can be uniformly
expressed in the following matrix form:

d d
As- (L) +B=b(l,1) + Ch(l,1) =0 (A1)

where A, B, and C represent the coefficient matrices, while ¢ (/, t) denotes the state variable
vector comprising 14 variables:

d)(l/ t) = (U, P/ quer uyrfyr (PX/ mJC/ ux;f?(r (Py/ my/ ¢Z/ mz)

Let ¢(1,0) = 0. We applied the transformation of Equation (A1) to obtain the following:

SA'®(1,s) —i—B%(I)(l,s) =0 (A2)
where A" = A + C/s, and ®(l,s) = (V,P,U,, F;, Uy, Fy, x, My, Uy, Fy, Py, My, 2, M) rep-
resents the state variable in the frequency domain.

From Equations (1) and (3), it is evident that the impact of friction coupling manifests
in the fluid shear force. Zielke [33] proposed a universal model for shear force in the
frequency domain:

Prti

O (jriy /s/vf) -2

Therefore, the friction coupling is manifested in the correction of matrix A within the
frequency domain. This adjustment can be achieved by substituting the variable coefficients
from Equation (A3) into their corresponding terms in the matrix.

To decouple Equation (A2), make the following transformations:

T(s) =

s(V—Uy,) (A3)

@(l,s) =S(s)n(l,s) (A4)

Substituting Equation (A4) into Equation (A2) and subsequently eliminating variable
A yields the following result:

on(l,s)

sn(l,s) + A(s) .

=0 (A5)

where A(s) = S(s) A" (s)BS(s) represents the eigenvalue matrix of A*~(s)B, A(s) is
the diagonal matrix, and S(s) corresponds to the associated eigenvector.
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The general solution of Equation (A5) is
n(l,s) = E(s)no(s) (A6)

No(s) represents the constant term that is independent of position. E(l,s) =
diag(exp(—sl/A1),exp(—sl/A;),...etc), while A denotes the eigenvalue associated with
A*"1(s)B.

Substituting Equation (A6) into Equation (A5) and integrating the boundary conditions
at both ends of the pipeline yields the following:

®(l,s) =T(l,s)®(ly,s) (A7)

where T(I,s) = S(s)E(,s)S(s) ' denotes the field transfer matrix of the pipeline section,
and /y indicates the initial position of the pipeline.
At both extremities of the pipeline, the boundary conditions are defined as follows:

Ds(s)®(ly,s) = Qs(s) (A8)

D.(s)®(1,s) = Qe(s) (A9)

where Ds and D, represent the boundary matrices at each end of the pipeline, while Q,
and Q, denote the excitation vectors corresponding to both ends of the pipeline.
Equations (A7)—(A9) are combined to obtain the following:

209~ [ Gie] (3] a0

By integrating Equations (A10) and (A7), the response of the state variable at any
given position within the pipeline can be determined.

Appendix B. The Introduction of the PTMM

To illustrate the distinction between the TMM and the PTMM, consider the series
pipeline system depicted in Figure A1l. The total length of this pipeline system is represented
as L, which is constructed by connecting N sub-pipe ends, each with a length of L;.

Pipe 1 Pipe 2 Pipe N
¢ O~ 0 ---—( 0
Node 1 Node N-1 /
l() ll 2 N-1 y

Figure A1l. A schematic diagram of the series pipeline system.

For the classical TMM, the global transfer matrix of a piping system is obtained by the
series multiplication of the transfer matrices of its individual pipeline segments, as follows:

®(IN,s) = Tgiopar (s)®(lo, s) (A11)

Tgiopar(s) = T(Ln,s) ... T(L2,s)T(Ly,s) (A12)

When the total length of the pipeline is considerable, Tgj,p, may become singular at
high frequencies, resulting in instability phenomena.
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The PTMM substitutes the global transfer matrix with a node-coupled matrix, thereby
mitigating the numerical instability of matrix elements, as illustrated in Equation (A13):

" Dy (s) 0 0 0 0 0 11 @(o,s) 7 [Q(s)T
T(Ly,s) —I 0 0 0 0 ®D(lq,s) 0
0 T(Lp,s) -1 O 0 0 ®(I5,s) 0
. = (A13)
0 0 0 . g 0 :
0 0 0 0 T(Ln,s) —1 ®(In_1,9) 0
. 0 0 0 0 0 D.(s)] [ ®(In,s) | 1Q,(s)]
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