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Abstract: Human emotions are an element of attention in various areas of interest such as psychology,
marketing, medicine, and public safety. Correctly detecting human emotions is a complex matter.
The more complex and visually similar emotions are, the more difficult they become to distinguish.
Making visual modifications to the faces of people in photos in a way that changes the perceived
emotion while preserving the characteristic features of the original face is one of the areas of research
in deepfake technologies. The aim of this article is to showcase the outcomes of computer simulation
experiments that utilize artificial intelligence algorithms to change the emotions on people’s faces. In
order to detect and change emotions, deep neural networks discussed further in this article were used.

Keywords: detection; emotion; face; facial expression; human; people; classification; deepfake;
change; neural network

1. Introduction

In the era of dynamic development of digital technologies and artificial intelligence,
the analysis of emotions expressed on people’s faces is becoming increasingly important.
Emotions are a key element of interpersonal communication, and their detection and in-
terpretation are widely used in various fields, such as psychology, marketing, medicine,
and public safety. Understanding, simulating, and properly detecting emotions can lead to
innovative solutions that enable more effective interaction between people and computer
systems. The aim of this article is to present the results of computer simulation experiments
on changing emotions expressed on people’s faces using artificial intelligence algorithms.
In this study, we introduce a novel approach to training deep neural networks (DNNs)
for detecting and modifying emotions in images, focusing on enhanced realism and clas-
sification accuracy. The method presented in this manuscript departs from traditional
models by omitting constraints like cycle-consistency loss, commonly seen in algorithms
such as StarGAN, which can overly restrict feature transformation. Instead, we utilize a
tailored reconstruction loss applied only when target and ground-truth emotions align, al-
lowing for more natural emotion modification while controlling for some feature reduction.
Leveraging the AffectNet dataset, typically used for emotion recognition, our study further
investigates its suitability for emotion modification tasks, thus expanding its applications.
Additionally, the presented model incorporates multiple classifiers trained in parallel to
improve emotion classification by comparing generated data to real-world benchmarks,
establishing a robust framework for future emotion analysis studies.

This article discusses the methodology of conducting the simulation, starting from
collecting and preparing data, through selecting and training the models, to evaluating the
results and analyzing errors. The research results are also presented, including examples of
modified photos that illustrate the effectiveness of the applied algorithms.

This paper is organized as follows. Section 2 presents a literature review relating
to the discussed issue. Section 3 presents the methodology of the conducted research.
Section 4 presents the results and compares them with other state-of-the-art methods.

Appl. Sci. 2024, 14, 10681. https://doi.org/10.3390/app142210681 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142210681
https://doi.org/10.3390/app142210681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3556-0297
https://orcid.org/0000-0002-4848-4716
https://orcid.org/0000-0003-1726-7804
https://doi.org/10.3390/app142210681
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142210681?type=check_update&version=1


Appl. Sci. 2024, 14, 10681 2 of 17

Section 5 concludes the paper. Appendix A shows a preview of sample generated images
for individual emotions.

2. Related Work

In recent years, more and more information about deepfake technologies and their
individual issues has appeared in the form of publications. One of the aspects of deepfake
technology is the proper reproduction of human emotions in a way that ensures the
integrity of the modifications made with the whole image. The changes should reflect
the new emotion while maintaining the identity of the person (the ability to recognize
the person without visible and disturbing graphic artifacts). This section covers human
emotion profile classification and the artificial intelligence algorithms used to analyze and
change expressed emotions.

2.1. Human Emotion Profile Classification

Classifying facial emotions is a complex task that involves identifying and distin-
guishing subtle emotional signals. Paul Ekman and Wallace V. Friesen [1] in their classic
studies identified six basic emotions: joy, sadness, fear, anger, surprise, and disgust. These
emotions are widely recognized and form the foundation of many facial expression analy-
sis systems. However, modern research goes further, trying to capture a wider range of
emotions and their mixtures. Emotion recognition now includes more complex emotional
states, such as guilt, jealousy, embarrassment, and pride. These technologies are based on
more advanced algorithms that analyze not only static images but also dynamic changes
in facial expressions. In order to present the relationships between individual emotions,
an emotion wheel was proposed (Figure 1) [2]. It is a theoretical model that presents eight
basic emotions and their different intensities and combinations. The wheel is often used to
understand and classify emotions in a psychological and emotional context.
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Another representation of emotion is the circumplex theory of affect presented by
David Watson and Auke Tellegen (Figure 2) [4]. The circumplex theory of affect includes
four dimensions corresponding to the following affects: negative, positive, engaged, and
pleasant. Each has two directions: high and low.
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2.2. Artificial Intelligence Algorithms Used to Analyze Emotions

The process of training artificial neural networks to classify emotions is challenging
due to several important factors. Emotions are subjective and context-dependent, making
generalization difficult. The same facial expression can be interpreted as different emotions
by different people. Emotion datasets are unbalanced (overrepresentation of training pat-
terns for some emotions and underrepresentation of training patterns for others). Datasets
often differ in terms of emotion categories, making it difficult to compare studies. Creating
databases about people’s emotions is an additionally complex process due to ethical and
legal issues. Moreover, contextual factors such as lighting and background noise can affect
emotion recognition.

In recent years, there has been rapid development in the field of artificial intelligence,
especially in the context of image analysis. Deep learning techniques, including convolu-
tional neural networks (CNNs) and generative adversarial networks (GANs), have become
a major tool in this field.

Convolutional neural networks (CNNs) are widely used for image classification and
pattern recognition [5–8]. The research of Zhang et al. [9] showed that multi-layer CNNs
can effectively classify emotions based on features extracted from facial images. The
introduction of multi-task networks allowed for simultaneous recognition of emotions and
their intensity, which increases the classification accuracy. While CNNs are highly effective
at accurately identifying basic emotions, detecting subtle emotions remains a difficult task.
This requires advanced network architectures, high-quality datasets, and an appropriate
training process to enhance their performance.

Generative adversarial networks (GANs) have revolutionized the approach of chang-
ing emotions in images. A GAN consists of two networks: a generator and a discriminator,
which cooperate to create realistic images. The work of Karras et al. [10] introduced new
methods for generating high-quality facial images, enabling more realistic manipulation
of emotions.

Manipulating facial emotions in images has become more effective thanks to advances
in generative neural networks. In 2021, Ning et al. [11] presented the FEGAN method,
which allows precise modification of the expressed emotions while preserving the identity
of the person. This algorithm uses advanced style transfer techniques to modify the specific
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facial features responsible for expressing emotions. FEGAN has region-specific editing
capability enabling nuanced modifications that can convey subtle emotional changes rather
than merely altering broad facial features. Many GAN-based models also allow for emotion
modification, but they generally modify the entire face in a single process. While these
models can generate high-quality images, they often face challenges in preserving realistic
textures when making intense emotional changes. Furthermore, they may occasionally
introduce artifacts when aiming for subtle adjustments, such as a slight smile or a small
shift in eyebrow positioning.

Another important achievement is the research of Zhu et al. [12], which introduced
a system capable of learning to translate an image from a source domain to a target
domain in the absence of paired examples. This system is particularly useful in creating
training datasets.

In recent years, there have been numerous innovations in the field of detecting [13–25]
and changing [26–32] emotions in images.

In the field of emotion detection, Wang et al. proposed The Region Attention Network
to addresses pose and occlusion challenges in facial expression recognition (FER) by apply-
ing attention to specific facial regions [22]. Vo et al. introduced a pyramid architecture with
super-resolution for FER [20]. Zhang et al. introduced a dual-direction attention mixed
feature network aimed at improving FER. The model uses dual-directional attention mech-
anisms to capture both local and global features in facial images, enhancing the accuracy of
emotion classification [13]. Ning et al. proposed an approach combining representation
learning with identity adversarial training to better understand facial behaviors. The tech-
nique aims to disentangle identity-related features from expressive ones, improving FER
by focusing on emotion-specific features [14].

In the area of facial attribute change, in general, there are two kinds of the methods:
target-based and source-based methods. Source-based methods focus on adapting and
changing existing materials while target-based methods allow editing in the creator’s
environment, allowing to influence the modeling process directly.

In the field of emotion changing, Chen et al. proposed a face-swapping framework that
prioritizes both realism and identity preservation. The approach enables high-quality swaps
by maintaining facial details while matching the target’s head pose and expressions [28].
Le et al. introduced a model that accounts for occlusions, such as hands or hair covering
parts of the face. The model enhances realism by generating convincing occlusion-aware
face swaps [29]. Wang et al. presented HifiFace, which employed 3D shape and semantic
priors to guide face-swapping, aiming for a high-fidelity output. This model enhances
realism by using 3D facial structure information, which helps retain identity details and
ensures that swaps appear highly realistic, even in complex poses or expressions [32].

It is worth noting that along with the emergence of deepfake technology, methods for
detecting its use have also been developed [33–36].

3. Methodology

The research was conducted on a Linux operating system (Ubuntu 24.04) using the
PyTorch version 2.3 and TensorFlow version 2.16.1 machine learning libraries. The source
codes were written in Python version 3.12.3. The AffectNet [23] dataset was used to train
the DNNs. In this section, the concept of the proposed method as well as the architecture
of DNNs will be presented.

3.1. Concept of the Proposed Method

In order to conduct the research, four DNNs were trained. The first one changed
emotions in photos of people, the second one constituted a discriminator used in the
learning process, and the other two constituted externally trained separate classifiers. In
the further part of this article, a DNN that changes the emotions of people in photos is
referred to as EmoDNN to distinguish it from the discriminator and classifiers, which are
also DNNs. EmoDNN, the discriminator, and one of the two classifiers were trained using
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the PyTorch machine learning library. An additional validation discriminator was trained
using the TensorFlow machine learning library.

At the beginning, the process of training EmoDNN alongside with the discriminator
will be discussed, and then the classifier will be discussed later in this section. The input
of EmoDNN is fed with an image that undergoes the modification process to one of eight
target emotions, which are also fed to the input of the network in the form of a vector, where
the target emotion is represented by value 1, the remaining by value 0. The modified image
constituting the result of EmoDNN processing is fed to the input of the discriminator. At its
output, the discriminator returns a value whether the given image is original or modified.

3.2. Learning Process

The classifier used in the generation process was trained using the PyTorch library.
Its goal is to correctly classify emotions in images, which is essential for validating and
assessing the quality of generated images. The classifier’s objective function is based on
cross-entropy loss, which is commonly used in classification problems.

Class weights were calculated based on the frequency of occurrence of individual emo-
tions in the dataset. These weights are inversely proportional to the number of occurrences
of each emotion, which helps balance the impact of less frequent emotions on the learning
process. The cross-entropy loss for the classifier is given by

Lcls = −∑N
i=1 wi · yi · log(ŷi) (1)

where Lcls is the classifier loss; N is the number of classes; wi is the weight for class i; yi
is the actual label for class i (value 1 for the true class, 0 for others); ŷi is the predicted
probability for class i.

In the training process of the EmoDNN model, a discriminator was used to distin-
guish original images from modified ones. The discriminator was trained using a cost
function based on hinge loss [37]. The hinge loss for the discriminator consists of two main
components: the loss for real images and the loss for generated images. Additionally, a
gradient penalty [38] is included to improve training stability.

The discriminator analyzes real images xreal and its output outreal should be as high
as possible to classify them as real. The hinge loss for real images is calculated as

Lreal =
1
m

m

∑
i=1

max
(

0.1 − out(i)real

)
(2)

where m is the number of samples.
The generated images xfake are created by the generator based on real images xreal and

desired emotion labels xfake_cls. The discriminator analyzes the generated images xfake and
its output outfake should be as low as possible to classify them as fake. The hinge loss for
generated images is calculated as

Lfake =
1
m

m

∑
i=1

max
(

0.1 + out(i)fake

)
(3)

To improve training stability and ensure that gradients are well-conditioned, an
additional component called gradient penalty (GP) is used. GP is calculated as the norm
of the discriminator’s gradient with respect to interpolated samples between real and
generated images. The gradient penalty is given by

GP = (∥ ∇x̂D(x̂) ∥2 −1)2 (4)
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The final cost function for the discriminator is the sum of the losses for real and
generated images, as well as the gradient penalty:

LD = Lreal + Lfake + GP (5)

The generator cost function is crucial for training the generator network, which aims to
produce realistic images with desired emotions that are indistinguishable from real images.
The cost function for the generator combines several components to achieve this goal.

The adversarial loss encourages the generator to produce images that the discriminator
classifies as real. This is achieved by minimizing the negative output of the discriminator
for the generated images xfake.

Ladv = − 1
m

m

∑
i=1

out(i)fake (6)

where m is the batch size and outfake is the discriminator’s output for the generated images.
The classification loss ensures that the generated images are classified with the desired

emotion labels xfake_cls. This is implemented using the cross-entropy loss between the
predicted labels and the target labels:

Lcls =
1
m

m

∑
i=1

CrossEntropy
(

out(i)class, x(i)fake_cls

)
(7)

where outclass is the classifier’s output for the generated images.
The reconstruction loss encourages the generated images to resemble the real images

when the target emotion matches the original emotion. This loss is masked to only include
samples where the target emotion is the same as the original emotion, and is computed as
the mean squared error between the real and generated images:

Lrec =
∑m

i=1 MSE
(

x(i)real, x(i)fake

)
· mask(i)

∑m
i=1 mask(i) + ϵ

(8)

where mask is a binary mask indicating samples where the target and original emotions
match, and ϵ is a small constant to prevent division by zero.

The total generator loss is a weighted sum of the adversarial loss, classification loss,
and reconstruction loss:

LG = Ladv + Lcls + Lrec (9)

The learning process of the generator consisted of 30 epochs of the learning algorithm.
In this process, the Adam Optimizer [39] algorithm was used. The batch size was 64.

The training set consisted of automatically and manually annotated facial images from
the AffectNet [23] database, which were transformed to a resolution of 128 × 128. In the
training process, a series of data augmentation techniques are applied to the images to
enhance the robustness and generalization capabilities of the model. These transformations
include resizing the images to a specified size, ensuring they fit within the model’s input
dimensions. Additionally, the images undergo the longest max size transformation to
maintain aspect ratio while fitting within a maximum size constraint. Fancy PCA [40]
is applied to adjust the principal components of the image colors, followed by random
gamma adjustments to vary the brightness non-linearly. Sharpening is used to enhance
the clarity of the image features. Horizontal flipping is randomly applied to introduce
variability and improve the model’s ability to generalize to different orientations. Finally, a
random crop is performed to extract fixed-size patches from the images, which helps the
model learn from different parts of the image and reduces overfitting.

In order to properly evaluate the effectiveness of EmoDNN, a separate additional
classifier using TensorFlow machine learning library was trained. The input and output of
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the classifier are identical to those of the discriminator. The input of the classifier is an image,
which returns a vector with the detected probability for emotions as the output. In order to
present the learning process of the classifier, the following loss function relationships will
be discussed:

LclsTF =
1
m

m

∑
i=1

1.14 ·
(

CrossEntropy
(

vRe f , vOut

)
+

(
1 − vOut[i]

4

))
(10)

where vRe f is a reference vector containing the value 1 for the correct emotion and 0 for
others; vOut is the result vector of the classifier containing the probability of individual
emotions; [i] is the value of the i-th element of the vector representing the emotion currently
presented at the network input.

The learning process of the classifier consisted of three epochs of the learning algorithm.
In this process, the Adam Optimizer algorithm was used. The learning rate value was set
to 10−4. The batch size used was 16.

The training set consisted only of manually annotated facial images from the Affect-
Net [23] database, which were transformed to a resolution of 128 × 128. In the training
process, a series of data augmentation techniques are applied to the images to enhance the
robustness and generalization capabilities of the model as for the classifier written using
the PyTorch machine learning library described earlier in this section.

3.3. Neural Network Architecture

The generator is designed using several sub-models to perform image-to-image trans-
lation conditioned on emotion vectors. It employs a U-Net-like architecture [41]. Table 1
outlines the structure of the generator, including its sub-models and their components.

Table 1. Generator structure.

Component Description

Generator The main model for generating images. It uses a U-Net
architecture conditioned on emotion vectors.

Classification MLP A multi-layer perceptron that processes the one-hot emotion
vector into feature vectors.

- Linear Layer 1 Transforms the input emotion vector to a higher-dimensional
feature space.

- Activation (GELU) Applies GELU activation function for non-linearity.

- Linear Layer 2 Further transforms the features to match the required input for
the U-Net.

- Activation (GELU) Applies GELU activation function for non-linearity.

U-Net The backbone of the generator, consisting of an encoder and a
decoder for image generation.

Encoder Encodes the input image into a lower-dimensional latent space.

- Initial Convolution A convolutional layer to process the input image.

- ResDown Blocks Residual blocks with downsampling, including conditional
normalization layers.

- ResBlock A residual block that processes features before passing to
the decoder.

Decoder Decodes the latent representation back into an image.

- ResBlock A residual block that processes features before upsampling.

- ResUp Blocks Residual blocks with upsampling, including conditional
normalization layers.

- Final Convolution A convolutional layer to produce the final output image.
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Table 1. Cont.

Component Description

ConditionalNorm2d Applies conditional normalization based on the emotion vector.

ResDown Residual downsampling block with conditional normalization
and spectral normalization.

ResUp Residual upsampling block with conditional normalization and
spectral normalization.

ResBlock Standard residual block with conditional normalization and
spectral normalization.

The discriminator is designed to differentiate between real and generated images.
Table 2 outlines the structure of the discriminator and its components.

Table 2. Discriminator structure.

Component Description

Discriminator The main model for distinguishing real images from generated
ones. It uses an encoder to process images.

Encoder Encodes the input image into a lower-dimensional
feature representation.

- Initial Convolution A convolutional layer that processes the input image.

- ResDown Blocks Residual blocks with downsampling. These blocks consist of
convolutional layers and normalization.

- ResBlock A residual block that processes the features before passing them
to the final layers.

Output Layer A convolutional layer that reduces the feature map to a
single-channel output for real/fake classification.

The classifier is designed to classify the emotion of input images. Table 3 outlines the
structure of the classifier and its components.

Table 3. PyTorch based classifier structure.

Component Description

Classifier The main model for classifying the emotion of input images. It
uses an encoder to process images.

Encoder Encodes the input image into lower-dimensional
feature representation.

- Initial Convolution A convolutional layer that processes the input image.

- ResDown Blocks Residual blocks with downsampling. These blocks consist of
convolutional layers and normalization.

- ResBlock A residual block that processes the features before passing them
to the final layers.

Output Layer A convolutional layer that reduces the feature map to a
multi-channel output for emotion classification.

The model employs several advanced techniques and methods to enhance its perfor-
mance and stability. Spectral Normalization [42] is used in convolutional layers within
both the generator and discriminator to stabilize training by controlling the Lipschitz con-
stant, which helps prevent exploding gradients and improves the robustness of the model.
Conditional Normalization (ConditionalNorm2d) [43], which includes InstanceNorm and



Appl. Sci. 2024, 14, 10681 9 of 17

BatchNorm variants, is applied in the generator to condition the normalization process
on the emotion vectors, allowing the model to effectively incorporate emotion-specific
features into the generated images. Exponential Linear Unit (ELU) [44] activation functions
are used throughout the network to introduce non-linearity, which helps the model learn
complex patterns and improves convergence by mitigating the vanishing gradient prob-
lem. Additionally, Residual Blocks (ResBlock) and Residual Down/Upsampling Blocks
(ResDown, ResUp) [45] are used to facilitate the flow of gradients through the network,
promoting efficient training and better feature learning. These residual connections ensure
that the model can learn both low-level and high-level features effectively, contributing to
the overall performance and stability of the models in generating and classifying images.

The structure of a classifier using TensorFlow presented in this manuscript uses
standard layers from the TensorFlow machine library. The LeakyReLu [46] activation
function was used for all layers except the last layer for which the Softmax [47] activation
function was applied. For the output layer, the value of units is equal to the number of
recognized emotion types which is eight. Table 4 shows the classifier structure.

Table 4. TensorFlow-based classifier structure.

# Layer Type # Layer Type

1 Conv2D(filters=32, kernel_size=(3, 3))(Input) 17 Dense(units=256)(16)
2 MaxPooling2D(pool_size=(2, 2))(1) 18 Dense(units=256)(17)
3 BatchNormalization(2) 19 Dense(units=256)(15)
4 Conv2D(filters=32, kernel_size=(3, 3))(3) 20 Dense(units=256)(19)
5 Conv2D(filters=64, kernel_size=(5, 5))(4) 21 Concatenate(axis=1)(18, 20)
6 MaxPooling2D(pool_size=(2, 2))(5) 22 BatchNormalization(21)
7 BatchNormalization(6) 23 Dropout(rate=0.31, seed=321)(22)
8 Conv2D(filters=64, kernel_size=(5, 5))(7) 24 BatchNormalization(23)
9 Conv2D(filters=128, kernel_size=(7, 7))(8) 25 Dense(units=512)(24)
10 Conv2D(filters=128, kernel_size=(7, 7))(9) 26 BatchNormalization(25)
11 MaxPooling2D(pool_size=(2, 2))(10) 27 Dense(units=512)(26)
12 BatchNormalization(11) 28 BatchNormalization(27)
13 Flatten(12) 29 Dense(units=1024)(28)
14 BatchNormalization(13) 30 BatchNormalization(29)
15 Dense(units=256)(14) 31 Dense(units=8)(30)
16 Dropout(rate=0.37, seed=274)(15)

4. Results

The results of changing emotions in photos and the performance of classifiers will be
discussed and presented in this section. First, the effects of changing emotions in photos
will be presented, then the results of the classifiers will be discussed in comparison with
other state-of-the-art methods.

4.1. Applied Dataset

The research presented in this manuscript used the AffectNet dataset under the
Academic Use License for scientific research purposes. The dataset can be obtained by
making a prior request on the AffectNet website [48].

The AffectNet dataset provides 11 annotated emotions for images and indexed as fol-
lows: 0—Neutral, 1—Happiness, 2—Sadness, 3—Surprise, 4—Fear, 5—Disgust, 6—Anger,
7—Contempt, 8—None, 9—Uncertain, 10—No-Face. In the learning process, the first eight
categories defining a specific emotional state were used, the number of which is presented
in Table 5. For research purposes, these images were resized to 128 × 128 resolution, which
is the image resolution for the DNNs discussed below. Additionally, the images were
normalized for processing by the networks in the range of values ⟨0; 1⟩.

Traditionally, AffectNet has been widely used for emotion recognition. In this study,
we explore its potential for emotion modification, using it to evaluate model effectiveness
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in generating realistic emotional changes. By employing AffectNet in this unique capacity,
we gain insights into its suitability for generative tasks.

Table 5. Number of images for each emotion type from the AffectNet database.

Annotated Training Set Validation Set

Automatically Manually Total Emotion

143,142 74,874 218,016 Neutral 500
246,235 134,415 380,650 Happy 500
20,854 25,459 46,313 Sad 500
17,462 14,090 31,552 Surprise 500
3799 6378 10,177 Fear 500
890 3803 4693 Disgust 500

28,000 24,882 52,882 Anger 500
2 3750 3752 Contempt 500

460,384 287,651 748,035 4000

4.2. Emotions Change

Due to the lack of clearly determining performance metrics of the correctness of
emotion change for deepfake technology, the emotion classifiers discussed later in this
section were trained. Examples of emotion changes in photos by EmoDNN are presented
in Figure 3. More results on emotion changes by EmoDNN are provided in Appendix A.
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Figure 3. EmoDNN emotion change preview.

By analyzing the results obtained for individual cases in detail, small graphic artifacts
are visible to the human eye. An example that may raise suspicion of the use of deepfake
technology in Figure 3 is the change in emotion from Disgust to Surprise, for which the
lower lips may or may not be a cause for suspicion of the use of deepfake technology.
Moreover, the appearance of a smile from the change of emotion from Angry to Happiness
may or may not be a cause for suspicion of the use of deepfake technology.
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The backbone of the generator, consisting of an encoder and a decoder for image
generation is U-Net [41]. Applying a U-Net-like network enhanced facial expression
recognition by segmenting key regions on faces such as the eyes, mouth, and brows.
These regions are critical for understanding subtle emotional cues. By focusing on these
regions, the model can identify micro-expressions and subtle emotion indicators with
improved accuracy.

The presented approach omits the cycle-consistency loss employed in models such as
StarGAN [49], instead using a direct reconstruction loss limited to cases where the target
and ground-truth emotions match. This allows for a higher level of realism in emotion
modifications, reducing artifacts commonly associated with unintended source features.
Although some facial features may diminish in this process, the resulting images retain a
more authentic appearance of the intended emotion.

Furthermore, compared to FEGAN, which uses region-specific editing to alter emo-
tions precisely while preserving identity, the presented approach achieves a balance by
modifying the entire facial structure. FEGAN’s region-specific editing can yield nuanced
expressions, but it sometimes struggles with texture consistency during subtle adjustments.
In contrast, the presented method performs broader modifications, achieving smoother
transitions without introducing artifacts, especially during more intense emotional shifts.

4.3. Emotions Detection

Due to the difficulty of objectively assessing the success of changing emotions in a
photo, two emotion classifiers based on a neural network were trained. These classifiers
have different overall accuracy; however, for individual cases, the classifier with lower
overall accuracy can return the correct emotion as a result, while the theoretically more
accurate classifier can classify emotions incorrectly in individual cases. Training more
than one classifier increases the probability of correct emotion detection in the case of two
different classifiers detecting the same emotion. The confusion matrices of the trained
classifiers are presented in Figure 4.
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The performance of the classifiers in tabular form is presented in Table 6.
The comparison of the trained classifiers with other state-of-the-art classifiers trained

for eight emotions on the AffectNet database is given in Table 7.
A comparison of the accuracy of the classifiers trained for this article with other state-

of-the-art classifiers shows that there are more effective solutions in available publications.
These methods may be more accurate in general, but they may detect incorrect emotions
for individual cases for which a less accurate neural network may detect these emotions
correctly. Therefore, for emotion detection, it is proposed that two different neural networks
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are trained in order to ensure an increased probability of correct detection by confirming
the detection of a given emotion from more than one source. The difference between the
accuracy of a classifier based on PyTorch and TensorFlow results not only from the applied
neural network architecture, but also from the reduced training set for the classifier based
on TensorFlow.

Table 6. Performance of classifiers for individual emotion types with respect to Recall and F1 score
machine learning evaluation metrics.

PyTorch-Based TensorFlow-Based

Recall F1 Score Emotion Recall F1 Score

0.57 0.48 Neutral 0.60 0.33
0.79 0.71 Happy 0.69 0.68
0.59 0.59 Sad 0.57 0.53
0.60 0.57 Surprise 0.53 0.51
0.54 0.59 Fear 0.46 0.55
0.44 0.53 Disgust 0.43 0.51
0.56 0.52 Anger 0.55 0.51
0.41 0.50 Contempt 0.33 0.42

Table 7. Classifier comparison.

Method Accuracy (%)

DDAMFN++ [13] 65.04
FMAE [14] 65.00
BTN [15] 64.29

DDAMFN [13] 64.25
POSTER++ [16] 63.77

S2D [17] 63.06
Multi-task EfficientNet-B2 [18] 63.03

DAN [19] 62.09
PSR [20] 60.68

EfficientFace [21] 59.89
RAN [22] 59.50

ViT-tiny [24] 58.28
Weighted-Loss [23] 58.00

ViT-base [24] 57.99
LResNet50E-IR [25] 53.93

PyTorch-based classifier 56.33
TensorFlow-based classifier 51.93

In order to check the efficiency of the presented method of changing emotions in
photos, a dataset consisting of 8000 images was generated. Each emotion is represented by
1000 images generated by EmoDNN from the AffectNet database. The confusion matrices
of the trained classifiers of generated faces with changed emotion are presented in Figure 5.

The performance of the classifiers in tabular form on the dataset generated by EmoDNN
is presented in Table 8.

The accuracy of the PyTorch-based classifier is 0.99. This accuracy value is due to the
fact that the generator was trained with guidance from the classifier, resulting in generated
images that align closely with the classifier’s learned representations. Consequently, the
classifier achieves high accuracy when evaluating these generated images. Nearly 100%
classification accuracy achieved by generated samples when evaluated by the classifier used
in the generation process uncovers the use of classifiers as a potential research objective,
suggesting that further studies could explore the effects of incorporating diverse datasets or
multiple classifiers within the generation and classification pipelines. Such research could
promote broader algorithmic generalization across various emotional contexts, enhancing
the robustness and reliability of emotion modification models.
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Table 8. Performance of classifiers for individual emotion types with respect to Recall and F1 score
machine learning evaluation metrics.

PyTorch-Based TensorFlow-Based

Recall F1 Score Emotion Recall F1 Score

0.96 0.98 Neutral 0.76 0.57
0.98 0.98 Happy 0.93 0.77
0.99 0.99 Sad 0.65 0.57
1.00 1.00 Surprise 0.60 0.64
1.00 1.00 Fear 0.45 0.56
1.00 1.00 Disgust 0.39 0.51
0.99 0.99 Anger 0.64 0.65
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The accuracy of the TensorFlow-based classifier is smaller than for Pytorch-based
classifier and has a value of 0.60. The TensorFlow-based classifier was trained exclusively
on the training set consisting only of manually annotated facial images from the AffectNet
database. Comparing the accuracy of this classifier on the set of images generated by
EmoDNN (0.60) with the accuracy obtained on the validation set from the AffectNet
database (0.51), it should be noted that the efficiency of the classifier is different. The
classifier performed more efficiently on images generated by EmoDNN; this may be due to
the generalization ability of DNN and the ambiguity of emotions from images selected for
the validation set of the AffectNet dataset.

5. Conclusions

Changing facial expressions to convey emotion is a complex task. Changing people’s
emotions leads to a change in facial expression. Changing emotions through a DNN
can cause the appearance of more or less visible graphic artifacts. Adequate change in
expression without introducing visible graphic artifacts to the human eye or specialized
DNNs for deepfake detection poses a challenge. It should be noted that human emotions
can have very similar facial expressions, which leads to the recognition of different emotions
in the same photo not only by people but also by artificial intelligence algorithms.

To further enhance the training process, stability algorithms such as Gradient Penalty
and hinge loss have been implemented, which have been shown to stabilize the learning
process and improve the quality of the generated images. Furthermore, to refine the
classification of emotions, using multiple classifiers trained in parallel has been proposed.
This multi-classifier approach increases the likelihood of obtaining accurate results on
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generated data, mirroring the performance seen on real data. The authors of this paper
suggest that this metric, comparing classifier accuracy on real and generated data, could
be valuable for other researchers as a benchmark for evaluating the efficacy of emotion
generation models.

The classifiers trained for the purposes of this article constitute an element of emotion
detection before its change as well as the success of its change. Taking into account the
fact that classifiers are trained on different types of architectures and different sizes of
the training set (only on manually annotated photos or additionally with automatically
annotated photos), detection of the same emotion by two separate classifiers increases the
probability of its correct detection.

The efficiency of the solution presented in this article was confirmed by dedicated
classifiers. Changing the emotions of a person in a photo using the presented solution
provides the possibility of changing emotions; however, it should be noted that this change
is not always successful. Depending on the image input to the neural network and the
target change in emotions, undesirable graphical effects may appear that reveal the use of
photo manipulation. In order to eliminate possible graphic artifacts, an additional neural
network should be used to detect unnatural defects in human faces. Moreover, an additional
network should be added that modifies the image in an invisible way (imperceptible to the
human eye) before it is fed to the input of the emotion change network, so as to maximize
the similarity of characteristic facial features while ensuring success in changing emotions
expressed as a lack of potentially visible graphic artifacts.

In conclusion, the contributions of this work extend beyond the application of ex-
isting emotion manipulation techniques by incorporating advanced methodologies that
enhance both the precision and stability of emotion generation. The results demonstrate
the effectiveness of the proposed approach in producing realistic emotion changes, while
also highlighting areas for future exploration, such as improving the subtlety of emotion
transitions and further reducing visible artifacts. Overall, this research lays the groundwork
for advancing emotion detection and generation technologies, with potential applications
in areas like human–computer interaction, virtual reality, and psychological analysis.
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Appendix A

The results of EmoDNN in the process of changing people’s emotions in images based
on the AffectNet dataset are presented in Figure A1.
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5. Bistroń, M.; Piotrowski, Z. Comparison of Machine Learning Algorithms Used for Skin Cancer Diagnosis. Appl. Sci. 2022, 12, 9960.

[CrossRef]
6. Walczyna, T.; Piotrowski, Z. Overview of Voice Conversion Methods Based on Deep Learning. Appl. Sci. 2023, 13, 3100. [CrossRef]
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