Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine
<p>Proposed TRWT configuration.</p> "> Figure 2
<p>Betz tube.</p> "> Figure 3
<p>WT mechanical system.</p> "> Figure 4
<p>Simplified DC motor closed-loop TF.</p> "> Figure 5
<p>DC motor with SMC and PID.</p> "> Figure 6
<p>C<sub>p</sub> vs. TSR curve.</p> "> Figure 7
<p>C<sub>p</sub> and λ Simulink results.</p> "> Figure 8
<p>V<sub>w</sub> vs. C<sub>p</sub> curve.</p> "> Figure 9
<p>Verification of V<sub>w</sub> vs. mechanical power per rotor.</p> "> Figure 10
<p>Verification of V<sub>w</sub> vs. thrust force per rotor.</p> "> Figure 11
<p>Twin-rotor mechanical outputs.</p> "> Figure 12
<p>Response of SMC vs. PID.</p> "> Figure 13
<p>SMC response.</p> "> Figure 14
<p>System’s chattering signal before applying SMC.</p> "> Figure 15
<p>Sliding mode surface control.</p> "> Figure 16
<p>Chattering signals before and after applying SMC control.</p> ">
Abstract
:1. Introduction
Problem Statement and Contribution
2. Twin-Rotor WT Model
3. WT Yaw Mechanism
3.1. Electrical Motor Mathematical Model
3.2. Sliding Mode Control
4. Results and Discussion
4.1. WT Mechanical Model
4.2. WT Yaw Mechanism Model
4.3. Stability Analysis of the System Dynamic Model
4.4. Application of Position Control on the System Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Symbol | Definition |
A | Swept area of the rotor (m2) |
aAxial | Axial induction factor (--) |
B | Viscous damping constant (N.m/rad/s) |
CP | Power coefficient (--) |
Ct | Thrust force coefficient (--) |
FT | Thrust force (kN) |
J | Inertia constant (kg.m2) |
Kt | Torque constant (--) |
Kv | Back EMF constant (--) |
L | Armature inductance (H) |
Pm | Mechanical power (kW) |
R | Armature resistance (Ω) |
RR | Rotor’s radius (m) |
T | Torque (kN.m) |
V0 | Wind speed before the rotor (m/s) |
V1 | Wind speed at the rotor disc (m/s) |
V2 | Wind speed beyond the rotor (m/s) |
Ve | Back electromotive force (EMF) (volts) |
Vw | Wind velocity (m/s) |
z | Betz tube height (m) |
β | Blade pitch angle (°) |
ωr | Rotational speed of the rotor (rad/s) |
Tip speed ratio (--) | |
Air density (kg/m3) |
References
- Khezri, M.; Karimi, M.S.; Mamkhezri, J.; Ghazal, R.; Blank, L. Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries. Energies 2022, 15, 4604. [Google Scholar] [CrossRef]
- Makieła, K.; Mazur, B.; Głowacki, J. The Impact of Renewable Energy Supply on Economic Growth and Productivity. Energies 2022, 15, 4808. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: Impacts, Adaptation and Vulnerability; Cambridge University Press: Toronto, ON, Canada, 2007. [Google Scholar]
- Meirinhos, G.; Malebo, M.; Cardoso, A.; Silva, R.; Rêgo, R. Information and Public Knowledge of the Potential of Alternative Energies. Energies 2022, 15, 4928. [Google Scholar] [CrossRef]
- Shaheen, M.; Ullah, Z.; Qais, M.; Hasanien, H.; Chua, K.; Tostado-Véliz, M.; Turky, R.; Jurado, F.; Elkadeem, M. Solution of probabilistic optimal power flow incorporating renewable energy uncertainty using a novel circle search algorithm. Energies 2022, 15, 8303. [Google Scholar] [CrossRef]
- Baba, Y.; Pandyaswargo, A.; Onoda, H. An Analysis of the Current Status of Woody Biomass Gasification Power Generation in Japan. Energies 2020, 13, 4903. [Google Scholar] [CrossRef]
- Kangaji, L.; Tartibu, L.; Bokoro, P. Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter. Energies 2023, 16, 6090. [Google Scholar] [CrossRef]
- Ng, K.-W.; Lam, W.-H.; Ng, K.-C. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies 2013, 6, 1497–1526. [Google Scholar] [CrossRef]
- Veerendra Kumar, D.; Deville, L.; Ritter, K.I.; Raush, J.; Ferdowsi, F.; Gottumukkala, R.; Chambers, T. Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana. Energies 2022, 15, 3420. [Google Scholar] [CrossRef]
- Fuster-Palop, E.; Vargas-Salgado, C.; Ferri-Revert, J.; Payá, J. Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation. Renew. Sustain. Energy Rev. 2022, 170, 112968. [Google Scholar] [CrossRef]
- Duvenhage, D.; Brent, A.; Stafford, W.; Van Den Heever, D. Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis. Energies 2020, 13, 3258. [Google Scholar] [CrossRef]
- Liu, S.; Chuang, Z.; Wang, K.; Li, X.; Chang, X.; Hou, L. Structural Parametric Optimization of the VolturnUS-S Semi-Submersible Foundation for a 15 MW Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2022, 10, 1181. [Google Scholar] [CrossRef]
- Xu, J.; Han, Z.; Yan, X.; Song, W. Design Optimization of a Multi-Megawatt Wind Turbine Blade with the NPU-MWA Airfoil Family. Energies 2019, 12, 3330. [Google Scholar] [CrossRef]
- Haegel, N.M.; Kurtz, S.R. Global Progress Toward Renewable Electricity: Tracking the Role of Solar. IEEE J. Photovolt. 2021, 11, 1335–1342. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Heide, D.; Von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Shahid, A. Smart Grid Integration of Renewable Energy Systems. In Proceedings of the 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018. [Google Scholar]
- Global Wind Report; Global Wind Energy Council (GWEC): Brussels, Belgium, 2023.
- Colak, M.; Cetinbas, I.; Demirtas, M. Fuzzy Logic and Artificial Neural Network Based Grid-Interactive Systems for Renewable Energy Sources: A Review. In Proceedings of the 9th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 29 June–1 July 2021. [Google Scholar]
- Dief, T.; Fechner, U.; Schmehl, R.; Yoshida, S.; Ismaiel, A.; Halawa, A.M. System identification, fuzzy control and simulation of a kite power system with fixed tether length. Wind. Energy Sci. 2018, 3, 275–291. [Google Scholar] [CrossRef]
- Makani. Available online: https://x.company/projects/makani/ (accessed on 15 November 2022).
- Kaka, M.; Niobic, A. Numerical simulation of tethered-wing power systems based on variational integration. J. Comput. Sci. 2021, 15, 101351. [Google Scholar]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Energy, G.R. GE Renewable Energy. Available online: https://www.gevernova.com/wind-power/offshore-wind/haliade-x-offshore-turbine (accessed on 26 October 2024).
- Jamieson, P.; Branney, M. Multi-rotors: A solution to 20 MW and beyond. Energy Procedia 2012, 24, 52–59. [Google Scholar] [CrossRef]
- Monthly, W.P. Wind Power Monthly. Available online: https://www.windpowermonthly.com/article/1000918/cutting-transport-costs-down-size (accessed on 25 November 2023).
- Hofmann, M.; Sperstad, I. Will 10 MW wind turbines bring down the operation and maintenance cost of offshore wind farms? Energy Procedia 2014, 53, 231–238. [Google Scholar] [CrossRef]
- Jamieson, P. Innovation in Wind Turbine Design; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Verma, P. Multi Rotor Wind Turbine Design and Cost Scaling; Atmire: Gaston, NY, USA, 2013. [Google Scholar]
- Mate, G. Development of a Support Structure for Multi-Rotor; Atmire: Gaston, NY, USA, 2014. [Google Scholar]
- Elkodama, A.; Ismaiel, A.; Abdellatif, A.; Shaaban, S. Aerodynamic Performance and Structural Design of 5 MW Multi Rotor System (MRS) Wind Turbines. Int. J. Renew. Energy Res. 2022, 12, 1495–1505. [Google Scholar]
- Goltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P. Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systemsAerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems. Renew. Energy 2017, 112, 25–34. [Google Scholar] [CrossRef]
- Chasapogiannis, P.; Prospathopoulos, J.; Voutsinas, S.; Chaviaropoulos, T. Analysis of the aerodynamic performance of the multi-rotor concept. J. Phys. Conf. Ser. 2014, 524, 012084. [Google Scholar] [CrossRef]
- Ismaiel, A.; Yoshida, S. Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine. Energies 2018, 12, 1881. [Google Scholar] [CrossRef]
- Elkodama, A.; Ismaiel, A.; Abdellatif, A.; Shaaban, S.; Rushdi, M.A.; Yoshida, S. Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review. Energies 2023, 16, 6394. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; NREL Technical; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Manyonge, A.; Ochieng, R.; Onyango, F. Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Appl. Math. Sci. 2012, 6, 4527–4536. [Google Scholar]
- Aşkin, M. Calculations of Wind Turbine Flow in Yaw Using the BEM Technique. Master’s Dissertation, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2011. [Google Scholar]
- Wua, Z.; Wang, H. Research on Active Yaw Mechanism of Small Wind Turbines. In Proceedings of the International Conference on Future Energy, Environment, and Material, Hong Kong, China, 12–13 April 2012. [Google Scholar]
- Moreira, A.P.; Costa, P.G.; Gonçalves, J.A.; Faria, B.M. DC Motor Educational Kit: A Teaching Aid in Control Theory; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Kiss, J.M.; Szemes, P.T.; Aradi, P. Sliding mode control of a servo system in LabVIEW: Comparing different control methods. Int. Rev. Appl. Sci. Eng. 2021, 12, 201–210. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Power Rating | 5 MW |
Rotor Configuration | Upwind, 3 blades |
Rotor Diameter | 126 m |
Hub Height | 90 m |
Cut-In Wind Speed | 3 m/s |
Rated Wind Speed | 11.4 m/s |
Cut-Out Wind Speed | 25 m/s |
Rotor Mass | 110,000 kg |
Nacelle Mass | 240,000 kg |
Parameter | Value |
---|---|
DC Supply Voltage (V) | 220 V |
DC Motor Capacity (P) | 3 HP |
Armature Resistance (R) | 0.6 Ω |
Armature Inductance (L) | 0.008 H |
Inertia Constant (J) | 0.011 Kg.m2 |
Viscous Damping Constant (B) | 0.004 Nm/rad/s |
Torque Constant (Kt) | 0.55 |
Back EMF Constant (Kv) | 0.55 |
Controller | Tuned Parameters | ||
---|---|---|---|
PID | KP | KI | KD |
1.10 | 50 | 0.07 | |
SMC | C | K | δ |
60 | 600 | 5 |
Controller | System Response Parameters | |||
---|---|---|---|---|
Rise Time (ms) | Settling Time (s) | Overshoot % | Undershoot % | |
PID | 46.438 | 0.867 | 30.921 | 1.990 |
SMC | 35.465 | 0.170 | 0.802 | 1.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkodama, A.; Abdellatif, A.; Shaaban, S.; Rushdi, M.A.; Yoshida, S.; Ismaiel, A. Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine. Appl. Sci. 2024, 14, 9810. https://doi.org/10.3390/app14219810
Elkodama A, Abdellatif A, Shaaban S, Rushdi MA, Yoshida S, Ismaiel A. Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine. Applied Sciences. 2024; 14(21):9810. https://doi.org/10.3390/app14219810
Chicago/Turabian StyleElkodama, Amira, A. Abdellatif, S. Shaaban, Mostafa A. Rushdi, Shigeo Yoshida, and Amr Ismaiel. 2024. "Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine" Applied Sciences 14, no. 21: 9810. https://doi.org/10.3390/app14219810
APA StyleElkodama, A., Abdellatif, A., Shaaban, S., Rushdi, M. A., Yoshida, S., & Ismaiel, A. (2024). Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine. Applied Sciences, 14(21), 9810. https://doi.org/10.3390/app14219810