Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar
<p>Data collection setup.</p> "> Figure 2
<p>Configuration of dataset classes and their corresponding point clouds: (<b>a</b>) Stretching; (<b>b</b>) Standing; (<b>c</b>) Taking medicine; (<b>d</b>) Squatting; (<b>e</b>) Sitting chair; (<b>f</b>) Reading news; (<b>g</b>) Sitting floor; (<b>h</b>) Picking; (<b>i</b>) Crawl; (<b>j</b>) Lying wave hands; (<b>k</b>) Lying.</p> "> Figure 3
<p>Overview of the proposed HAR system.</p> "> Figure 4
<p>Proposed classification network.</p> "> Figure 5
<p>Training and test loss curve and accuracy curve: (<b>a</b>) Training and test loss curve; (<b>b</b>) Training and test accuracy curve.</p> "> Figure 6
<p>Confusion matrix.</p> "> Figure 7
<p>Environment used for FPGA implementation and verification.</p> ">
Abstract
:1. Introduction
2. Data Collection Using Frequency Modulated Continuous Wave (FMCW) Radar
3. Proposed HAR System
3.1. Data Pre-Processing
3.2. Pillar Feature Encoder
3.3. Classification Network
4. Results
4.1. Experiment
4.2. Evaluation and Analysis
4.3. Performance Comparison by Quantization Bit Formats
4.4. Hardware–Software Implementation
4.5. Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dirgová Luptáková, I.; Kubovčík, M.; Pospíchal, J. Wearable sensor-based human activity recognition with transformer model. Sensors 2022, 22, 1911. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Prasad, A.; Tyagi, A.K.; Althobaiti, M.M.; Almulihi, A.; Mansour, R.F.; Mahmoud, A.M. Human activity recognition using cell phone-based accelerometer and convolutional neural network. Appl. Sci. 2021, 11, 12099. [Google Scholar] [CrossRef]
- Alrashdi, I.; Siddiqi, M.H.; Alhwaiti, Y.; Alruwaili, M.; Azad, M. Maximum entropy Markov model for human activity recognition using depth camera. IEEE Access 2021, 9, 160635–160645. [Google Scholar] [CrossRef]
- Song, K.T.; Chen, W.J. Human activity recognition using a mobile camera. In Proceedings of the 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Incheon, Republic of Korea, 23–26 November 2011; IEEE: New York, NY, USA, 2011; pp. 3–8. [Google Scholar]
- Jalal, A.; Kamal, S.; Kim, D. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments. Sensors 2014, 14, 11735–11759. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; De-Silva, V.; Hook, J.; Moencks, M.; Kondoz, A. A multimodal data processing system for LiDAR-based human activity recognition. IEEE Trans. Cybern. 2021, 52, 10027–10040. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chakraborty, A.; Chakraborty, D.; Saha, M.; Saha, S. UltraSense: A non-intrusive approach for human activity identification using heterogeneous ultrasonic sensor grid for smart home environment. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 15809–15830. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, Y.; Jiang, K.; Zhang, C.; Dou, W.; Huang, Z.; Guo, Y. A survey on human behavior recognition using smartphone-based ultrasonic signal. IEEE Access 2019, 7, 100581–100604. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Jelali, M. A Comparative Study on Recent Progress of Machine Learning-Based Human Activity Recognition with Radar. Appl. Sci. 2023, 13, 12728. [Google Scholar] [CrossRef]
- Singh, A.D.; Sandha, S.S.; Garcia, L.; Srivastava, M. Radhar: Human activity recognition from point clouds generated through a millimeter-wave radar. In Proceedings of the 3rd ACM Workshop on Millimeter-Wave Networks and Sensing Systems, Los Cabos, Mexico, 25 October 2019; pp. 51–56. [Google Scholar]
- Kim, Y.; Alnujaim, I.; Oh, D. Human activity classification based on point clouds measured by millimeter wave MIMO radar with deep recurrent neural networks. IEEE Sens. J. 2021, 21, 13522–13529. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Dou, Z.; Zou, W.; Zhang, A.; Li, Z. Activity recognition based on millimeter-wave radar by fusing point cloud and range–doppler information. Signals 2022, 3, 266–283. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, L.; Chen, H.; Hong, H.; Zhu, X.; Fioranelli, F. Sparsity-based human activity recognition with PointNet using a portable FMCW radar. IEEE Internet Things J. 2023, 10, 10024–10037. [Google Scholar] [CrossRef]
- Gu, Z.; He, X.; Fang, G.; Xu, C.; Xia, F.; Jia, W. Millimeter Wave Radar-based Human Activity Recognition for Healthcare Monitoring Robot. arXiv 2024, arXiv:2405.01882. [Google Scholar]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 2021, 54, 1–40. [Google Scholar] [CrossRef]
- Ayala, R.; Mohd, T.K. Sensors in autonomous vehicles: A survey. J. Auton. Veh. Syst. 2021, 1, 031003. [Google Scholar] [CrossRef]
- Cha, D.; Jeong, S.; Yoo, M.; Oh, J.; Han, D. Multi-input deep learning based FMCW radar signal classification. Electronics 2021, 10, 1144. [Google Scholar] [CrossRef]
- Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12697–12705. [Google Scholar]
- Li, Y.; Han, Z.; Xu, H.; Liu, L.; Li, X.; Zhang, K. YOLOv3-lite: A lightweight crack detection network for aircraft structure based on depthwise separable convolutions. Appl. Sci. 2019, 9, 3781. [Google Scholar] [CrossRef]
- Xilinx. Xilinx FINN. Available online: https://xilinx.github.io/finn (accessed on 13 September 2024).
- Smart Radar System. Smart Radar System RETINA-4SN. Available online: https://www.smartradarsystem.com/en/products/retina_4s.html (accessed on 13 September 2024).
- Xilinx. UltraSclae+ ZCU104. Available online: https://www.xilinx.com/products/boards-and-kits/zcu104.html#overview (accessed on 13 September 2024).
- Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- NVIDIA. Jetson AGX Xavier Developer Kit|NVIDIA Developer. Available online: https://www.nvidia.com/en-us/design-visualization/rtx-6000 (accessed on 13 September 2024).
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Pappalardo, A. Xilinx Brevitas. Available online: https://xilinx.github.io/brevitas (accessed on 13 September 2024).
Parameter | Quantity |
---|---|
Start frequency | 77 GHz |
Stop frequency | 81 GHz |
Bandwidth | 4 GHz |
Azimuth angle FoV | |
Elevation angle FoV | |
Detection range | 12 m |
Number of transmitter antennas | 12 |
Number of receiver antennas | 16 |
Number of frames per second | 20 |
Class | Number of Frames | Average Number of Points per Frame |
---|---|---|
Crawl | 1069 | 321 |
Lying | 1048 | 172 |
Lying wave hands | 1075 | 336 |
Picking | 1075 | 382 |
Reading news | 1098 | 422 |
Sitting chair | 1060 | 374 |
Sitting floor | 1063 | 280 |
Squatting | 1071 | 389 |
Standing | 1073 | 340 |
Stretching | 1062 | 402 |
Taking medicine | 1075 | 345 |
Parameter | Network | |||||
---|---|---|---|---|---|---|
Image Size | #ds-conv. | A | B | C | D | E |
2 | 91.22% | 92.89% | 93.25% | 93.96% | - | |
3 | 92.76% | 93.55% | 94.09% | 94.13% | 94.38% | |
4 | 92.52% | 92.97% | 93.31% | 94.08% | 94.40% | |
2 | 92.36% | 94.66% | 94.72% | 95.36% | - | |
3 | 94.65% | 95.54% | 95.36% | 96.41% | 96.65% | |
4 | 95.38% | 95.81% | 95.76% | 96.53% | 96.56% | |
2 | 92.82% | 94.72% | 94.95% | 95.74% | - | |
3 | 94.22% | 95.21% | 95.60% | 96.16% | 96.47% | |
4 | 95.30% | 95.52% | 95.78% | 96.62% | 96.75% |
Network | #ds-conv. | ||
---|---|---|---|
2 | 3 | 4 | |
A | 64, 64 | 64, 64, 64 | 64, 64, 64, 64 |
B | 64, 128 | 64, 64, 128 | 64, 64, 64, 128 |
C | 128, 128 | 64, 128, 128 | 64, 64, 128, 128 |
D | 128, 256 | 64, 128, 256 | 64, 64, 128, 256 |
E | - | 128, 128, 256 | 64, 128, 128, 256 |
Network | Accuracy | #MACs | #Parameters |
---|---|---|---|
LeNet5 [28] | 94.33% | 190.55 M | 1.94 M |
VGG11 [29] | 94.01% | 759.10 M | 9.35 M |
Resnet18 [30] | 93.98% | 2.37 G | 11.23 M |
MobileNetV1 [31] | 90.57% | 66.00 M | 3.24 M |
Ours | 95.54% | 25.77 M | 22.28 K |
Classification Network Bit Format | Accuracy |
---|---|
32 bits | 95.54% |
16 bits | 95.48% |
8 bits | 95.46% |
4 bits | 94.79% |
2 bits | 82.21% |
Parameter | Proposed System |
---|---|
Platform | ZCU104 |
Execution time | 2.43 ms |
CLB LUTs | 29,720 |
CLB Registers | 22,893 |
DSPs | 72 |
Block RAMs | 25.5 |
Frequency | 300 MHz |
Power | 3.479 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Park, C.; Lee, S.; Jung, Y. Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar. Appl. Sci. 2024, 14, 10764. https://doi.org/10.3390/app142210764
Lim S, Park C, Lee S, Jung Y. Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar. Applied Sciences. 2024; 14(22):10764. https://doi.org/10.3390/app142210764
Chicago/Turabian StyleLim, Seungchan, Chaewoon Park, Seongjoo Lee, and Yunho Jung. 2024. "Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar" Applied Sciences 14, no. 22: 10764. https://doi.org/10.3390/app142210764
APA StyleLim, S., Park, C., Lee, S., & Jung, Y. (2024). Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar. Applied Sciences, 14(22), 10764. https://doi.org/10.3390/app142210764