DC-DC Buck Converters with Quasi-Online Estimation of Filter Capacitor Equivalent Parameters
<p>V curve of Equation (4).</p> "> Figure 2
<p>The connection of PO to the observed system OS in order to estimate the parameter <math display="inline"><semantics> <mrow> <mi>T</mi> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>. For<math display="inline"><semantics> <mrow> <mo> </mo> <mi>t</mi> <mo>∈</mo> <mfenced open="[" separators="|"> <mrow> <msub> <mrow> <mi>t</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> the switch SW is in position 2, and for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mfenced open="[" close="]" separators="|"> <mrow> <msub> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>t</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> in position 1.</p> "> Figure 3
<p>The behavior of the system in <a href="#applsci-14-10756-f002" class="html-fig">Figure 2</a> when <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> has the Equation (7): (<b>a</b>) input signal; (<b>b</b>) the estimated time constant <math display="inline"><semantics> <mrow> <mo> </mo> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 4
<p>Parameter observer on two edges: (<b>a</b>) the structure of PO2; (<b>b</b>) the block diagram of the connection OS-PO2 for discrete time processing.</p> "> Figure 5
<p>The influence of the <math display="inline"><semantics> <mrow> <mi>K</mi> </mrow> </semantics></math> parameter of PO2 on<math display="inline"><semantics> <mrow> <mo> </mo> <mi>T</mi> </mrow> </semantics></math> value.</p> "> Figure 6
<p>A group of characteristics <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of parameter <math display="inline"><semantics> <mrow> <mi>K</mi> </mrow> </semantics></math> for the case when the system observed in <a href="#applsci-14-10756-f004" class="html-fig">Figure 4</a>b generates the signal (7); <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>∈</mo> <mfenced open="{" close="}" separators="|"> <mrow> <mn>2.9</mn> <mo>,</mo> <mn>2.95</mn> <mo>,</mo> <mn>2.98</mn> <mo>,</mo> <mn>2.99</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3.01</mn> <mo>,</mo> <mn>3.02</mn> <mo>,</mo> <mn>3.05</mn> <mo>,</mo> <mn>3.1</mn> </mrow> </mfenced> </mrow> </semantics></math>: (<b>a</b>) Highlighting the segments <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> și<math display="inline"><semantics> <mrow> <mo> </mo> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>; (<b>b</b>) Obtaining <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> estimates from segments <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mover accent="true"> <mrow> <mo> </mo> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 7
<p>Principle schemes used for the realization of DC-DC buck converters with the estimation of the equivalent parameters of the filter capacitors: (<b>a</b>,<b>b</b>) Schemes with the monitoring of the discharging and charging of the capacitor using PO2 (<b>c</b>,<b>d</b>) Schemes with monitoring of two distinct discharges using PO.</p> "> Figure 8
<p>The time sequence for filtering capacitor parameter estimation by a discharge/charge process.</p> "> Figure 9
<p>Buck converter scheme made based on the principle scheme in <a href="#applsci-14-10756-f007" class="html-fig">Figure 7</a>a.</p> "> Figure 10
<p>Frequency characteristics of the filter capacitor <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </semantics></math> of the converter in <a href="#applsci-14-10756-f009" class="html-fig">Figure 9</a>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math> characteristic; (<b>b</b>) Characteristic <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 11
<p><math display="inline"><semantics> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </semantics></math> capacitor charging/discharging signal in <a href="#applsci-14-10756-f009" class="html-fig">Figure 9</a> and the result of its processing with PO2: (<b>a</b>) The signal <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> on capacitor terminal; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> <mo>,</mo> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>3.291</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> characteristics generated by PO2.</p> "> Figure 12
<p>Buck converter scheme made based on the principle scheme in <a href="#applsci-14-10756-f007" class="html-fig">Figure 7</a>d.</p> "> Figure 13
<p>Frequency characteristics of the filter capacitors in <a href="#applsci-14-10756-f012" class="html-fig">Figure 12</a>: (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math> characteristics of the electrolytic capacitor <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>21</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mn>470</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">F</mi> <mo>/</mo> <mn>25</mn> <mo> </mo> <mi mathvariant="normal">V</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math> characteristics of electrolytic capacitor <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>22</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mn>220</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">F</mi> <mo>/</mo> <mn>25</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math>).</p> "> Figure 14
<p>Experiment performed with the converter from <a href="#applsci-14-10756-f012" class="html-fig">Figure 12</a> in stage 1: (<b>a</b>) Characteristics <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mover accent="true"> <mrow> <mo> </mo> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>1</mn> <mo>_</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> <mo>_</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>1</mn> <mo>_</mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> și <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>T</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mn>2</mn> <mo>_</mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>b</b>) Voltage variation <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>V</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> from the terminals of capacitors <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>21</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>22</mn> </mrow> </semantics></math>; (<b>c</b>) Voltage variation <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>V</mi> </mrow> <mrow> <mi>L</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at the load terminals.</p> "> Figure 15
<p>Integrated circuit diagram associated with the DC-DC buck converter in <a href="#applsci-14-10756-f012" class="html-fig">Figure 12</a>. The integrated chip includes 6 switches (T-sw<sub>ij,</sub> i,j = {1,2}; T-sw<sub>i,</sub> i = {3,4}), the LM2596 circuit, the LDO circuit, and the microcontroller. The unembedded components are the filtering capacitors <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>21</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>22</mn> </mrow> </semantics></math>, the VEN resistors <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>R</mi> </mrow> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>R</mi> </mrow> <mrow> <mi>e</mi> <mi>x</mi> <mi>t</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, the temperature sensors, the inductance L<sub>1</sub>, and the input capacitors <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Support of the Estimation Methods Used in the Schemes Proposed in This Article
2.2. Parameter K of PO2
2.3. Calculation of the Equivalent Parameters of a Capacitor
3. Two Schemes of DC-DC Buck Converter with Estimation of Equivalent Parameters of Filter Capacitor Using PO
3.1. Principle Schemes
3.2. Scheme Based on the Implementation of the Principle from Figure 7a
3.3. Scheme Based on the Implementation of the Principle from Figure 7d
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EMP | Electronic Measurement and Processing Device |
ESR | Equivalent Serial Resistance |
PO | Parameter Observer |
PO2 | Parameter observer on two edges |
VEN | Variable Electrical Network |
Appendix A
- The values of , , and are constant during the measurement of and from the signal and have the same value for both transients.
- The values of and are measured beforehand at a temperature equal to that during the measurement of and .
Capacitor | ||||
---|---|---|---|---|
C1 | 7.941 | 0.86881 | 17.30 | 8096.56 |
C2 | 7.862 | 0.85763 | 16.90 | 8016.01 |
C3 | 7.946 | 0.89847 | 20.90 | 8101.63 |
C4 | 6.209 | 0.67340 | 16.37 | 6330.63 |
C5 | 4.774 | 0.56306 | 25.67 | 4867.48 |
Capacitor | ||||
---|---|---|---|---|
C1 | ||||
C2 | ||||
C3 | ||||
C4 | ||||
C5 |
- 3.
- The estimation errors of with Formula (A1) are within ±2%.
- 4.
- estimation errors with Formula (A1) vary practically between limits of ±25% to ±37%.
- 5.
- , i.e., ;
- 6.
- , i.e., , as close as possible to 1.
References
- Renaudineau, H.; Martin, J.P.; Nahid-Mobarakeh, B.; Pierfederici, S. DC-DC Converters Dynamic Modeling with State Observer-Based Parameter Estimation. IEEE Trans. Power Electron. 2015, 30, 3356–3363. [Google Scholar] [CrossRef]
- Muhammed Ramees, M.K.P.; Ahmad, M.D.W. Advances in Capacitor Health Monitoring Techniques for Power Converters: A Review. IEEE Access 2023, 11, 133540–133576. [Google Scholar] [CrossRef]
- Dang, H.L.; Kwak, S. Review of Health Monitoring Techniques for Capacitors Used in Power Electronics Converters. Sensors 2020, 20, 3740. [Google Scholar] [CrossRef] [PubMed]
- Cecchetto, F.; Lentola, L.; Orietti, E.; Giorgi, G. Fault Detection in DC-DC Converter: A Solution Based on Kalman Filtering. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024. [Google Scholar] [CrossRef]
- Su, Q.; Wang, Z.; Xu, J.; Li, C.; Li, J. Fault Detection for DC-DC Converters Using Adaptive Parameter Identification. J. Franklin Inst. 2022, 359, 5778–5797. [Google Scholar] [CrossRef]
- Kovacs, L.; Kohlrusz, G.; Enisz, K.; Fodor, D. Aluminium Electrolytic Capacitor Model for Capacitor Materials Structure Transformation Analysis in PWM Applications. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018; pp. 888–893. [Google Scholar] [CrossRef]
- Both, J. The Modern Era of Aluminum Electrolytic Capacitors. IEEE Electr. Insul. Mag. 2015, 31, 24–33. [Google Scholar] [CrossRef]
- Abdennadher, K.; Venet, P.; Rojat, G.; Rétif, J.M.; Rosset, C. A Real-Time Predictive-Maintenance System of Aluminum Electrolytic Capacitors Used in Uninterrupted Power Supplies. IEEE Trans. Ind. Appl. 2010, 46, 1644–1652. [Google Scholar] [CrossRef]
- Torki, J.; Joubert, C.; Sari, A. Electrolytic Capacitor: Properties and Operation. J. Energy Storage 2023, 58, 106330. [Google Scholar] [CrossRef]
- Lahyani, A.; Braham, A.; Bouhachem, A. Power Loss Estimation of Electrolytic Capacitor Using Genetic Algorithm. In Proceedings of the INTELEC 07—29th International Telecommunications Energy Conference, Rome, Italy, 30 September–4 October 2007; pp. 875–879. [Google Scholar] [CrossRef]
- Iet Labs Inc. Application Note-Equivalent Series Resistance (ESR) of Capacitors. 2019, 1–5. Available online: https://www.ietlabs.com/pdf/application_notes/035002%20Equivalent%20Series%20Resistance%20(ESR)%20of%20Capacitors%201920.pdf (accessed on 8 October 2024).
- Kulkarni, C.; Biswas, G.; Celaya, J.; Goebel, K. Prognostics Techniques for Capacitor Degradation and Health Monitoring. In Proceedings of the Maintenance & Reliability Conference, Denver, CO, USA, 24–27 May 2011. [Google Scholar]
- Hao, M.; Wang, L. Fault Diagnosis and Failure Prediction of Aluminum Electrolytic Capacitors in Power Electronic Converters. In Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, Raleigh, NC, USA, 6–10 November 2005; Volume 2005, pp. 842–847. [Google Scholar] [CrossRef]
- Preethi Sharma, K.; Vijayakumar, T. Study of Capacitor & Diode Aging Effects on Output Ripple in Voltage Regulators and Prognostic Detection of Failure. Int. J. Electron. Telecommun. 2022, 68, 281–286. [Google Scholar]
- Bărbulescu, C.; Căiman, D.V.; Dragomir, T.L. Parameter Observer Useable for the Condition Monitoring of a Capacitor. Appl. Sci. 2022, 12, 4891. [Google Scholar] [CrossRef]
- Soliman, H.; Wang, H.; Blaabjerg, F. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters. IEEE Trans. Ind. Appl. 2016, 52, 4976–4989. [Google Scholar] [CrossRef]
- Zhao, Z.; Davari, P.; Lu, W.; Wang, H.; Blaabjerg, F. An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications. IEEE Trans. Power Electron. 2021, 36, 3692–3716. [Google Scholar] [CrossRef]
- Nathan, L.P.A.; Hemamalini, R.R.; Jeremiah, R.J.R.; Partheeban, P. Review of Condition Monitoring Methods for Capacitors Used in Power Converters. Microelectron. Reliab. 2023, 145, 115003. [Google Scholar] [CrossRef]
- Agarwal, N.; Ahmad, M.W.; Anand, S. Quasi-Online Technique for Health Monitoring of Capacitor in Single-Phase Solar Inverter. IEEE Trans. Power Electron. 2018, 33, 5283–5291. [Google Scholar] [CrossRef]
- Tripathi, M.; Moysis, L.; Gupta, M.K.; Fragulis, G.F.; Volos, C. Observer Design for Nonlinear Descriptor Systems: A Survey on System Nonlinearities. Circuits Syst. Signal Process. 2024, 43, 2853–2872. [Google Scholar] [CrossRef]
- Cen, Z.; Stewart, P. Condition Parameter Estimation for Photovoltaic Buck Converters Based on Adaptive Model Observers. IEEE Trans. Reliab. 2017, 66, 148–160. [Google Scholar] [CrossRef]
- Gonzalez-Fonseca, N.; de Leon-Morales, J.; Leyva-Ramos, J. Observer-Based Controller for Switch-Mode Dc-Dc Converters. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 4773–4778. [Google Scholar]
- Levin, K.T.; Hope, E.M.; Domínguez-García, A.D. Observer-Based Fault Diagnosis of Power Electronics Systems. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010—Proceedings, Atlanta, GA, USA, 12–16 September 2010; pp. 4434–4440. [Google Scholar] [CrossRef]
- Jain, P.; Poon, J.; Jian, L.; Spanos, C.; Sanders, S.R.; Xu, J.X.; Panda, S.K. An Improved Robust Adaptive Parameter Identifier for DC-DC Converters Using H-Infinity Design. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2922–2926. [Google Scholar] [CrossRef]
- Meng, J.; Chen, E.X.; Ge, S.J. Online E-Cap Condition Monitoring Method Based on State Observer. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition, PEAC 2018, Shenzhen, China, 4–7 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Tian, X.; Tao, F.; Fu, Z.; Wang, N.; Song, S. Fixed Time Control Based on Finite Time Observer for Buck Converter System with Load Disturbance. Control Eng. Appl. Informatics 2023, 25, 3–11. [Google Scholar]
- Corneliu, B.; Dadiana-Valeria, C.; Nanu, S.; Toma-Leonida, D. Power Supply with Condition Monitoring of the Output Capacitor via Parametric Observer. In Proceedings of the 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA), Grimstad, Norway, 1–3 November 2023; pp. 358–363. [Google Scholar] [CrossRef]
- Wu, Y.; Du, X. A VEN Condition Monitoring Method of DC-Link Capacitors for Power Converters. IEEE Trans. Ind. Electron. 2019, 66, 1296–1306. [Google Scholar] [CrossRef]
- Texas Instruments LM2596 SIMPLE SWITCHER ® Power Converter 150-KHz 3-A Step-Down Voltage Regulator. LM2596 SIMPLE Switch. Power Convert. 150-kHz 3-A Step-Down Volt. Regul. 2023, 1, 1–47. Available online: https://www.ti.com/lit/ds/symlink/lm2596.pdf (accessed on 8 October 2024).
2.9 | 0.000930 | 6.970 |
2.95 | 0.000965 | 3.540 |
2.98 | 0.000988 | 1.420 |
2.99 | 0.000993 | 0.713 |
3.00 | 0.001000 | 0.000 |
3.01 | 0.001007 | −0.720 |
3.02 | 0.001014 | −1.440 |
3.05 | 0.001036 | −3.630 |
3.10 | 0.001074 | −7.360 |
Regime | Regime/Zones in Figure 8 | sw1 | sw2 | sw3 |
---|---|---|---|---|
R1 | DC-DC mode on/I | 1↑ * | 1 | 0 |
R2 | DC-DC mode off, discharging the capacitor through /II, III | 0 | 1↑ | 1 |
R3 | Stopping the capacitor’s discharging | 0 | 0 | 0↓ |
R4 | /IV, V | 0 | 0 | 1↑ |
R5 | Stopping capacitor charging | 0↓ | 0 | 0 |
R6 | Further capacitor’s charging through T/VI | 1 | 0↓ | 0 |
R7 | DC-DC mode on/I | 1 | 1 | 0 |
Regime | sw11 | sw12 | sw21 | sw22 | sw3 | sw4 | Regime | sw11 | sw12 | sw21 | sw22 | sw3 | sw4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 1↑ * | 1 | 0 | 0 | 0 | 0 | R1’ | 1 | 1↑ * | 0 | 0 | 0 | 0 |
R2 | 0 | 1 | 0↓ | 0 | 0↓ | 0 | R2’ | 1 | 0 | 0 | 0↓ | 0 | 0↓ |
R3 | 0 | 1 | 1 | 0 | 1↑ | 0 | R3’ | 1 | 0 | 0 | 1 | 0 | 1↑ |
R4 | 0↓ | 1 | 1 | 0 | 0 | 0 | R4’ | 1 | 0↓ | 0 | 1 | 0 | 0 |
R5 | 1↑ * | 1 | 1 | 0 | 0 | 0 | R5’ | 1 | 1↑ * | 0 | 1 | 0 | 0 |
R6 | 0 | 1 | 1 | 0 | 0 | 0↓ | R6’ | 1 | 0 | 0 | 1 | 0↓ | 0 |
R7 | 0 | 1 | 1↑ | 0 | 0 | 1↑ | R7’ | 1 | 0 | 0 | 1↑ | 1↑ | 0 |
R8 | 0↓ | 1 | 0 | 0 | 0 | 0 | R8’ | 1 | 0↓ | 0 | 0 | 0 | 0 |
R9 | 1 | 1 | 0 | 0 | 0 | 0 | R9’ | 1 | 1 | 0 | 0 | 0 | 0 |
[ms] [%] | [ms] [%] | [μF] [%] | [Ω] [%] |
---|---|---|---|
[18.4718 ÷ 18.4822] [0.13774 ÷ 0.19571] | [0.71102 ÷ 0.71285] [0.27062 ÷ 0.46067] | [202.088 ÷ 202.213] [0.14702 ÷ 0.20012] | [0.20516 ÷ 0.21592] [4.90394 ÷ 8.2696] |
Capacitor | ||||
---|---|---|---|---|
1.68772 | 0.00051816 | 0.030702 | ||
41.20848 | 0.03851804 | 0.066143 | ||
0.452717 | 0.09833 | |||
0.004538 | 1.315316 | |||
0.8836596 | 0.000506425 | 0.05731 | ||
18.98359 | 0.005894927 | 0.031053 | ||
0.067257 | 0.0319 | |||
0.00267 | 0.307099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Căiman, D.-V.; Bărbulescu, C.; Nanu, S.; Dragomir, T.-L. DC-DC Buck Converters with Quasi-Online Estimation of Filter Capacitor Equivalent Parameters. Appl. Sci. 2024, 14, 10756. https://doi.org/10.3390/app142210756
Căiman D-V, Bărbulescu C, Nanu S, Dragomir T-L. DC-DC Buck Converters with Quasi-Online Estimation of Filter Capacitor Equivalent Parameters. Applied Sciences. 2024; 14(22):10756. https://doi.org/10.3390/app142210756
Chicago/Turabian StyleCăiman, Dadiana-Valeria, Corneliu Bărbulescu, Sorin Nanu, and Toma-Leonida Dragomir. 2024. "DC-DC Buck Converters with Quasi-Online Estimation of Filter Capacitor Equivalent Parameters" Applied Sciences 14, no. 22: 10756. https://doi.org/10.3390/app142210756
APA StyleCăiman, D. -V., Bărbulescu, C., Nanu, S., & Dragomir, T. -L. (2024). DC-DC Buck Converters with Quasi-Online Estimation of Filter Capacitor Equivalent Parameters. Applied Sciences, 14(22), 10756. https://doi.org/10.3390/app142210756