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Abstract: When implementing outside-the-window (OTW) visuals in aviation tactical simulators,
maintaining terrain image color consistency is critical for enhancing pilot immersion and focus.
However, due to various environmental factors, inconsistent image colors in terrain can cause visual
confusion and diminish realism. To address these issues, a color correction technique based on
a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) is proposed.
The proposed WGAN-GP model utilizes multi-scale feature extraction and Wasserstein distance
to effectively measure and adjust the color distribution difference between the input image and
the reference image. This approach can preserve the texture and structural characteristics of the
image while maintaining color consistency. In particular, by converting Bands 2, 3, and 4 of the
BigEarthNet-S2 dataset into RGB images as the reference image and preprocessing the reference
image to serve as the input image, it is demonstrated that the proposed WGAN-GP model can handle
large-scale remote sensing images containing various lighting conditions and color differences. The
experimental results showed that the proposed WGAN-GP model outperformed traditional methods,
such as histogram matching and color transfer, and was effective in reflecting the style of the reference
image to the target image while maintaining the structural elements of the target image during the
training process. Quantitative analysis demonstrated that the mid-stage model achieved a PSNR of
28.93 dB and an SSIM of 0.7116, which significantly outperforms traditional methods. Furthermore,
the LPIPS score was reduced to 0.3978, indicating improved perceptual similarity. This approach can
contribute to improving the visual elements of the simulator to enhance pilot immersion and has the
potential to significantly reduce time and costs compared to the manual methods currently used by
the Republic of Korea Air Force.

Keywords: color enhancing; Wasserstein GAN with Gradient Penalty; remote sensing images;
aviation simulators

1. Introduction

Aviation simulators have become essential tools for pilot training by closely replicat-
ing real-world flight environments. As the cost of real-world flights increases alongside
technological advancements in aircraft, the utilization of simulators becomes even more
critical. High fidelity is required to enhance simulator immersion, with visuals such as

Appl. Sci. 2024, 14, 9227. https://doi.org/10.3390/app14209227 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14209227
https://doi.org/10.3390/app14209227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0006-1457-6846
https://orcid.org/0000-0002-2665-3339
https://doi.org/10.3390/app14209227
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14209227?type=check_update&version=1


Appl. Sci. 2024, 14, 9227 2 of 13

outside-the-window (OTW) imagery playing a critical role. Additionally, the need for new
locations for overseas missions requires simulation training in a variety of environments,
making terrain imagery accuracy and consistency critical.

Terrain imagery is a key component of a simulator’s visual representation of the
Earth’s surface features and is primarily obtained through aerial photography and satellite
imagery. However, even when the same area is photographed, factors such as seasonal
changes, lighting conditions, and cloud cover can lead to irregular terrain images. These
irregular terrain images can be aesthetically unpleasant and, as a result, distracting to pilots.
Currently, the Republic of Korea (ROK) Air Force requires human intervention in most
processes to improve these images, leading to inconsistent results and increased work time.

To address this issue, histogram matching [1–4] has been widely used. This method
adjusts the color histogram of the target image to align with the color distribution of
the reference image. This method may not fully account for local variations or complex
textures, leading to a loss of detail and potentially unnatural results when there are large
color differences.

Color transfer [5–8] conveys a specific hue or mood by converting the colors of the
target image to match the color statistics (e.g., mean, variance, etc.) of a reference image.
This method also risks not preserving the structural features or textures of the image and
can result in unnatural outcomes if the color difference is significant.

To overcome these issues, Generative Adversarial Network (GAN)-based color cor-
rection techniques [9–13] have been proposed. GANs generate realistic data through
adversarial learning between a Generator and a discriminator (later termed a Critic) and
can convert irregular colors into consistent ones. However, there is a risk of mode collapse
and overfitting for specific data during the learning process, and the loss function has an
important impact on learning stability.

In this study, the WGAN-GP (Wasserstein Generative Adversarial Network with
Gradient Penalty) [14] was used, which introduces a Gradient Penalty to overcome the
limitations of traditional WGAN [15], improving learning stability and efficiency. By
redefining the loss function using the Wasserstein distance concept and ensuring the
Lipschitz continuity of the Critic, the mode collapse problem is mitigated, leading to more
stable training and improved data quality.

Mode collapse, if left unaddressed, can severely impact remote sensing image color
correction by causing repetitive color patterns and limited diversity in generated images.
This can lead to distorted color distributions that fail to accurately represent the wide
variety of textures and conditions present in remote sensing data, compromising the
realism needed for applications like aviation simulators [16]. By effectively addressing
mode collapse, WGAN-GP ensures that the generated images maintain diverse and accurate
color representations, which are crucial for achieving realistic and immersive simulations.

While previous studies have utilized WGAN-GP on whole remote sensing images,
there are few studies that have applied WGAN-GP to partial images. In this study, WGAN-
GP was applied to partial images using the BigEarth-Net-S2 [17] dataset. This dataset
consists of 549,488 Sentinel-2 image patches collected from 10 European countries and
contains a wide variety of terrain, seasons, and weather conditions, making it a suitable
dataset for training WGAN-GP-based models.

This paper is organized as follows: Section 2 reviews related work, details the dataset
and the methodology of the proposed WGAN-GP-based model, Section 4 describes the
experiment, and Section 5 discusses the findings. Finally, Section 6 concludes the study and
suggests future research directions.

2. Related Works

There has been considerable research on uniformly correcting irregular colors in
remote sensing images. These studies have primarily focused on Wallis filters, histogram
matching, color transfer, and more recently, GAN-based methods.
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In Wallis filter research, Z. Hong et al. [18] proposed optimizing color, luminance, and
contrast consistency among multiple remote sensing images by processing the chroma
and luminance channels in the YCbCr color space to minimize color differences and used
the Wallis transform to optimize luminance and contrast. C. Fan et al. [19] proposed an
improved Wallis Dodging method suitable for large-scale super-resolution reconstructed
remote sensing images. The algorithm calculates the Wallis filter parameters for each image
in a weighted manner and uses a weighted iterative method between adjacent images to
reduce spatial error propagation, resulting in a more precise adjustment of color consistency
across large-scale images. M. W. Sun et al. [20] proposed using a homomorphic filter along
with the Wallis transform to address irregular brightness distribution and color differences.
The homomorphic filter adjusts brightness imbalances within the image to resolve the
hotspot problem, while the Wallis transform reduces color differences between images to
achieve color consistency. A template-based filtering method for seam removal was also
employed to address irregularities.

In histogram research, J. Morovic et al. [21] proposed a 3D histogram transformation to
more precisely maintain color consistency in images. This method overcomes the limitations
of existing 2D histogram transformation and enables high-accuracy color conversion even
for images with complex color structures. L. Neumann et al. [22] proposed a method of
individually matching histograms of color, brightness, and saturation to naturally transfer
color styles between two images.

In color transfer research, Reinhard et al. [23] proposed matching the color distribu-
tions by adjusting the mean and standard deviation between the source and target images in
the Lab color space, demonstrating that this can produce natural results while maintaining
color consistency. F. Pitie et al. [24] performed color transfer by minimizing the difference in
the probability density functions between two images in multidimensional space, resulting
in more natural and consistent color transfer compared to conventional methods.

In GAN-based research, T. Katayama et al. [25] proposed a color correction technique
using GANs to solve the color distortion problem occurring in underwater environments.
The proposed method enables more natural and consistent color restoration, significantly
improving the accuracy of color correction and object detection in underwater environ-
ments. M. Afifi et al. [26] proposed a method to control the color of GAN-generated
images using color histograms, which facilitates natural color transfer. Additionally, a new
model called ReHistoGAN can realign the colors of an actual image to match the target
color histogram.

These related works have presented various approaches to solve the problem of
color consistency in remote sensing images. While Wallis filters, histograms, and color
transfer methods each have their own advantages, they have also shown limitations in
dealing with complex color structures and large-scale images. Recent GAN-based studies
have overcome some of these limitations, but challenges remain in learning stability and
producing consistent results. In this study, a new approach using a WGAN-GP model is
proposed to overcome the limitations of these previous studies.

3. Methods
3.1. Model Architecture

The architecture of the WGAN-GP-based color correction model involves two adver-
sarial components, the Generator (G) and the Critic (C), which are trained simultaneously.
The Generator (G) takes, as input, a pair of images, consisting of a reference image (xre f )
and a target image (xtarget), and aims to realistically generate an image (G(xre f ., .xtarget))
that resembles the reference image (xre f ). Meanwhile, the Critic (C) determines whether
the input image is the reference image (xre f ) or the generated image (G(xre f ., .xtarget)). The
architecture of the WGAN-GP model is illustrated in Figure 1.
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Figure 1. An overview of the architecture of the WGAN-GP model.

The G takes a reference image (xre f ) and a target image (xtarget) as inputs and combines
them to create a new image. The architecture of the G used in this study is organized
as follows.

To simplify, the G first combines the two input images and applies a series of convo-
lutional layers and activation functions to gradually extract features. In more detail, the
G starts by passing the combined images through a 3 × 3 convolutional layer with ReLU
activation, which is repeated twice to capture basic patterns. MaxPooling is then applied to
reduce the dimensions, summarizing key features. This process is repeated twice, with the
number of filters increasing each time to capture more complex details as the resolution
decreases. In the next stage, G uses up-sampling to restore resolution, followed by further
convolutional layers and ReLU activation to refine the image output. In the final step,
a sigmoid function is applied to ensure the output values are within the range [0, 1], as
shown in Figure 2a.
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The C is responsible for determining whether the input image is a real image (reference
image, xre f ) or a generated image (G(xre f ., .xtarget)). The architecture of C used in this study
is organized as follows.

The C follows a similar approach but focuses on differentiating between real and
generated images. The input is passed through a 3 × 3 convolutional layer with ReLU
activation, followed by MaxPooling to reduce dimensions and extract essential features.
This process is repeated three times, with increasing filter numbers to enhance the detection
of patterns. Finally, the output is flattened into a vector through a Flatten layer, and a final
decision is made, as shown in Figure 2b. To make this process more intuitive, a flowchart
explaining each step visually has been included in Figure 1.



Appl. Sci. 2024, 14, 9227 5 of 13

3.2. Loss Functions

The loss function of the WGAN-GP model proposed in this paper, which considers
both pixel accuracy and the quality of the generated image, is expressed as follows:

LossWGAN = Exre f

[
C
(

xre f

)]
− EG(xre f ,xtarget)

[
C
(

G
(

xre f , xtarget

))]
where C(xre f ) is the value that the Critic calculates for the reference image (xre f ).
C(G(xre f , xtarget)) is the value the C calculates for the image generated by the G using
the reference image (.xre f ) and the target image (xtarget). This value assesses how closely
the generated image resembles the real image.

The loss function operates by having the C take both the reference image (xre f ) and the
generated image G(xre f , xtarget) as inputs, determining which of the two is the real image
(xre f ) and which is the generated image G(xre f , xtarget).

The G takes a reference image (xre f ) and a target image (xtarget) as inputs and generates
an image that reflects the style of the reference image (xre f ) while preserving the structure
or content of the target image (xtarget).

The C aims to maximize the value of C(xre f ) and minimize the value of
C(G(xre f , xtarget)), meaning it seeks to evaluate the reference image (.xre f ) as real and the
generated image as not real. Conversely, the G tries to maximize the value of
C(G(xre f , xtarget)), aiming for the generated image (G(xre f ., .xtarget)) to be perceived as
a real image.

The model simultaneously learns the color distribution and texture of the target
image. In this process, the C evaluates both aspects of color consistency and structure.
This learning is crucial in aviation simulators because maintaining the color consistency
and structural integrity of terrain images provides pilots with an accurate and immersive
training environment. If either the color or texture is not accurately represented, the
effectiveness of the aviation simulation could be compromised.

By repeating this process, the G learns to produce images that increasingly reflect
the style of the reference image (xre f ) while also preserving the content of the target
image (xtarget).

However, it is important to note that while the WGAN-GP model provides superior
results in terms of color consistency and texture preservation, it comes with a higher
computational cost compared to simpler models such as histogram matching and basic
color transfer. Training the WGAN-GP model requires more computational resources,
including multiple high-performance GPUs and an extended training time. This makes
it suitable primarily for applications where the accuracy and quality of color correction
are critical, such as high-fidelity aviation simulators, rather than for use cases where
computational efficiency is the priority. By understanding these trade-offs, practitioners
can make informed decisions on whether the benefits of WGAN-GP justify its use based on
the specific requirements and constraints of their application.

4. Experimental Section

In this section, performance evaluation experiments are conducted to validate the
proposed model.

4.1. Datasets

In this study, the BigEarthNet-S2 dataset was used for the color correction of high-
resolution remote sensing images. The dataset consists of 115 Sentinel-2 tiles collected
from June 2017 to May 2018 across 10 European countries (Austria, Belgium, Finland,
Ireland, Kosovo, Latvia, Luxembourg, Portugal, Serbia, and Switzerland). These tiles were
atmospherically corrected using the Sentinel-2 Level 2A product creation and formatting
tool and were then divided into a total of 549,488 image patches.

Each image patch is associated with a pixel-level reference map and multiple land
cover class labels (i.e., multi-label) derived using the latest 2018 CORINE Land Cover
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database. The dataset includes a wide range of terrains, seasons, and weather conditions,
making it sufficient for training color correction models in various environments.

The BigEarthNet-S2 dataset utilizes imagery collected by the Sentinel-2 satellite, which
is part of the European Space Agency’s (ESA’s) Copernicus project. Sentinel-2 provides
a wide range of spectral bands for precise observations of the Earth’s surface, and the
cloud cover in all Sentinel-2 images is limited to 1% or less to minimize its impact on the
results. The spectral bands available in the Sentinel-2 imagery include the following: B01
(coastal aerosol; 60 m), B02 (blue; 10 m), B03 (green; 10 m), B04 (red; 10 m), B05 (vegetation
red edge; 20 m), B06 (vegetation red edge; 20 m), B07 (vegetation red edge; 20 m), B08
(near-infrared (NIR); 10 m), B09 (water vapor; 60 m), B11 (short-wave infrared (SWIR);
20 m), B12 (SWIR; 20 m), and B8A (narrow NIR; 20 m). Among these, bands B04, B03, and
B02, which correspond to red, green, and blue, were selected to create the RGB image. The
choice was made due to their 10 m resolution, which offers an optimal balance between
spatial detail and accurate color representation for natural imagery. In this study, a high-
resolution RGB image created by combining the red, green, and blue channels (bands 4, 3,
and 2) was used as the reference image, as shown in Figure 3.
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Figure 3. BigEarthNet-S2 RGB images (ref images).

To create the target image, the RGB image was randomly divided in one of the
following ways: vertical bisection, diagonal division, three divisions, or four divisions,
and then randomly color-adjusted, luminance-adjusted, and contrast-adjusted. Color
adjustment was performed by selecting a random value between −30 and +30 to correct
the hue and change the ratio of primary colors; luminance adjustment was performed
by selecting a random value between −50 and +50 to adjust the overall brightness; and
contrast adjustment was performed by selecting a random value between 0.5 and 1.5 to
adjust the contrast, as shown in Figure 4. These parameter ranges were determined based
on empirical analysis. The chosen values were optimized to provide sufficient variability
while maintaining the natural appearance of terrain images, ensuring that the adjustments
align with the real-world conditions observed in remote sensing environments. The RGB
image and the preprocessed image were then resized to 256 × 256 pixels and normalized
to the range [0, 1]. The RGB image and the preprocessed target image were then paired and
used for training.
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4.2. Experimental Environment

WGAN-GP was implemented using the TensorFlow framework and the model was
trained on three NVIDIA DGX A100 80 GB GPUs. The BigEarthNet-S2 RGB image was
used as the reference image, and the preprocessed BigEarthNet-S2 RGB image was used as
the target image in the dataset. The weight λ of the Gradient Penalty term, as proposed
in the WGAN-GP paper, was set to 10.0. The model was optimized using the Adam opti-
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mizer with mini-batches, where the Adam optimizer parameters were set to β1 = 0.5 and
β2 = 0.9. The learning rate for the Generator was set to 1 × 10−4, and the learning rate
for the Critic was set to 5 × 10−5. The maximum number of epochs was 50, and the
batch size was 128. Additionally, the trained model was presented to a terrain imaging
expert from the ROK Air Force, who provided feedback on ensuring that important ter-
rain features were not lost during the color conversion process. Based on this feedback,
further research was conducted, focusing on the structure of the Generator and Critic and
optimizing hyperparameters.

4.3. Results

This section presents the training results of the WGAN-GP model proposed in this
paper. The proposed model effectively improved color and texture reproduction through
the training process using reference images. The reference images were only used during
the model training phase and are not required for the model’s actual deployment.

As training progressed, the color and texture of the generated images improved
significantly. Initially, the color distribution was irregular, but with continued training, this
irregularity gradually decreased, and eventually, the model was able to produce images
with increasingly uniform color distribution. Figure 5 shows that the model effectively
learned color consistency, and the images generated at each stage of the training gradually
became more similar to the ground truth.
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Furthermore, the texture representation in the generated images was significantly
improved compared to the initial training phase. In terms of texture reproduction, some
unclear areas were observed in the early stages, but as training progressed, more sophis-
ticated and detailed textures emerged. Figure 6 demonstrates that the WGAN-GP-based
color correction model effectively learned and reproduced the features of the ground truth
texture, showcasing an important result.

To facilitate a clearer understanding of these visual enhancements, Figures 5 and 6
have been annotated with additional labels and captions. Each stage of training is marked
to indicate specific improvements in color distribution and texture details, such as reduced
color inconsistency, smoother texture transitions, and the emergence of finer details. These
annotations guide the viewer through the model’s progressive learning, illustrating the
effectiveness of the WGAN-GP approach in refining both color and texture throughout the
training process. Therefore, the WGAN-GP-based color correction model proposed in this
study demonstrates strong performance not only in maintaining color consistency but also
in the precise reproduction of textures.
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4.4. Ablation Study

To evaluate the effectiveness of the WGAN-GP model, ablation experiments were
conducted by comparing it with a modified model where only the gradient penalty (GP)
was added. This experiment aimed to specifically assess the impact of each component
on the model’s performance and to highlight the advantages of the WGAN-GP architec-
ture compared to conventional methods. The results yielded the following insights and
challenges:

Firstly, when the Gradient Penalty (GP) was added to a standard GAN model alone,
it helped control the gradient of the Critic, improving the stability of the training process.
However, it did not fundamentally resolve the existing issues inherent in traditional
methods. This approach still presented challenges for the Critic’s learning process, and it
was evident that using GP alone was insufficient to completely overcome these limitations.
Therefore, in the WGAN-GP model, both the Wasserstein distance and Gradient Penalty
are utilized simultaneously to address these problems, ensuring stable gradients and
continuous feedback during the training process.

Additionally, an analysis of the causes of color inconsistency revealed that the model
struggled to achieve stable training, leading to occurrences of color inconsistency and
degradation in image quality. In the WGAN-GP experiments, color consistency was a
critical factor, and using a simple GP addition without the Wasserstein distance resulted in
the Critic failing to provide adequate feedback, producing irregular or inconsistent color
outcomes. These findings clearly illustrate the rationale for using the Wasserstein distance
in the WGAN-GP model, demonstrating its superiority in delivering stable and consistent
performance compared to traditional methods.

These ablation experiment results support the conclusion that the design of the WGAN-
GP model offers superior training stability and image quality compared to conventional
GAN-based approaches.

4.5. Comparison with Other Methods

The WGAN-GP-based color correction model proposed in this work was compared
with existing histogram matching and color transfer techniques and was found to produce
better results across various performance metrics.

Although histogram matching and color transfer techniques demonstrated some effec-
tiveness in color matching, these methods were found to have limitations in reproducing
the details of the overall image. In particular, histogram matching showed limitations
in maintaining color consistency and resulted in information loss when compared to the
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ground truth, especially in terms of texture and detail. The color transfer technique also
exhibited limitations in maintaining the color consistency of the ground truth and was
deficient in texture reproduction.

On the other hand, the proposed model achieved more natural color matching and
texture reproduction as training progressed. In particular, the images generated by the mid-
stage model not only showed good overall color matching but also reproduced textures
that were fairly similar to the ground truth. At the end of training, the images generated by
the model showed a slight decrease in color consistency compared to the mid-stage model.
However, better results in texture reproduction were observed, which remained superior
to the other methods, as shown in Figure 7.
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Figure 7. Comparison with other method’s results. (a) Image processed using histogram matching,
showing limitations in maintaining color consistency and significant information loss in texture
and detail; (b) image processed using the color transfer technique, which also shows limitations in
maintaining the ground truth’s color consistency and lacks texture reproduction; (c) image gener-
ated by the early stage of the WGAN-GP-based model, where color distribution is irregular and
texture representation is still underdeveloped; (d) image generated by the mid-stage model, demon-
strating improved color matching and texture reproduction, with textures becoming more similar
to the ground truth; and (e) image generated by the fully trained WGAN-GP model, showing a
slight decrease in color consistency compared to the mid-stage model but offering superior texture
reproduction compared to the other methods.

This architecture utilizes the Wasserstein distance and Gradient Penalty to enhance
training stability and maintain color consistency while preserving the structural features of
the image. These mechanisms allow the model to reduce color inconsistencies and enhance
the structural integrity of the image, resulting in improved texture reproduction compared
to traditional methods.

The quantitative analysis uses peak signal-to-noise ratio (PSNR) [27], structural sim-
ilarity (SSIM) [28], CIE Delta E 2000 (CIEDE 2000) [29], and learned perceptual image
patch similarity (LPIPS) [30] as evaluation metrics. PSNR directly reflects the pixel-level
mean square error between the generated image and the original image; a higher value
indicates less image distortion and a more accurate color distribution. SSIM measures
the similarity between images based on brightness, contrast, and structure, reflecting the
subjective quality of image restoration. The closer the SSIM value is to one, the more
structurally similar the two images are, indicating better quality. CIEDE 2000 measures the
color difference between two images, taking into account differences in hue, saturation, and
lightness. A lower CIEDE 2000 value indicates less color difference between the two images
and greater visual similarity. Compared to PSNR and SSIM, LPIPS is more aligned with
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human perceptual judgment; a lower LPIPS value indicates a smaller perceptual difference
between the generated image and the original image.

To provide a clearer understanding of these metrics, it is important to note that
PSNR and SSIM are primarily focused on pixel-level accuracy and structural similarity,
respectively, and may not fully capture the perceptual aspects of image quality as perceived
by humans. This is where LPIPS becomes significant, as it evaluates perceptual similarity
based on learned visual features, making it more relevant for assessing the quality of
remote sensing images under varied conditions such as lighting or atmospheric effects.
Additionally, CIEDE 2000 is particularly useful for assessing precise color differences, which
is crucial when evaluating color correction algorithms. These metrics together provide a
comprehensive assessment, balancing objective accuracy with perceptual quality.

In Table 1, the proposed method and other methods are evaluated using the specified
performance metrics. The proposed method, particularly the mid-stage model of the
WGAN-GP-based color correction model, demonstrates the best performance, showing
optimal results across all metrics. This indicates that the proposed model can reproduce
the colors and textures of the original image more accurately than existing methods.

Table 1. Evaluation of Histogram, Color Transfer, and Proposed Method.

Method PSNR/dB SSIM CIEDE2000/Mean ∆E LPIPS

Histogram Matching 27.5229 0.6949 9.4066 0.3194
Color Transfer 27.495 0.5585 9.8801 0.1933

Proposed Method (Early-Stage Model) 27.6841 0.4559 26.0101 0.6318
Proposed Method (Mid-Stage Model) 28.9298 0.7116 7.3487 0.3978

Proposed Method (Fully Trained Model) 28.2966 0.6459 9.6674 0.4005

Table 1 highlights that while the early-stage and fully trained models show variations
in performance, the mid-stage model achieves the most balanced and optimal outcomes.
This suggests that the mid-stage training phase effectively captures both color accuracy and
texture details, demonstrating superior performance in high-quality image reproduction.

5. Discussion

A WGAN-GP-based color correction technique is proposed in this study to address
the color correction problem of remote sensing images. To overcome the limitations of
traditional methods, an approach using WGAN-GP is introduced that performs natural
color correction while maintaining color consistency and the structural characteristics of
the image.

The results show that the proposed WGAN-GP model can more consistently correct
irregular color distributions and reproduce the texture and structure of images more
precisely compared to existing methods. In particular, it performs well in preserving the
structural elements of the target image while reflecting the style of the reference image
during training.

However, as training progresses to the later stages, a slight decrease in color consis-
tency is observed despite improvements in texture reproduction. This may be due to the
model’s increased focus on optimizing texture details over color accuracy, leading to a
trade-off between these two aspects. Further adjustments in the loss function or model
architecture may be necessary to achieve a more balanced performance in both color and
texture preservation.

However, the purpose of this study is to enhance the visual quality of aviation simu-
lators; therefore, additional research is needed regarding extreme weather and seasonal
conditions. As the BigEarthNet-S2 dataset is post-processed to remove cloud cover, future
studies will be conducted using Landsat or Sentinel tiles to explore these conditions further.

However, the proposed WGAN-GP-based approach has some limitations. It may
be challenging to perfectly transfer the style of the reference image to the target image
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by simply combining generators. To address this issue, it may be necessary to extend
the research by incorporating additional models such as StyleGAN [31]. For example,
StyleGAN’s style transfer feature could be utilized to more precisely reflect the detailed
style of the reference image in the target image. Additionally, it may be necessary to extend
the Critic’s structure to include a two-image comparison input that can more clearly identify
differences between the reference image and the generated image, thereby enhancing the
Critic’s discrimination ability.

6. Conclusions

This study demonstrated that the WGAN-GP-based color correction technique en-
ables more precise texture and structure reproduction in high-resolution remote sensing
images compared to existing methods and can contribute to enhancing pilot immersion.
In particular, the results suggest that the proposed method can significantly improve op-
erational efficiency by saving time and cost compared to the ROK Air Force’s existing
manual processing methods, and this can be useful for generating training content based on
various terrain images. Furthermore, this research is expected to expand the applicability
of GAN-based technologies and advance the field of remote sensing image color correction.
The proposed WGAN-GP model can contribute to solving practical problems in this field
by delivering better performance than existing traditional methods.

This study shows that the proposed WGAN-GP model outperforms existing tradi-
tional methods and can more consistently correct irregular color distributions. Thus, the
proposed method successfully improves the accuracy of color correction while preserving
the structural characteristics of the image.

However, this study has some limitations. First, it may be difficult to perfectly transfer
the style of the reference image to the target image by simply combining generators. Second,
the structure of the Critic needs to be improved to more clearly distinguish between the
reference image and the generated image. To overcome these limitations, future research
should explore ways to further improve performance by combining additional models such
as StyleGAN or extending the Critic’s comparison structure.

This study makes an important contribution to the field of color correction for remote
sensing images, and further validation in various environments and datasets will expand
its applicability across different fields. Therefore, future research is needed to enhance the
performance and expand the applicability of this model through additional experiments
and validation in various environments. Based on these results, it is hoped that the
proposed method will become a new standard for remote sensing image processing in
the future.
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