Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States
<p>Schematic diagram of the proposed mirror-induced MAS-based metasurfaces. Optical bistability originates from the silicon with third-order susceptibility. (<b>a</b>) Before asymmetrical optimization. Geometric parameters: length of silicon strip <span class="html-italic">L</span><sub>1</sub> = <span class="html-italic">L</span><sub>2</sub> = 250 nm, width <span class="html-italic">W</span><sub>1</sub> = <span class="html-italic">W</span><sub>2</sub> = 230 nm, height <span class="html-italic">H</span> = 360 nm, Ag film thickness <span class="html-italic">D</span> = 200 nm, and period <span class="html-italic">P</span> = 1500 nm. (<b>b</b>) After asymmetrical optimization. Geometric parameters: <span class="html-italic">L</span><sub>1</sub> = 190 nm, <span class="html-italic">W</span><sub>1</sub> = 210 nm, <span class="html-italic">H</span><sub>2</sub> = 120 nm, and <span class="html-italic">H</span><sub>1</sub> + <span class="html-italic">H</span><sub>2</sub> = <span class="html-italic">H</span>, while others remain unchanged as in (<b>a</b>).</p> "> Figure 2
<p>Physical mechanism of the metasurface based on mirror-induced MAS before asymmetric optimization. (<b>a</b>) The main figure presents the multipolar decomposition of the SCS spectrum of the silicon nanoribbon in the SOA structure. The inset shows a schematic diagram of the traditional MAS. (<b>b</b>) The main figure shows the multipolar decomposition of the SCS spectrum of the silicon part in SOM and the corresponding overall. The left inset is a schematic diagram of the mirror-induced MAS, and the right inset shows the multipolar decomposition of the SCS spectrum of the silicon nanoribbon in SOM.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Normalized field distributions for the conventional MAS and the mirror-induced MAS, respectively. Black arrows denote their current orientations inside silicon. (<b>c</b>) Average EF of silicon for these two scenarios.</p> "> Figure 4
<p>Average EF of the electric field by asymmetrically optimizing the proposed mirror-induced MAS-based metasurface. (<b>a</b>) Dependence on <span class="html-italic">L</span><sub>1</sub> and height duty ratio <span class="html-italic">H</span><sub>2</sub>/(<span class="html-italic">H</span><sub>1</sub> + <span class="html-italic">H</span><sub>2</sub>). <span class="html-italic">W</span><sub>1</sub> = 210 nm. (<b>b</b>) Dependence on <span class="html-italic">W</span><sub>1</sub> and <span class="html-italic">H</span><sub>2</sub>/(<span class="html-italic">H</span><sub>1</sub> + <span class="html-italic">H</span><sub>2</sub>). <span class="html-italic">L</span><sub>1</sub> =190 nm. Except when specified, parameters are the same as those in <a href="#applsci-14-09914-f001" class="html-fig">Figure 1</a>a.</p> "> Figure 5
<p>(<b>a</b>) Optical bistability of mirror-induced MAS metasurfaces. (<b>b</b>) Reflection spectra. The insets are the field distribution.</p> "> Figure 6
<p>(<b>a</b>) Nonlinear reflection spectra with increased incident light input intensity in the asymmetric device structure. (<b>b</b>) Nonlinear reflection spectra with reduced incident light input intensity in the same structure. The two dashed lines represent the resonant wavelength <span class="html-italic">λ</span><sub>res</sub> and the input wavelength <span class="html-italic">λ</span><sub>in</sub>, respectively.</p> "> Figure 7
<p>Dependences of switch thresholds on the incident angle.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Yao, J.; Lin, R.; Chen, M.K.; Tsai, D.P. Integrated-resonant metadevices: A review. Adv. Photonics 2023, 5, 024001. [Google Scholar] [CrossRef]
- Sain, B.; Meier, C.; Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photonics 2019, 1, 024002. [Google Scholar] [CrossRef]
- Zhao, Y.; Lombardo, D.; Mathews, J.; Agha, I. All-optical switching via four-wave mixing Bragg scattering in a silicon platform. APL Photonics 2017, 2, 026102. [Google Scholar] [CrossRef]
- Ma, T.; Huang, Q.; He, H.; Zhao, Y.; Lin, X.; Lu, Y. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. Opt. Exp. 2019, 27, 16624–16634. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.S.; Sun, W.; Huang, Y.; Xu, Y.; Wen, K.; Feng, N. A Tunable Fano Resonator with High Sensitivity Based on Black Phosphorus in the Terahertz Band. Phys. Status. Solidi. Rapid. Res. Lett. 2023, 17, 2300207. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Yen, T.-H.; Nishida, K.; Li, C.-H.; Chen, Y.-C.; Zhang, T.; Pai, C.-K.; Chen, K.-P.; Li, X.; Takahara, J.; et al. Multipole engineering by displacement resonance: A new degree of freedom of Mie resonance. Nat. Commun. 2023, 14, 7213. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Vabishchevich, P.P.; Shorokhov, A.S.; Chong, K.E.; Choi, D.-Y.; Staude, I.; Miroshnichenko, A.E.; Neshev, D.N.; Fedyanin, A.A.; Kivshar, Y.S. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 2015, 15, 6985–6990. [Google Scholar] [CrossRef]
- Yao, J.; Hong, H.; Liu, N.; Cai, G.; Liu, Q.H. Efficient third harmonic generation by doubly enhanced electric dipole resonance in metal-based silicon nanodisks. J. Lightwave Technol. 2020, 38, 6312–6320. [Google Scholar] [CrossRef]
- Rocco, D.; Gili, V.F.; Ghirardini, L.; Carletti, L.; Favero, I.; Locatelli, A.; Marino, G.; Neshev, D.N.; Celebrano, M.; Finazzi, M.; et al. Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization. Photonics Res. 2018, 6, B6–B12. [Google Scholar] [CrossRef]
- Gili, V.F.; Ghirardini, L.; Rocco, D.; Marino, G.; Favero, I.; Roland, I.; Pellegrini, G.; Duò, L.; Finazzi, M.; Carletti, L.; et al. Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J. Nanotechnol. 2018, 9, 2306–2314. [Google Scholar] [CrossRef] [PubMed]
- Grinblat, G.; Li, Y.; Nielsen, M.P.; Oulton, R.F.; Maier, S.A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 2016, 16, 4635–4640. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Rahmani, M.; Kamali, K.Z.; Lamprianidis, A.; Ghirardini, L.; Sautter, J.; Camacho-Morales, R.; Chen, H.; Parry, M.; Staude, I.; et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light. Sci. Appl. 2018, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Li, C. Optical Bistability and Its Instability. In Nonlinear Optics: Principles and Applications, 8th ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 215–250. [Google Scholar]
- Almeida, V.R.; Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 2004, 29, 2387–2389. [Google Scholar] [CrossRef]
- Garain, S.; Mondal, S.; Mal, K.; Roy, S.; Bandyopadhyay, A. Controlling optical bistability, multistability and all-optical switching through multi-photon excitation process. J. Phys. B At. Mol. Opt. Phys. 2023, 56, 185401. [Google Scholar] [CrossRef]
- Valagiannopoulos, C.; Sarsen, A.; Alu, A. Angular memory of photonic metasurfaces. IEEE. T. Antenn. Propag. 2021, 69, 7720–7728. [Google Scholar] [CrossRef]
- Ngo, Q.M.; Kim, S.; Song, S.H.; Magnusson, R. Optical bistable devices based on guided-mode resonance in slab waveguide gratings. Opt. Express 2009, 17, 23459–23467. [Google Scholar] [CrossRef]
- Ding, B.; Yu, X.; Lu, H.; Xiu, X.; Zhang, C.; Yang, C.; Jiang, S.; Man, B.; Ning, T.; Huo, Y. Third-order optical nonlinearity in silicon nitride films prepared using magnetron sputtering and application for optical bistability. J. Appl. Phys. 2019, 125, 113101. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Huo, Y.; Zhao, L.; Yue, Q.; Jiang, S.; Liang, H.; Gao, Y.; Ning, T. Broadband and ultra-low threshold optical bistability in guided-mode resonance grating nanostructures of quasi-bound states in the continuum. Nanomaterials 2021, 11, 2843. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Bliokh, K.Y.; Bliokh, Y.P.; Freilikher, V.; Kivshar, Y.S. Bistability of Anderson localized states in nonlinear random media. Phys. Rev. Lett. 2010, 104, 123902. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Ciracì, C.; Smith, D.R. Enhanced optical bistability with film-coupled plasmonic nanocubes. Appl. Phys. Lett. 2014, 104, 063108. [Google Scholar] [CrossRef]
- Huang, Z.; Baron, A.; Larouche, S.; Argyropoulos, C.; Smith, D.R. Optical bistability with film-coupled metasurfaces. Opt. Lett. 2015, 40, 5638–5641. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wu, Y.; Liu, J.; Liu, N.; Cai, G.; Liu, Q.H. Enhanced optical bistability by coupling effects in magnetic metamaterials. J. Lightwave Technol. 2019, 37, 5814–5820. [Google Scholar] [CrossRef]
- Giorgetti, E.; Margheri, G.; Gelli, F.; Sottini, S.; Cravino, A.; Comoretto, D.; Cuniberti, C.; Dell’Erba, C.; Moggio, I.; Dellepiane, G.; et al. Thin films of a novel polydiacetylene for applications to all-optical signal processing. Synth. Met. 2001, 116, 129–133. [Google Scholar] [CrossRef]
- Rukhlenko, I.D.; Premaratne, M.; Agrawal, G.P. Analytical study of optical bistability in silicon ring resonators. Opt. Lett. 2010, 35, 55–57. [Google Scholar] [CrossRef]
- Ge, Z.; Hei, X.; Wang, L.; Sun, Q.; Si, J.; Zhao, W.; Wang, G.; Zhang, W. Low-threshold optical bistability in field-enhanced nonlinear guided-mode resonance grati-ng nanostructure. Opt. Lett. 2018, 43, 4156–4159. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Kim, S. Low-threshold Optical Bistability Based on Bound States in the Continuum. Curr. Opt. Photonics 2022, 6, 10–14. [Google Scholar]
- Savinov, V.; Papasimakis, N.; Tsai, D.P.; Zheludev, N.I. Optical anapoles. Commun. Phys. 2019, 2, 69. [Google Scholar] [CrossRef]
- Koshelev, K.; Favraud, G.; Bogdanov, A.; Kivshar, Y.; Fratalocchi, A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 2019, 8, 725–745. [Google Scholar] [CrossRef]
- Sawant, R.; Rangwala, S.A. Optical-bistability-enabled control of resonant light transmission for an atom-cavity system. Phys. Rev. A 2016, 93, 023806. [Google Scholar] [CrossRef]
- Narayanan, K.; Preble, S.F. Optical nonlinearities in hydrogenated-amorphous silicon waveg-uides. Opt. Express 2010, 18, 8998–9005. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.-W. Optical constants ofthe noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Yao, J.; Li, B.; Cai, G.; Liu, Q.H. Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonantors. Opt. Lett. 2020, 46, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.; Boulesbaa, A.; Kravchenko, I.I.; Briggs, D.P.; Pu-retzky, A.; Geohegan, D.; Valentine, J. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 2015, 15, 7388–7393. [Google Scholar] [CrossRef]
- Xifre-Perez, E.; Shi, L.; Tuzer, U.; Fenollosa, R.; Ramiro-Manzano, F.; Quidant, R.; Meseguer, F. Mirror-image-induced magnetic modes. ACS. Nano 2013, 7, 664–668. [Google Scholar] [CrossRef]
- Savinov, V.; Fedotov, V.; Zheludev, N.I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Paniagua-Domínguez, R.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Kivshar, Y.S. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A 2017, 95, 063820. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Y.; Li, Y.; Younan, X. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt. Exp. 2010, 18, 13337–13344. [Google Scholar] [CrossRef]
Structure | Type of Resonance | The χ(3) of Si (m2/V2) | ION-OFF (MW/cm2) | IOFF-ON |
---|---|---|---|---|
Ring [26] | Fabry-Perot resonance | 6 × 10−18 | 7.5 × 103 | 6 × 103 |
Grating [27] | Guided-mode resonance | 6 × 10−18 | 350 | 200 |
Photonic Crystal [28] | BIC resonance | 2.84348 × 10−19 | 150 | 75 |
This work (Symmetry) | MAS resonance | 2.84348 × 10−19 | 25.0 | 19.6 |
This work (Asymmetry) | MAS resonance | 2.84348 × 10−19 | 8.5 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Tian, S.; Wen, Y.; Cai, G. Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States. Appl. Sci. 2024, 14, 9914. https://doi.org/10.3390/app14219914
Xu R, Tian S, Wen Y, Cai G. Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States. Applied Sciences. 2024; 14(21):9914. https://doi.org/10.3390/app14219914
Chicago/Turabian StyleXu, Rui, Sen Tian, Yujia Wen, and Guoxiong Cai. 2024. "Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States" Applied Sciences 14, no. 21: 9914. https://doi.org/10.3390/app14219914
APA StyleXu, R., Tian, S., Wen, Y., & Cai, G. (2024). Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States. Applied Sciences, 14(21), 9914. https://doi.org/10.3390/app14219914