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Abstract: The rotational mechanism, which plays a critical role in energy supply, payload antenna
pointing, and attitude stabilization in satellites is essential for the overall functionality and perfor-
mance stability of the satellite. This paper takes the space turntable of a specific satellite model as
an example, utilizing high-frequency and high-dimensional telemetry data. An improved informer
model is used to predict and diagnose features related to the turntable’s operational health, includ-
ing temperature, rotational speed, and current. In this paper, we present a forecasting method for
turntable temperature data using a hybrid model that combines singular spectrum analysis with
an enhanced informer model (SSA-Informer), comparing the results with threshold limits to deter-
mine if faults occur in the satellite’s rotational mechanism. First, during telemetry data processing,
singular spectrum analysis (SSA) is proposed to retain the long-term and oscillatory trends in the
original data while filtering out noise from interference. Next, the improved informer model predicts
the turntable temperature based on the mapping relationship between the turntable subsystem’s
motor current and temperature, with multiple experiments conducted to obtain optimal parameters.
Finally, temperature thresholds generated from the prediction results are used to forecast faults in the
rotational mechanism over different time periods. The proposed method is compared with current
popular time-series prediction models. The experimental results show that the model achieves high
prediction accuracy, with reductions of at least 10% in both the MAE and MSE than CNN-LSTM, DA-
RNN, TCN-SE and informer, demonstrating the outstanding advantages of the SSA and improved
informer-based method in predicting temperature faults in satellite rotational mechanisms.

Keywords: rotation mechanism; SSA; informer; time-series prediction

1. Introduction

Satellites are intricate systems integrating various instruments, such as optical, me-
chanical, and electronic devices, and they are characterized by their large scale and high
complexity. Once a satellite is in orbit, ground-based intervention capabilities are extremely
limited. Furthermore, the deteriorating space environment and numerous uncertainties
present additional challenges. With the advancement of commercial space endeavors and
the reduction in production costs, the number of satellite launches is expected to increase.
However, if a satellite’s operational status deviates from expectations while in orbit, ef-
fective maintenance is generally challenging. This can lead to system anomalies or even
failures. Therefore, satellite fault prediction is crucial for enhancing the reliability and
safety of satellites and has become a primary research focus in the aerospace field [1].

The satellite rotation mechanism is a critical component of the satellite attitude control
system and is extensively utilized in satellite power management, payload operations,
and attitude control [2]. The inertial execution mechanisms, which mainly include rotor-
based flywheels and torque control gyroscopes, are essential for stabilizing the satellite’s
attitude. Acting as a bridge between the satellite’s payload and platform modules, the ro-
tation mechanism enables smooth, stable high-speed rotation while transmitting power
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and signals. This ensures the satellite’s stability during flight. However, the complexity of
the rotation subsystem and the harsh operating environment pose significant fault risks.
Such faults can compromise the satellite’s stability, affecting both mission success and
operational lifespan.

To enhance the reliability and performance of satellite rotation mechanisms, signif-
icant progress has been made in the research of satellite fault diagnosis and prediction.
Fault diagnosis techniques can be broadly categorized into knowledge-based methods,
model-based methods, and data-driven methods. Knowledge-based methods are relatively
difficult to implement and have not been widely adopted. Z. Shi et al. [3] proposed a
model-based fault diagnosis method. However, this approach is computationally complex
and challenging to model, especially in the context of big data, where its shortcomings
are further amplified. Consequently, data-driven fault diagnosis techniques have become
the most widely applied methods today. Yin et al. [4] introduced a Just-In-Time Learning
Data-Driven (JITL-DD) fault detection method. Zhang et al. [5] proposed an improved
Probabilistic Principal Component Analysis (PPCA) nonlinear data-driven process moni-
toring method. With the further development of data-driven fault diagnosis techniques,
they can be broadly divided into statistical methods, shallow learning, and deep learning.

Statistical-based fault diagnosis techniques include Qualitative Trend Analysis
(QTA) [6], Principal Component Analysis (PCA) [7], and Partial Least Squares (PLS) [8],
among others. These methods eliminate the complex modeling processes of traditional
methods and require minimal prior knowledge. Shallow learning fault diagnosis methods
include Support Vector Machines (SVMs) [9], k-Nearest Neighbors (kNNs) [10], Gaussian
Mixture Models (GMMs) [11], Artificial Neural Networks (ANNs) [12], and similar tech-
niques. Corresponding hybrid improvement methods also demonstrate good performance.
Some researchers in the satellite field have attempted to combine neural networks with
statistical methods or model-based methods [13]. While statistical and shallow learning-
based fault diagnosis methods have made significant advancements over traditional fault
diagnosis algorithms, these methods often require domain-specific knowledge to extract
fault features, and their recognition accuracy still needs improvement.

In recent years, the rapid development of machine learning and artificial intelligence
has made deep learning a popular topic. Deep learning, characterized by network structures
with multiple hidden layers, has excellent feature extraction and learning capabilities. It
can effectively analyze and extract hidden feature information from large amounts of data,
establishing mapping relationships between data and features. Deep learning algorithms
overcome many of the inconveniences of traditional algorithms and have been successfully
applied in fields such as image, text, and video analysis [12]. Gradually, many researchers
have attempted to use predictive methods for fault detection. Liu L et al. [14] employed
Gaussian Process Regression to detect sensor anomalies in aircraft engines, demonstrating
good predictive performance. S. Ghasemi et al. used the Extended Kalman Filter method
for fault diagnosis and isolation in spacecraft attitude control systems [15]. The advantage
of this method lies in its ability to estimate both the system state and the uncertainty of
the state. Other researchers have used system identification methods to predict target
variables. Lu et al. [16] proposed a model combining wavelet approximation with system
identification theory for anomaly detection in network signals. Chen et al. [17] utilized
an Autoregressive with Exogenous Inputs (ARX) model for anomaly detection in wireless
communication network data systems. Ouadine et al. [18] combined neural networks with
the Hammerstein–Wiener system identification model to estimate the state of a quadrotor
system and establish a set of residuals to detect sensor anomalies. AutoEncoder, a type
of artificial neural network, can learn effective representations of input data through
unsupervised learning, thus performing data dimensionality reduction. Zhou et al. [19]
used deep autoencoders for anomaly detection. However, relevant studies seldom address
telemetry data similar to those of in-orbit satellites, nor do they consider seasonal trends,
periodic trends, noise, and the limitations of on-board real data sampling frequency [20].
Additionally, most of these methods simply stack different networks sequentially, which
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can lead to some degree of feature loss when further extracting features across different
networks. Therefore, although these algorithms may show performance improvements
compared to previous algorithms, they still require further refinement due to the potential
loss of information.

A novel approach for fault prediction in space rotational mechanisms based on teleme-
try data is proposed. By analyzing the causes, manifestations, and influencing factors
of rotational mechanism faults, a hybrid signal processing method combined with a self-
attention network for fault prediction is introduced. This approach is better suited to
addressing practical engineering issues, such as the operational states of satellite rotational
mechanisms under special working conditions and the potential noise interference during
telemetry data transmission.

This paper proposes a fault prediction method for satellite rotation mechanisms,
integrating singular spectrum analysis (SSA) and an improved informer model. Telemetry
data from the satellite turntable subsystem were analyzed. First, min-max normalization
mapped the data to the [0,1] range. SSA was then used for data decomposition to enhance
prediction accuracy. The dataset was trained using the optimized informer model, and key
parameter impacts on prediction were evaluated. Through experiments, the best parameter
combination was identified to maximize CNN-Informer performance. Predicted data were
used to generate thresholds for fault detection, and results were validated against RNN,
LSTM, and transformer models, demonstrating improved prediction accuracy.

The remainder of this paper is structured as follows. In Section 2, we introduce the
working principles and background of the rotating mechanism involved in fault prediction.
Section 3 presents the signal processing and fault prediction methods proposed in this
paper. Section 4 describes the simulation experiments and analysis. Finally, Section 5
provides the conclusion of this paper.

2. Background

The space turntable is a crucial component for realizing payload functions. Its reliabil-
ity not only affects the normal execution of payload functions but also plays a significant
role in maintaining the satellite’s attitude stability due to the large inertia components it
drives and the despinning functions it performs [21]. The satellite turntable subsystem is an
essential part of the satellite spatial rotation mechanism that is used to control the direction
and angle of the satellite turntable to ensure that the satellite antenna is aligned with the
desired ground station. The turntable subsystem primarily consists of the turntable body,
the turntable electronic control box, balance wheels, the locking and release mechanism,
and supporting software. The structural form of the turntable body is shown in Figure 1.
The base is thermally insulated and mounted on the top surface of the satellite platform
module, with the bearing housing encased by the payload module. The support shaft sys-
tem uses a pair of back-to-back angular contact ball bearings, preloaded during installation.
The shaft system employs a parallel configuration with bearings located outside the entire
turntable. Inside the bearing space, from top to bottom, conductive slip rings and torque
motors are sequentially installed.

The satellite rotation mechanism links the payload and platform modules, enabling
smooth, high-speed rotation while transmitting power and signals. The platform module
supplies power and commands to the payload via the slip ring assembly, while the turntable
subsystem sends rotational angle data back to the payload manager. Figure 2 illustrates
these connections and control relationships.

The stability of the turntable temperature is crucial for ensuring the effective operation
of the satellite rotation mechanism. It is influenced by several factors, including the
turntable motor current, the satellite’s attitude and orbit, and the position of the sun. Firstly,
the different operational modes of the entire satellite necessitate varying operational modes
for the turntable, resulting in different operating conditions. During these conditions,
the turntable motor generates a certain amount of current, which in turn produces heat
within the motor. Excessive current or poor motor cooling can lead to an increase in the
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turntable temperature [22]. Secondly, the satellite’s attitude and orbit also impact the
turntable temperature. Adjustments and movements of the satellite’s attitude in space
impose different thermal loads on the turntable under various operating states. Therefore,
when studying turntable system faults, it is crucial to consider the satellite’s attitude
characteristics and adjust the turntable’s temperature thresholds to maintain an appropriate
temperature under various attitude and orbital conditions. Additionally, the position of the
sun significantly affects the turntable temperature. Solar radiation is one of the main heat
sources, and direct exposure to the turntable can cause its temperature to rise. Consequently,
the angle and intensity of solar exposure need to be considered in different satellite missions
and working environments.

Figure 1. Structure ofturntable body.

Figure 2. Satellite payload connection and control relationship.

Among these factors, the current of the turntable motor is relatively easy to detect
and analyze numerically. Hence, this study aims to quantify the variations in the turntable
motor current and analyze its impact on the turntable temperature. Based on the current
variation patterns, this paper predicts turntable temperature faults to enable timely ad-
justments and repairs. By thoroughly investigating the relationship between turntable
current and temperature, this study allows us to better understand the operational state
and performance characteristics of the turntable and anticipate potential temperature faults
in advance. This enables effective control and management of the turntable temperature,
which is crucial for enhancing the reliability and performance of the turntable and ensuring
the normal operation of the satellite.
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3. Methods
3.1. SSA

This paper employs the singular spectrum analysis (SSA) algorithm to decompose and
reconstruct satellite turntable telemetry data. SSA is a time-series analysis method based
on Singular Value Decomposition (SVD) [23]. The core idea of SSA is to decompose a time
series into components of different frequencies. This allows for noise removal and helps
identify periodic patterns in the signal, achieving effective denoising [24]. Through the
analysis of eigenvectors, it is possible to determine the frequency, amplitude, and phase of
the periodic components present in the signal, thereby revealing the periodic variations
of the signal. Generally, SSA is divided into two parts: matrix decomposition and series
reconstruction [25].

The analysis object of SSA is one-dimensional time series with finite length. Firstly, we
need to select the appropriate window length to arrange the original time series with delay
to obtain the trajectory matrix:

Step 1: Decomposition
The original time series is mapped into a vector sequence of length L to form i + L − 1

vectors of the following length:

Xi = (xi, . . . , xi+L−1)
T (1 ≤ i ≤ K) (1)

These vectors form a trajectory matrix, as follows:

X =


X1 X2 · · · Xi−L+1
X2 X3 · · · Xi−L+2
...

...
. . .

...
XL XL+1 · · · Xi

 (2)

The trajectory matrix X is decomposed of singular value decomposition. By calculating
XXT and performing Singular Value Decomposition (SVD), L eigenvalues are obtained,
as follows:

X = X1 + . . . + Xd (3)

Xi =
√

λiUiVT
i (4)

where λi is the eigenvalue of the matrix XXT; Ui and Vi are orthogonal eigenvectors of the
trajectory matrix X.

Step 2: Reconstruction
Reconstruction involves grouping the sub-matrices obtained from SVD to form several

sub-matrices and calculating the contribution rate of each sub-matrix to determine its
variability. The sub-matrices include high-frequency sub-matrices, low-frequency sub-
matrices, and noise sub-matrices [26]. These sub-matrices are then restored to a recon-
structed sequence with a shape similar to the original signal through diagonal averaging.
The contribution rate can be expressed as follows:

η =
r

∑
i=1

λi/
d

∑
i=1

λi (5)

The sub-matrices obtained by grouping are reconstructed into L × K matrix Xij via
the diagonal average formula, and the expression of reconstructed time series Y is as
follows [24]:

ỹ =


1
k ∑k

p=1 X∗
p,k−p+1(1 ≤ k ≤ L∗)

1
L∗ ∑L∗

p=1 X∗
p,k−p+1(L∗ ≤ k ≤ K∗)

1
N−k+1 ∑N−K∗+1

p=k−K∗+1 X∗
p,k−p+1(K

∗ ≤ k ≤ N)

(6)
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where L∗ = min{L, K}, L∗ = min{L, K}, N = L + k − 1, the sum of the sequences obtained
after reconstruction is the total time series after singular spectrum analysis decomposition.

3.2. CNN-Informer

In the proposed model of this paper, the informer is an improved version based on
the transformer framework [27]. This framework is specifically designed to address the
prediction of long time series. In this paper, a Convolutional Neural Network (CNN) is
introduced before the overall informer framework. The CNN primarily includes convo-
lutional layers, pooling layers, and fully connected layers. Due to its characteristics of
weight sharing and spatial pooling, the parameters and complexity of the network model
are significantly reduced [28]. The architecture diagram of the CNN-Informer algorithm is
proposed in Figure 3. Convolution operation is the core of CNNs. It utilizes sliding convo-
lution filters, which move vertically and horizontally over the two-dimensional degraded
data to refine them.

Concatenated Feature Map

CNN

CNN-Informer

Encoder Decoder

Processed Data

Multi-head

ProbSparse

Self-attention

Multi-head

ProbSparse

Self-attention

Fully Connected Layer

Prediction Results

Multi-head

ProbSparse

Self-attention

Multi-head Attention

Multi-head

ProbSparse

Self-attention

Multi-head Attention

Figure 3. CNN-Informer architecture diagram.

The mathematical expressions for convolution and activation operations can be repre-
sented as follows:

Vn
ij = ∑ An ⊕ x fij + Bn

Yn = σ(Vn)
(7)

where Vn
ij is the output of convolution operation, n represents the n-th feature map, i and j

correspond to the number of steps of convolution filter in vertical and horizontal directions,
which An are convolution kernel matrix, x fij is the filter matrix, Bn is the bias term and σ is
the activation function.

The Encoder captures the input sequence and maps it to a higher-dimensional vector,
which is then fed into the Decoder to generate the output sequence. In this paper, the En-
coder is used to learn long-term dependencies from the operational data records of circuit
devices. Before the input sequence enters the Encoder, positional and temporal codes are
incorporated into the input sequence, fully utilizing the positional and temporal infor-
mation embedded within it. Sine and cosine functions are employed to derive positional
encoding [27].

PE(t, 2l) = sin
(

t/10, 0002l/m
)

PE(t, 2l + 1) = cos
(

t/10, 0002l/m
) (8)

where t is the position of the word in the sequence, l is the dimension of the word embed-
ding vector, m is the size of the word embedding projection, and PE is the positional encoding.
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The Probspare self-attention layer is designed to capture dependencies between fea-
tures. It does not calculate the dot product of each vector in thw Q matrix and each vector
in the K matrix. It calculates the sparsity measure of any Q vector according to the query
sparsity measure Formula (9) and selects the top-u vectors which play a leading role in at-
tention calculation, using these u vectors for calculations. The PE(t, 2l + 1) specific formula
is as follows [29]:

M(qi, K) = ln LK + max
j

{
qikT

j√
d

}
− 1

LK

LK

∑
j=1

(
qikT

j√
d

)
(9)

Attention(Q,K,V) = softmax
(

Q̄KT
√

dh

)
V (10)

where Q is a sparse matrix of the same size of q, and it only contains the Top-u queries
under the sparsity measurement M(q, K).

The Decoder mainly includes masked multi-head probabilistic self-attention and
multi-head attention. The former receives the following tag vectors [29]:

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

[
Xt

j

]
AB

))
(11)

where [·]AB represents the attention block. It contains the Multi-head ProbSparse self-
attention and the essential operations, where Conv1d() performs a 1-D convolutional filters
(kernel width = 3) on a time dimension with the ELU() activation function.

Multiple Probsphere self-attention is a stack of several Probsphere self-attention layers.
Generally speaking, there are multiple multi-head Probspare self-attention layers in the
Encoder. When the input data flows from the ith bullth Probsphere self-attention to the
i + 1 th bullth Probsphere self-attention, the data are processed according to the following
equation [28]:

Xt
feed = Concat

(
Xt

token , Xt
o
)
∈ R(Ltoken +Ly)×d (12)

where Xt
token is the start token, and Xt

o is a placeholder for the target sequence.

3.3. Threshold Generation

After obtaining the prediction sequence, dynamic thresholds for each time step are
generated based on the quartile threshold generation method. The quartile threshold
generation method replaces the mean and standard deviation used in traditional statistical
methods with the median and standard interquartile range [30], respectively. The statistical
parameters in the quartile method include the data volume (N), the lower quartile (Q1),
the upper quartile (Q3), and the interquartile range (IQR). The anomaly detection of the
reaction wheel speed is performed by comparing the predicted data with the generated
thresholds. The upper and lower limits of the threshold for the (i)-th step of the prediction
sequence are set by the formulas represented as

upi = Q−75 + 3 ∗ (Q−75 − Q−25) + outputi (13)

lowi = Q−25 − 3 ∗ (Q−75 − Q−25) + outputi (14)

where Q−25 and Q−75 are the lower and upper quartiles of the dataset, respectively,
outputi is the i-th output of the prediction sequence, and upi and lowi are the upper and
lower thresholds of the predicted value, respectively.

4. Experiments
4.1. Dataset Processing and SSA Procedure

In order to accurately predict the health status of a satellite’s rotating mechanism, this
paper utilize the telemetry data collected from a satellite’s 30-day turntable operation as our
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dataset. The data used in this study were sourced from the telemetry system of an in-orbit
satellite. The data collection frequency varies depending on the operating mode, with a
maximum frequency of 1 Hz and a minimum of 1/64 Hz. The dataset includes two primary
variables: motor current and turntable temperature. The motor current reflects the current
consumed by the motor during different phases of turntable operation, providing critical
information about motor load and performance. The turntable temperature data are used
to monitor temperature variations, helping to assess the thermal state of the equipment and
its operational safety. Furthermore, due to the limited availability of satellite telemetry data,
these two types of data are among the few that can directly reflect the state of the rotational
mechanisms. The dataset consists of 200,000 records covering a 30-day period, providing a
rich foundation for subsequent analysis and modeling. These data volumes are sufficient
not only for basic statistical analysis but also for training and validating more complex
time-series forecasting models and anomaly detection algorithms. In this study, the dataset
will be used for an in-depth analysis to identify potential patterns, trends, and anomalies,
thereby providing empirical support for the satellite turntable’s health monitoring and
fault prediction system. Figure 4 presents the variation curves of the turntable temperature
and motor current data over a one-day period.

Figure 4. Diagram of motor current and turntable temperature data.

The raw telemetry data from the satellite turntable subsystem are normalized using
min-max normalization to map the values into the [0,1] range. This step is crucial for
ensuring that the data are on a comparable scale, which aids in improving the performance
of the subsequent analysis. The normalization formula is

Normalized_data =
data − min(data)

max(data) − min(data)
(15)

The dataset spans a considerable period and has a sampling frequency of 1/16 Hz, ad-
equately capturing the state changes of the satellite turntable during its operation. Af-
ter preliminary data analysis, a time series representing the normal operation of the satellite
rotation mechanism was selected for modeling. A 7-day period of turntable motor current
data and turntable temperature data under normal operating conditions was used to train
and generate a health model for the satellite rotation mechanism’s temperature. To evaluate
the accuracy of predictions and to facilitate comparison, this paper applies three classical
evaluation indexes, which are mean absolute error (MAE), mean square error (MSE) and R²
score defined in Formulas (16)–(18), respectively.

MAE =
1
n

n

∑
i=1

|yi − ȳi| (16)
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MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (17)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (18)

where yi is the actual value, ŷi is the predicted value, ȳ is the mean of the actual values, and
n is the number of data points.

Since the SSA-CNN-Informer model combines the SSA algorithm with an improved
informer model, the parameter settings for this model need to be analyzed in two steps.
First, the parameters for the SSA algorithm must be configured. As shown in Table 1,
to ensure the effectiveness of the SSA algorithm, the length of the time series used for
training must be greater than the number of decomposed sequences. For the turntable motor
current data and turntable temperature data used in this study, we chose to decompose the
data into five sub-sequences. Through preliminary experiments, the window length was
fixed at 120, and the reconstruction order was set to 3.

Table 1. SSA parameter setting.

Decomposition and Reconstruction Model

Decomposition sequence 5

Window length 120

Reconstruction order 3

As can be seen from Figure 5, the main components are determined by calculating the
contribution rate of each sub-sequence of motor current data. The main components were
determined by calculating the contribution rate of each sub-sequence; the contribution
rates from the first sequence to the fifth sequence were 66%, 13.7%, 11.5%, 5.4% and 3.4%,
respectively. By observing the waveform of each sub-sequence and using autocorrelation
coefficient analysis, it can be determined that first sub-sequence is a trend component, the
second sub-sequences and third sub-sequences are oscillation components, and the rest are
noise components. Therefore, the reconstruction order is determined to be 3.

The sequences were reconstructed by regrouping them according to the first three
decomposed sub-sequences. The reconstructed sequence was then compared with the
original sequence, as shown in Figure 6.

The same method was used to decompose the turntable temperature data, as shown
in Figure 7. The contribution rates of each sub-sequence were calculated to identify the
primary components; by observing the waveform of each sub-sequence and using autocor-
relation coefficient analysis, it was determined that a reconstruction order of 2 was required.
The reconstructed sequence was then compared with the original sequence, as illustrated
in Figure 8.

(a) Decomposition sequence 1

Figure 5. Cont.
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(b) Decomposition sequence 2

(c) Decomposition sequence 3

(d) Decomposition sequence 4

(e) Decomposition sequence 5

Figure 5. SSA decomposition sub-sequence of motor current.
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Figure 6. SSA reconstruction sequence of current and raw sequence.

(a) Decomposition sequence 1

(b) Decomposition sequence 2

(c) Decomposition sequence 3

Figure 7. Cont.
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(d) Decomposition sequence 4

(e) Decomposition sequence 5

Figure 7. SSA decomposition sub-sequence of turntable temperature.

Figure 8. SSA reconstruction sequence of temperature and raw sequence.

4.2. Model Learning Process

The rationale for employing a hybrid model is to leverage the strengths of multiple
models, thereby enhancing the robustness of the model against diverse data distributions.
This is particularly crucial in low-dimensional feature spaces, where a single model may fail
to capture all underlying patterns. The CNN-Informer model obtains correlations within
and between data windows through overall training of the window. The prediction length
can be set to different values but must be less than the training window length. A single
forward prediction is performed through the window. First, by applying the previously
described data normalization method, we standardize the newly generated motor current
data (denoised using singular spectrum analysis, SSA) along with the turntable temperature
data. This ensures that both datasets are distributed within the reasonable range of [0,1]
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and converted into data tensors. The next step is to add positional information within
the attention window, which captures data correlations in the dataset. Finally, the Adam
optimizer is used to optimize the model parameters. The Adam optimizer is a gradient
descent algorithm with adaptive learning rates that can handle sparse gradients and
mitigate gradient oscillation issues. The model parameter settings are shown in Table 2.
As illustrated in Figure 9, with continued training and parameter adjustments, the training
error rapidly decreases and stabilizes.

Table 2. The value of model parameter.

Model Parameter Setting

num of convolution kernel 8
input sequence length of encoder 512

prediction sequence length 120
num of encoder layers 2
num of decoder layers 1

dropout 0.05
optimizer learning rate 0.001

activation function relu
optimizer Adam

loss function MSE
batch size of train input data 22

epoch 80

The model trained with the parameters listed in Table 2 was used to make predictions
on the test set, focusing on forecasting turntable temperature data for 600 time steps.
The visualized results of the model’s predictions are shown in Figure 10. To further validate
the performance of the proposed model in this study, we selected several popular models
for multi-step time-series prediction in recent years:

Figure 9. Model loss curve.

LightGBM: Light Gradient Boosting Machine (LightGBM) is an efficient gradient
boosting framework, particularly suitable for large-scale data and high-dimensional fea-
tures. Compared to traditional gradient boosting algorithms, LightGBM demonstrates
significant advantages in speed and memory usage, making it highly suitable for tasks such
as fault prediction. The complexity of the model can be controlled by adjusting parameters
such as tree depth, number of leaves, and learning rate. In comparison to deep learning
models, it offers higher training efficiency [31].

LSTM: Long Short-Term Memory is a type of recurrent neural network that can learn
long-term dependencies.
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CNN-LSTM: The CNN-LSTM model combines Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks, making it suitable for han-
dling sequence data that integrate spatial and temporal information. This model can extract
spatial features and temporal dependencies in time-series data, making it applicable to
various time-series prediction tasks [32].

DA-RNN: Dual-Stage Attention-Based Recurrent Neural Network (DA-RNN) is a
time-series prediction model based on an encoder–decoder structure that utilizes an input
attention mechanism to select input features and a temporal attention mechanism to
select hidden layer features. By incorporating these dual attention mechanisms, DA-
RNN effectively selects feature vectors and establishes long-term historical information
dependencies [33].

TCN-SE: TCN-SE is a Time Convolutional Network (TCN) with an added attention
mechanism. It utilizes the TCN network for feature extraction and employs the SE attention
mechanism to allocate weights between feature vectors. Its inherent dilated convolution
mechanism allows it to use long-term historical information for prediction by increasing
the receptive field without significantly increasing model depth [34].

Transformer: The transformer consists of two parts: the encoder and the decoder. The
encoder embeds the input sequence, performs feature extraction through multiple layers of
self-attention mechanisms, and finally outputs the encoded representation. The decoder
generates the output sequence based on the encoded representation using another layer of
self-attention and a feedforward neural network [35].

A comparison of the complexities of various models indicates that the computational
complexity of CNN-LSTM is primarily constrained by the sequence length and the hidden
state dimensions of the LSTM component. This results in a model with moderate complex-
ity, making it suitable for medium-scale data and sequences. DA-RNN, which integrates
attention mechanisms with RNNs, significantly increases the number of model parameters.
Its computational complexity is relatively high, especially for longer sequences, due to the
substantial computational overhead of the attention mechanism. The transformer model’s
number of parameters depends on the number of layers, attention heads, and hidden
dimensions, leading to a large model size. It also exhibits high computational complexity,
making it suitable for medium-length sequences and large datasets. Informer has a compa-
rable number of parameters to the standard transformer; however, by utilizing a sparse
attention mechanism, it reduces actual computational load and memory consumption, par-
ticularly for long sequences and large-scale data. Therefore, overall, the method proposed
in this paper has lower complexity compared to other models and can more efficiently
handle large-scale data tasks.

Additionally, this paper compared the prediction results of our proposed method with
those of LightGBM, LSTM, CNN-LSTM, DA-RNN, TCN-SE, transformer, and informer.
The MSE, MAE and R2 for the two datasets obtained using different methods are shown
in Table 3, with the best results highlighted in bold. The results in the table indicate that
our proposed model performs exceptionally well in both evaluation metrics, with accuracy
improvements exceeding 10% compared to other algorithms.

Table 3. Performance comparison of different models.

Model MAE MSE R2

LightGBM 1.225 0.296 0.704
LSTM 0.763 0.187 0.793

CNN-LSTM 0.657 0.176 0.816
DA-RNN 0.781 0.202 0.815
TCN-SE 0.658 0.159 0.834

Transformer 0.486 0.127 0.882
Informer 0.442 0.108 0.898

Proposed model 0.405 0.086 0.904
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(a) Prediction result 1

(b) Prediction result 2

Figure 10. Comparison of predicted data and true data.

4.3. Fault Prediction

After training the satellite rotational mechanism temperature health model using
motor current and temperature data from 22 November to 28 November, we used normal
telemetry data from the rotational mechanism spanning 72 h, from December 1 to 3 De-
cember, as input for the model. The model’s output data represent the ideal data under
normal operation of the rotational mechanism. Further, using the threshold generation
formula described in this paper, we established the upper and lower bounds for the data
thresholds as a reference. This study conducted experiments using fault data over an 8 h
time span to predict rotational mechanism faults. Figure 11 illustrates the fault detection
process determined by the proposed model. The data shown in the figure start at 12:53 on
3 December, with each time step corresponding to 16 s, matching the sampling frequency
of our signals. Anomaly detection on subsequent data begins from the 750th time step,
which corresponds to 16:13 on 3 December, using the threshold generation method and
predictive data approach we proposed. The pink region in the figure represents the normal
data range after the 750th time step, while the red curve indicates abnormal temperature
data exceeding the threshold. As time progresses, the rotational mechanism temperature
data gradually exceeds the threshold range, signaling an impending fault.

Further data collection on the satellite’s rotation mechanism confirmed that the
turntable indeed experienced a temperature anomaly, consistent with our experimen-
tal predictions. Overall, the experimental results demonstrate that the temperature of
the satellite’s rotation mechanism is not only affected by factors such as orbital position,
satellite attitude, and solar irradiation but that it also has a strong correlation with the
motor current of the rotation mechanism. The results also show that the proposed method
of predicting turntable temperature anomalies using motor current data is highly reliable,
providing an effective approach for fault prediction in satellite rotation mechanisms like
the turntable.
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Figure 11. Schematic diagram of turntable temperature threshold generation and fault prediction.

5. Conclusions

Based on SSA and an improved version of the informer, this paper proposes a method
for predicting satellite rotating mechanism faults using telemetry data and validates this
method through experimental tests. The main contributions of this study are as follows.
Firstly, experimental validation was performed using rotational mechanism data from
on-orbit satellite telemetry. By studying the working principles and background knowl-
edge of the rotational mechanisms, we propose a method for fault prediction in satellite
rotational mechanisms based on the relationship between the turntable motor current
and the turntable temperature. Secondly, during data processing, to address the issue of
significant background noise interference in telemetry signals, we propose the use of SSA
to decompose and reconstruct the telemetry data. Using this method, the original telemetry
data were decomposed into five sub-sequences, which were then reconstructed based on
their eigenvalue contribution rates. This approach retains the trend and oscillatory compo-
nents while removing the noise components, thereby enhancing the accuracy of subsequent
models in predicting turntable temperature data. Thirdly, for time-series signal prediction,
a fault prediction method for satellite turntables based on SSA and an improved informer
model was proposed. This method combines the exceptional signal decomposition and
reconstruction capabilities of SSA with the outstanding time-series forecasting capabilities
of CNN-Informer, thereby further enhancing the practicality and reliability of the prediction
results. Lastly, multiple comparative experiments were conducted to validate the proposed
method for predicting satellite telemetry data. The experimental results indicate that the
proposed method achieved a MAE of 0.405 and a MSE of 0.086, representing at least a 10%
improvement over other methods.

In summary, this paper focused on fault prediction for satellite rotational mechanisms.
Experimental results on the satellite telemetry dataset demonstrated that the proposed
model achieves higher and more stable prediction accuracy compared to the benchmark
models. This indicates that the model is effective in performing fault prediction tasks for
satellite rotational mechanisms. Our future work will explore the application of this model
to other related satellite subsystems and even industrial equipment for fault prediction.
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