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Abstract: The Bio-Radar system, useful for monitoring patients with infectious diseases and de-
tecting driver drowsiness, has gained popularity in the literature. However, its efficiency across
diverse populations considering physiological and body stature variations needs further explo-
ration. This work addresses this gap by applying machine learning (ML) algorithms—Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest—to classify subjects
based on gender, age, Body Mass Index (BMI), and Chest Wall Perimeter (CWP). Vital signs were
collected from 92 subjects using a Continuous Wave (CW) radar operating at 5.8 GHz. The results
showed that the Random Forest algorithm was the most accurate, achieving accuracies of 76.66%
for gender, 71.13% for age, 72.52% for BMI, and 74.61% for CWP. This study underscores the
importance of considering individual variations when using Bio-Radar, enhancing its efficiency
and expanding its potential applications.

Keywords: Continuous Wave radar; dataset; machine learning; body stature variability; physiological
variability

1. Introduction

The Bio-Radar system, a non-contact method for monitoring vital signs, has emerged
as a promising technology in the field of healthcare and biomedical research. Unlike
traditional contact sensors, which require physical contact with the subject, Bio-Radar
operates remotely, using radar signals to detect and monitor physiological parameters such
as heart rate and respiration. This non-intrusive method offers several advantages over
contact sensors. Firstly, it eliminates the discomfort and potential skin irritation caused by
wearable sensors, thereby improving patient comfort and compliance. Secondly, it reduces
the risk of cross-infection in clinical settings, which is particularly important in the care of
patients with highly infectious diseases.

The potential applications of Bio-Radar are vast and varied. It has been used in a
wide range of scenarios, from monitoring patients in hospital settings to tracking the vital
signs of drivers to prevent accidents caused by fatigue [1]. In the field of sleep research,
Bio-Radar has been utilized to monitor sleep patterns without disturbing the subject’s
natural sleep environment [2]. Additionally, in emotion recognition, it has been employed
to detect physiological changes associated with different emotional states [3].

The growing interest in Bio-Radar is reflected in the increasing number of studies that
utilize this technology for capturing vital signs. Table 1 presents a comprehensive review
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of such studies, with a specific focus on those employing Bio-Radar in Continuous Wave
(CW) mode.

CW Bio-Radar offers advantages such as the ability to provide real-time monitoring
and the potential for detecting even minute physiological changes. The studies reviewed in
Table 1 have explored these benefits in various contexts, ranging from sleep monitoring to
emotion recognition. However, the results presented in this table are based on a very small
population (at most 50 subjects) and often neglect individual characteristics.

Table 1. Several studies in the area of Bio-Radar.

Reference Population
Gender

Distinction
in Result

Respiratory
Rate

Heart
Rate

Carrier
Frequency [GHz]

[4] 1 S - X X 10
[5] U - X X 2.4
[6] 12 S - X X 2.4
[7] 2 M - X X 24
[8] 5 M; 5 F No - X 5.8
[9] 10 M - X X 34
[10] 4 S - X X 5.8
[11] U - - X 5.8
[12] 7 M; 4 F No - X 24.17
[13] 8 M; 2 F No - X 24
[14] 5 M; 1 F No X X 0.915
[15] 2 M; 4 F No - X 2.45
[16] 14 M; 16 F No X X 24
[17] 7 M; 4 F No X X 24
[18] 1 M; 1 F Yes X X 10
[19] 3 M; 3 F No X X 24
[20] 50 NB - X X 24
[21] 14 M; 21 F No X X 24
[22] 1 M; 4 F No X - 2.4
[23] 6 M; 4 F No X X 2.4
[24] 1 M - X X 2.4
[25] U - X X 2.4
[26] 8 S - X X 24

M: Male, F: Female, S: Subject, U: Undefined, -: There is no information about the topic, X: Whether the topic is
studied, NB: Newborn. The study performs tests on subjects; however, the number or gender is not specified.

The impact of human body characteristics and aging on vital signals is significant
and multifaceted. Generally, men have larger trunk dimensions than women [27], which
may allow for more space to accommodate lungs during inhalation, potentially leading to
a higher tidal volume for the same weight [28]. This could result in a greater amplitude
in the acquired signal for men compared to women of the same weight. Body Mass
Index (BMI) is another factor that can influence the amplitude of the respiratory signal.
Studies have shown that respiratory amplitude tends to be lower in individuals with higher
BMI values [29]. Additionally, aging impacts respiratory functions. With advancing age,
the expansion of the rib cage on inspiration decreases, lung elastic recoil reduces, muscles
lose strength, and the respiratory center becomes less sensitive. Consequently, breathing
tends to weaken with age, which could be reflected in the acquired signals [30,31]. These
factors underline the importance of considering individual physiological and body stature
variations when analyzing signals acquired by Bio-Radar.

Considering this, the study of individual physiological and body stature variations in
Bio-Radar analysis is crucial for several reasons. Firstly, these variations can affect signal
quality, necessitating the adaptation of algorithms for different population characteristics
to enhance the accuracy of vital signal extraction. Secondly, distinguishing features like
gender and age can improve biometric identification, serving as a preliminary identification
layer. Lastly, discerning parameters such as BMI and CWP can provide valuable health and
fitness insights, aiding in preventative healthcare and fitness monitoring. In conclusion,
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considering individual physiological and body stature variations is essential for the accu-
racy of Bio-Radar in monitoring vital signals and opens up a range of potential applications
in biometrics, fitness, and health.

In response to this need to characterize signals according to the subject’s charac-
teristics, and noting that none of the studies presented in Table 1 differentiate between
physical characteristics, an innovative study was developed. Accordingly, machine learning
(ML) algorithms, including Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
and Random Forest, were utilized to distinguish between different genders, age ranges,
Body Mass Index (BMI) categories, and Chest Wall Perimeter (CWP) measurements.

The paper is structured as follows: Section 2 provides a detailed description of the
system setup and respiratory signal processing techniques utilized. Section 3 discusses the
data records, the features selected for analysis, and the statistical methods employed to
identify the most informative features. The results of our ML algorithms are presented in
Section 5. Finally, Section 6 concludes the paper and discusses potential future work.

2. Bio-Radar Prototype Description

The Bio-Radar system employed in this research utilizes a Continuous Wave (CW)
Doppler radar. As the terminology suggests, this type of radar continuously transmits a
sinusoidal carrier wave, which is digitally generated, and captures the signal reflected by
the target. Due to the micro-Doppler effect, a phase shift occurs when the subject’s chest
wall moves towards or away from the radar, resulting in phase modulation in the received
signal [32]. The Bio-Radar prototype used in this study, the operating principles of which
are illustrated in Figure 1, was developed in a previous work [33].

r1(t)

d1

d(t)
d0

RF
Front End

IQ
Demodulation

DSP
Module

Recovered
Signal

RF
Front End

Tx

Rx
IQ

Modulation

c(t)
fc=5.8 GHz

s(t)
fo=10 kHz

Figure 1. Block diagram of the Bio-Radar system, adapted from [33].

The primary hardware component of the prototype is the Universal Software
Radio Peripheral (USRP) B200 [34], which operates within a Continuous Wave (CW)
frequency range of 70 MHz–6 GHz. This platform enables the digital programming
of Bio-Radar characteristics, such as the power of the transmitted wave, set at 2 dBm,
and its sampling frequency. A carrier frequency of 5.8 GHz was selected, falling within
the Industrial, Scientific, and Medical (ISM) dedicated band. The system also features
two 2 × 2 patch array antennas, with one designated for Transmission (Tx) and the
other for Reception (Rx). The specific operational parameters of the Bio-Radar system
utilized in this study are detailed in Table 2, providing a comprehensive overview of
the system’s technical specifications.
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Table 2. Technical parameters of the Bio-Radar system.

Parameter Value

Operating Frequency 5.8 GHz
Transmit Power 2 dBm
Sampling Rate 100 kHz

Frequncy Offset 10 kHz
Antenna Type 2 × 2 patch array

Signal Processing Algorithm

The Digital Signal Processing (DSP) Module runs an algorithm designed for the
rigorous extraction of vital signals information. Figure 2 represents the Bio-Radar system,
more specifically the implemented DSP algorithm implemented in the receptor chain [35].

D
gD(n)DC

Removal
Arctangent

Demodulation
Signal

Rotation

b(n)br(n)y(n)

f1(Hz)

DSP Module

Figure 2. Block diagram of the Bio-Radar system including DSP module, adapted from [35].

The signal received by our system is initially processed through a step called downcon-
version, which converts it to a baseband signal. This results in a complex signal, referred
to as g(n). Following this, the signal undergoes a process known as decimation, which
reduces its original sampling rate from 100 kHz to 100 Hz. This reduction produces a new
signal, denoted as gD(n). As illustrated in Figure 3a, the complex baseband signal gD(n) is
represented in the complex plane, typically visualized as an arc. It is crucial to understand
that the transmitted signal, which our system sends out, is reflected back not just by the
target object, such as the subject’s chest wall, but also by other objects in the vicinity.

These other objects, assuming they are stationary, contribute to the signal in a specific
way. Their reflections are added to the received signal as DC offsets, which are constant
components that shift the center of the arc in the complex plane. This means that the overall
signal received and visualized includes not just the vital information from the subject’s
chest wall but also these additional static reflections from the surrounding environment.
Understanding and accounting for these additional components is important for accurately
interpreting the data from our Bio-Radar system. Assuming these objects remain stationary,
their reflections are perceived as DC offsets added to the center of the arc. Afterwards,
the DC offsets are estimated and subsequently removed from the decimated signal, resulting
in signal b(n).

Figure 3 serves as a visual guide to the DC offset removal step, which is crucial
for accurate signal analysis. The process begins with the received radar signal, which
often includes an unwanted DC component due to signal propagation effects. Using the
Optimized Cost (OC) method, proposed in a previous study [35], it was calculated the
median of the signal (Figure 3a) and establish a fictitious boundary to contain the cost
function optimization (Figure 3b). The lowest cost point within this boundary indicates
the precise DC offset to be removed. Once this offset is subtracted, the signal median
should theoretically align with the origin (Figure 3c). Finally, it is demonstrated the signal
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post-correction with an example of a rotated signal for illustrative purposes (Figure 3d).
This process ensures that the signal is appropriately centered and ready for subsequent
stages of analysis, such as feature extraction and pattern recognition.
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Figure 3. Sequential illustration of DC offset removal process in radar signal using the Optimized
Cost Method. (a) Original radar signal with DC offset shown by ‘Received signal’ and the guide
for optimization ‘Fictitious circumference’ with ‘Signal median’ as its center. (b) Identification of
‘Lowest cost point’ indicating the optimal DC offset values, with ‘Arc center’ marking the new median
post-correction. (c) Signal post-DC offset removal, where the median aligns with the origin. (d) The
signal after offset removal and a rotation to align for further analysis.

In order to avoid wraps caused by the possibility of the signal crossing the 180◦

value, it is necessary to rotate the signal to oscillate around the 0◦ angle, resulting in br(n),
as shown in Figure 3d. This process not only avoids wraps but also simplifies the signal
subsequent analysis. Lastly, to obtain the received vital signs in the time domain, y(n),
the arctangent demodulation is applied, resulting in the signal of Figure 4.
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Figure 4. Example of a demodulated signal.

3. Data Records and Procedures

Given the absence of a public dataset encompassing a broad range of subjects’ stature
variability, it was necessary for us to gather a substantial dataset of vital signs. This study
received approval from the Ethics and Deontology Committee of the University of Aveiro,
Portugal (No. 29-CED/2021), and was conducted in accordance with the Declaration of
Helsinki. Informed consent was obtained from all participants. The data collection took
place in a single unaltered environment: an 18 square meter room. The setup involved the
Bio-Radar system described earlier, positioned on a plastic table. Styrofoam plates were
utilized to adjust the height of the antennas to match the stature of the subject being tested.
Figure 5 provides an example of the setup with two volunteers—a woman (Figure 5a) and
a man (Figure 5b). The data collection involved 92 subjects (46 males and 46 females) aged
between 18 and 50 years old with Body Mass Index (BMI) values ranging from 17.5 to
40 kg/m2 and Chest Wall Perimeter (CWP) measurements between 77 and 129.5 cm.

Antennas

Coaxial
Cable

USRP
B200

PC

Styrofoam
 Plate

(a) Woman participant. (b) Man participant.
Figure 5. Overview of the measurement setup and the system configuration.

4. Features Selection and Analysis

To explore the possibility of classifying subjects based on gender, age, BMI, and CWP,
we extracted a comprehensive set of features from the vital signs data. We then con-
ducted both visual and statistical analyses of these features to identify those capable of
distinguishing between different class groups. Finally, we utilized the selected group of
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relevant features in the machine learning algorithms. Initially, we determined a broad set
of 40 features within a 60 s window with a 50% overlap (30 s), as depicted in Figure 6.

0s 60s 120s 180s 240s 300s

30s 30s 30s 30s 30s 30s 30s 30s

Win 1: 40 features
Win 2: 40 features

Win 3: 40 features ...

Figure 6. Sliding window of the feature extraction.

4.1. Features Description

The Bio-Radar signal features were selected taking into account the ones typically
used in the literature [21,26,36–40], resulting in the following list:

(1) L: Amplitude of the respiratory signal;
(2) med ibi: Interbreath Interval (IBI) median;
(3) mean d1 signal resp: Mean of the respiratory signal first derivative;
(4) mean Nd1 signal resp: Mean of the normalized respiratory signal first derivative;
(5) mean d2 signal resp: Mean of the respiratory signal second derivative;
(6) mean Nd2 signal resp: Mean of the normalized respiratory signal second derivative;
(7) skewness T inhale: Skewness of inhalation time;
(8) med T inhale: Median of inhalation time;
(9) iqr T inhale: Inter-Quartile Range (IQR) of inhalation time;
(10) mean T inhale: Mean of inhalation time;
(11) skewness T exhale: Skewness of exhalation time;
(12) med T exhale: Median of exhalation time;
(13) iqr T exhale: IQR of exhalation time;
(14) mean T inhale: Mean of exhalation time;
(15) RR: Respiratory Rate;
(16) p01–p06: Average Power Spectral Density (PSD) energy in the band 0–0.1 Hz;
(17) p02: PSD energy in the band 0.1–0.2 Hz;
(18) p03: PSD energy in the band 0.2–0.3 Hz;
(19) p04: PSD energy in the band 0.3–0.4 Hz;
(20) p05: PSD energy in the band 0.4–0.9 Hz;
(21) p02: PSD energy in the band 0.9–1.5 Hz;
(22) med sign: Signal median;
(23) mean sign: Signal mean;
(24) iqr sign: Signal IQR;
(25) iqr ibi: Interbreath Interval Inter-Quartile Range;
(26) mean ibi: IBI mean;
(27) skewness ibi: Skewness of the IBI;
(28) AppEn max: Signal maximum approximate entropy;
(29) kurtosis: Respiratory signal kurtosis;
(30) SDNN Resp: Standard Deviation of IBI (SDNN) of the respiratory signal;
(31) SAM: Number of samples above the mean value of the waveform;
(32) RMSSD Resp: Root Mean Square of Successive Differences (RMSSD) between IBI of

the respiratory signal;
(33) skewness sign: Skewness of the signal;
(34) RRV: Respiratory Rate Variability (RRV);
(35) RMS: Quadratic mean value of the signal;
(36) freq resp: Respiratory frequency;
(37) mean peak valley width: Average of the peaks and valleys width of the respiratory

signal in the time domain;
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(38) Ratio PSD: PSD of the ratio between the PSD of the Low Frequency (0.1–0.4 Hz) and
High Frequency (0.4–1.5 Hz);

(39) var sign: Variance of the respiratory signal;
(40) AppEn resp: Approximate entropy of the respiratory signal.

More details regarding the feature extraction are now provided: Feature 1 is deter-
mined through the calculation of arc length. Features 2, 25–27, 30, and 34 are derived from
the Interbreath Interval. The Interbreath Interval (IBI) refers to the time interval between
individual breaths. The Inter-Quartile Range (IQR) is a statistical measure that represents
the spread of the middle 50% of the IBI data, specifically the difference between the 75th
and 25th percentiles. This metric is important in our analysis as it provides insight into the
variability and regularity of the breathing pattern. The features related to inspiration and
expiration, numbers 7–14, are statistical measures extracted from the peaks and troughs of
the respiratory signal. The determination of RR involves calculating the ratio between the
number of signal peaks and the time period in which they occur, measured in minutes. This
calculation yields the RR in Breaths Per Minute (BrPM). Features 16–21 were computed
using the Welch method. The Welch method is a spectral estimation technique that divides
the signal into overlapping segments, computes a periodogram for each, and averages
them to yield a more accurate and less noisy estimation of the PSD (Figure 7). This method
was applied to the signal after removing its average. Similarly to the latter ones, features
3–6, 17–19, 22–24, 28–33, 37, 39, and 40 are also statistical measures concerning the entire
respiratory signal. Feature 34 is determined in [40], using (1):

RRV =

(
100 − H1

DC

)
%. (1)

where H1 and DC are the amplitude powers of the first and the zeroth harmonic
peaks, respectively.
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Figure 7. Normalized PSD curve of respiratory signals for a subject.

4.2. Features Representation of Physiological and Physical Structure Differences

After extracting an extensive set of 40 features, a preliminary study was carried
out to determine whether certain features, such as Respiratory Rate (RR) and Length (L)
(features 15 and 1, respectively), contain information that can distinguish between different
populations. The literature suggests that differences in respiration between genders can be
particularly pronounced in RR and L values. To investigate this, scatter plots were created
(shown in Figure 8) for data visualization, and a basic statistical analysis was conducted,
the results of which are presented in Table 3. According to this table, men have, on average,
a lower RR than women. Conversely, men tend to have a higher L value than women.
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Table 3. Statistical study of the RR and L representation according to gender.

Gender
RR Mean ± STD

[BrPM]
RR Median

[BrPm]
L Mean ± STD L Median

Male 14.6252 ± 4.0037 14.7602 0.0064 ± 0.0034 0.0056
Female 16.5741 ± 3.8281 16.6840 0.0040 ± 0.0023 0.0034

The RR and L features also exhibit distinct distributions in relation to other physical
characteristics, such as BMI and CWP. These variations are illustrated in Figure 8a,b for BMI,
and Figure 8c,d for CWP. It can be inferred that individuals with higher BMI values tend to
have lower L values, as shown in Figure 8a, and also the lowest RR values, as depicted in
Figure 8b. Upon analyzing Figure 8d, it is evident that individuals with a smaller CWP
have a higher RR. Conversely, the highest L values are associated with individuals having
a medium CWP, as demonstrated in Figure 8c. When correlating L with RR, a pattern
emerges where higher L values correspond to lower RR values, which is corroborated by
the data presented in Figure 8e.
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(b) Variation of RR with BMI.
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(e) Variation of L with RR.
Figure 8. Overview of the statistical results.
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4.3. Feature Selection

A statistical analysis was conducted on the extracted features to select the most
informative ones for use in the machine learning algorithms. This analysis, based on the
methodology described in [41], is summarized in Figure 9. As an initial step, a one-way
Analysis of Variance (ANOVA) test was applied to determine whether its residuals exhibit
a normal distribution.

Verify the features normality:
kstest
adtest
lilietest

Apply the one-way ANOVA to 
the features

one-way ANOVA Kruskall - Wallis

Multcompare
tukey-kramer

Multcompare
bonferroni

Discard characteristics with 
p - value > 0.05

Perform priority list
+ priority has - p-value

Normal
Distribution

True False

Figure 9. Statistical analysis diagram.

To validate the normal distribution of residuals, we utilized the one-sample Kolmogorov–
Smirnov, Anderson–Darling, and Lilliefors tests. The one-sample Kolmogorov–Smirnov
test is used to compare the empirical distribution of our sample with a specified theo-
retical distribution by evaluating the maximum deviation between these distributions.
The Anderson–Darling test, while similar in purpose to the Kolmogorov–Smirnov test,
places greater emphasis on the tails of the distribution, enhancing sensitivity to tail differ-
ences between the empirical and theoretical distributions. Lastly, the Lilliefors test, a variant
of the Kolmogorov–Smirnov test, specifically tests for normality by accommodating the
estimation of mean and variance from the sample data, unlike the standard Kolmogorov–
Smirnov test which assumes these parameters are known. The results indicated that while
some features conform to a normal distribution, others do not. Consequently, to deter-
mine the p-values for each feature, we applied two different tests [42]. These are the
Kruskal–Wallis test, which is appropriate when the ANOVA residuals do not exhibit nor-
mal distribution, and the ANOVA test, which is suitable when they do [43]. Features with
p-values exceeding the threshold of 0.05 were discarded. Subsequently, we constructed a
list prioritizing features; those with the lowest p-values were given the highest precedence.

This statistical study was conducted for four distinct binary classification tests, each
designed to examine the potential for distinguishing subjects based on specific charac-
teristics: gender, age, BMI, and CWP. The objective of these tests is to facilitate binary
classification according to predefined criteria for each characteristic.
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• Gender:

– Male: 46 people;
– Female: 46 people.

• Age:

– 18–29 years old: 46 people;
– 30–50 years old: 46 people.

• BMI:

– 18–25 kg/m2: 47 people;
– ≥25 kg/m2: 45 people.

• CWP:

– ≤100 cm: 46 people;
– >100 cm: 46 people.

After establishing a priority queue for each binary classification problem, a correlation
matrix was constructed to further refine the feature selection [44]. This step helps identify
features that contain redundant information, indicated by high correlation values. A feature
was deemed highly correlated with others if the absolute value of the correlation exceeded
0.7. If the matrix indicates a correlation value equal to or higher than this threshold,
the features in question are evaluated against the priority list. Only the feature with
the highest priority is retained for subsequent analysis. Figure 10 graphically illustrates
this process for the gender classification test. Figure 10 is a visual representation of the
correlation matrix among features where a ball’s size and color denote the correlation value,
with larger balls (with a diameter equal to the square) indicating a correlation of 1 (red) or
−1 (blue). Contrariwise, smaller dot-represented balls represent a correlation near 0. This
approach simplifies the analysis of correlations across a larger set of features, providing a
more accessible interpretation of the correlation matrix.

The features resulting from this process are those selected for use in the machine
learning algorithms to classify the defined binary tests. The resulting features vary for each
binary classification test, as presented in Table 4.

Table 4. Priority lists of classification binary test.

Gender Age BMI CWP

L iqr sign p05 RR
med ibi kurtosis RR p02

mean d1 signal resp med T inhale AppEn resp p05
RR L mean d1 signal resp p01

med T inhale SDNN Resp skewness ibi skewness sign
p02 AppEn max med ibi p04
p05 mean d2 signal resp RMSSD Resp med sign
p04 med ibi med sign L
p06 p04 mean T inhale freq resp
p01 SAM skewness sign med ibi

med sign p05 iqr sign iqr sign
iqr sign RRV

AppEn max SDNN Resp
kurtosis

SDNN Resp

4.3.1. Gender

In relation to the features that effectively categorize the gender test, it is evident that
RR and L are among them, aligning with expectations established in Section 4.2, where
it was noted that women tend to have a higher average RR, while men have a higher
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average L. Besides these features, the signal’s PSD across various frequency bands also
demonstrated significant relevance.

4.3.2. Age

In this binary classification test, the categorization was not characterized by the RR
value or any other measure of periodicity. Aging leads to a decreased capacity for thoracic
expansion [30], suggesting that the amplitude of the respiratory signal is a significant
feature for age categorization. However, since the age range of the participants is relatively
narrow and below 50 years, these characteristics may not be as pronounced in this age
group. The classification of subjects into different age groups appears to be influenced by
features such as respiratory amplitude and the impact of inspiration. This relationship
may be attributed to the effects of conditions like osteoporosis, which reduce the tho-
racic cage’s ability to expand during inspiration and compromise diaphragm contraction
effectiveness [30].
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Figure 10. Correlation matrices associated for the gender test.
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4.3.3. Body Mass Index

In studies reported by [45,46], it was found that a higher percentage of abdominal fat
is associated with lower lung volume, which in turn leads to a higher RR. This aligns with
our findings, as RR was indeed selected as one of the most important features in this study.
RMSSD Resp may also serve as an indicator of this fact. Another consequence of excess fat
in the diaphragm region is its potential to hinder chest wall expansion, which could lead to
a decrease in respiratory signal amplitude. However, contrary to expectations, this feature
did not prove to be representative in our study, as it was not selected for this particular case.
Consequently, the inhalation time may increase, a phenomenon that could be indicated by
the feature mean T inhale.

4.3.4. Chest Wall Perimeter

After reviewing the results presented in Section 4.2, it was anticipated that CWP
classification would be influenced by both RR and L, a hypothesis that is supported by
the statistical analysis conducted in this section. These results may correlate with the
observation that individuals with a higher CWP can accommodate a larger volume of
air upon inspiration, thereby reducing the necessity for frequent breaths. Additionally,
as shown in Table 4, it is evident that CWP classification may also be influenced by the RRV.

5. Machine Learning Implementation

After extracting signal features, machine learning (ML) algorithms were applied to
classify the collected data into gender, as well as into age, BMI, and CWP ranges. For our
analysis, we chose to employ Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Random Forest algorithms. The decision to utilize these traditional ML algorithms
instead of deep learning models was based on several considerations.

Firstly, deep learning models typically require large amounts of data to perform
optimally and avoid overfitting [47]. Given the size and complexity of our dataset, SVM,
KNN, and Random Forest are more suitable as they can yield robust results with smaller
datasets [48]. Secondly, these algorithms offer greater interpretability compared to deep
learning models. They allow for an understanding of the importance of different features
and their contribution to the final prediction. This aspect is crucial in our study, which
aims to understand the impact of physiological and body stature variations on signals
acquired by the Bio-Radar [49]. Thirdly, SVM, KNN, and Random Forest are less resource
intensive and can be trained more quickly than deep learning models. This is a significant
advantage when working with limited computational resources [50]. Lastly, in many
scenarios, traditional machine learning algorithms such as SVM, KNN, and Random Forest
can achieve performance comparable to those of deep learning algorithms, particularly
when the data are not excessively complex or large in volume [51]. Therefore, given the
nature of our data and the specific objectives of this research, SVM, KNN, and Random
Forest emerged as the most appropriate algorithms for this study.

SVM is a non-parametric classification technique based on statistical learning the-
ory [52]. The main goal of SVM is to find the hyperplane separating the data such that the
distance from this hyperplane to each data class is as large as possible. The KNN classifies
a new observation by measuring the distance of this observation from its nearest points
and then categorizing it in the class to which most of the K points belong. A higher number
of K neighbors will imply a smoother classification boundary. On the other hand, a small
number of K produces a more flexible boundary with a high variance but low bias [53].
The last classifier, Random Forest, is used in regression and classification problems. A Ran-
dom Forest consists of a combination of tree predictors. Each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in the
forest. The generalization error of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between them [54]. The final result of this
model is the result returned from the trees with the highest vote, or the average of these.
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The data resulting from Section 3 are split into training, test, and new subject categories.
This dataset is composed of 92 individuals that have nine 1-minute signal windows. Two
scenarios regarding this division were examined: in the first, two individuals were desig-
nated as new data, and in the second, five individuals were designated as new data. In both
scenarios, the remaining participants were used for training and testing, following a 70:30
hold-out strategy. This selection process is illustrated in Figure 11. The same procedure
was repeated over twenty iterations. Figure 12 depicts the implemented process. In this
study, four different combinations of training–test models were conducted to identify the
conditions that would yield the best results:

• Correlation value of 0.7 with 2 people as new data;
• Correlation value of 0.7 with 5 people as new data;

This division was strategically chosen for several reasons, which we elucidate here to
provide clarity on our methodology.

Firstly, the division into two cases allowed us to assess the model’s adaptability and
performance with varying degrees of data variability. Analyzing the model’s behavior with
a smaller subset (two subjects) and then a larger one (five subjects) enabled us to observe
how it responds to an incremental increase in dataset complexity. This approach is par-
ticularly relevant for evaluating the scalability and robustness of our model in real-world
applications, where the number of subjects and the variability in data can significantly influ-
ence performance. Secondly, the choice of these specific subset sizes was partly influenced
by the limitations in the available dataset. While ensuring meaningful analysis, we also had
to consider the practical constraints of our data pool. The subsets of two and five subjects
represent different levels of variability and complexity within these constraints, providing
a balanced perspective on the model’s generalizability and effectiveness. Furthermore,
the incremental analysis, starting with two subjects and extending to five, offered insights
into the model’s ability to maintain accuracy and reliability as the diversity of the data
increased. It was crucial for our study to understand not only how well the model performs
with a limited and controlled dataset but also how it scales up when exposed to a broader
range of subject data.

The difference in the number of subjects between the two cases might seem modest.
However, our results indicate that even this modest increase in the number of subjects pro-
vided valuable information about the model’s performance under varying conditions. This
incremental approach helped us to better understand the nuances of our model’s behavior
in response to changes in the dataset size and composition. In conclusion, the division
of the new dataset into these two specific cases was a deliberate methodological decision
aimed at thoroughly evaluating the model’s adaptability, scalability, and robustness in
handling Bio-radar signal data with varying characteristics.

1st Subject

9 Windows

All Dataset

92th Subject...

2 subjects
as new data

90 subjects

Division

70% train 30% test 70% train 30% test

Division

5 subjects
as new data

87 subjects

Figure 11. Data splitting into train, test, and new data.
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The selection of hyperparameters was carried out for each binary classification test in
multiple phases. Initially, hyperparameters were obtained using the default range provided
by using functions from MATLAB’s Statistics and Machine Learning Toolbox, namely
fitsvm, fitknn, and treebagger, through a loop of twenty iterations. The results from this
first step were recorded, and the range of hyperparameters was subsequently narrowed.
This process was repeated until a single value was reached, indicating that the final models’
hyperparameters were those with the highest vote count. The selected hyperparameters
for the three machine learning models are presented in Table 5.

Feature Extraction and Selection

Model Training / Building

Validation
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Model Deployment
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Validation Data Test Data

Data Preparation & Pre Processing
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Figure 12. Classification workflow, modified from [55].

Table 5. Selected hyperparameters for each binary test.

ML Algorithm Hyperparameters
Classification Binary Test

Gender Age BMI CWP

SVM

KernelFunction gaussian gaussian gaussian gaussian
Standardize 1 1 1 1

BoxConstraint 12 7 5 19
KernelScale 1.7 1.3 2.7 1.3

KNN

NumNeighbors 5 4 10 4
Standardize 1 1 1 1

Distance minkowski minkowski minkowski minkowski
Exponent - 0.5 0.6165 -

DistanceWeight squaredinverse squaredinverse squaredinverse squaredinverse

Random Forest

Method regression regression regression regression
OOBPredictorImportance On On On On

MinLeafSize 5 5 5 5

Tables 6–9 display the accuracy results for each binary classification test. Each table
presents the mean accuracy value and standard deviation (STD) across three testing sce-
narios: cross-validation (CV), testing using a 30% hold-out strategy, and testing with new
data. For the CV process, we employed the K-Fold method with K set to 5. This method
involves randomly dividing the dataset into K subsets, each containing approximately
the same number of observations. Additionally, the tables include results for two distinct
training–test model combinations, labeled as (a) and (b).

5.1. Results
5.1.1. Gender

The results for the gender binary test are in Table 6. Analyzing these results, it is
possible to conclude that the results of the Random Forest are better than those of the
remaining algorithms.
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Comparing the results of the (a) and (b) tests, generally, the (a) test results are better
than the (b) test results. Therefore, in the gender classification, an accuracy of 83% was
obtained in the cross-validation (CV) method. In the test data, an accuracy of 76.7% was
achieved, and an accuracy of 63.3% was achieved in the new data.

Table 6. ML results for the gender test.

Algorithm Parameters
(a) (b)

Acc ± STD [%] Acc ± STD [%]

SVM
CV 76.0 ± 1.8 76.0 ± 1.7
Test 77.9 ± 2.5 77.9 ± 3.3

New Data 62.8 ± 20.2 63.1 ± 12.5

KNN
CV 74.2 ± 1.3 74.9 ± 2.1
Test 76.0 ± 2.9 74.9 ± 2.6

New Data 64.2 ± 26.2 60.8 ± 15.4

Random
Forest

CV 83.0 ± 0.4 83.2 ± 0.7
Test 76.7 ± 3.0 76.4 ± 2.7

New Data 63.3 ± 30.8 61.2 ± 18.4
Acc—Accuracy; CV—Cross-Validation; STD—Standard Deviation. (a)—Correlation = 0.7 and new subjects = 2;
(b)—Correlation = 0.7, new subjects = 5.

5.1.2. Age

Upon analyzing the ML results, the Random Forest algorithm once again emerged
as the best performer. In comparing the test results, the most favorable outcomes were
observed in test (b). This test achieved an accuracy of 80.2% in cross-validation (CV), 71.1%
accuracy in the test data, and 55.8% accuracy with new data.

Table 7. ML results for the age test.

Algorithm Parameters
(a) (b)

Acc ± STD [%] Acc ± STD [%]

SVM
CV 67.3 ± 1.6 67.7 ± 1.7
Test 68.5 ± 2.0 68.1 ± 2.9

New Data 54.7 ± 19.9 52.1 ± 10.8

KNN
CV 72.7 ± 2.2 73.8 ± 1.7
Test 73.5 ± 2.0 73.4 ± 2.6

New Data 47.2 ± 21.2 48.1 ± 12.3

Random
Forest

CV 80.2 ± 0.5 80.2 ± 0.7
Test 70.6 ± 3.2 71.1 ± 3.0

New Data 59.4 ± 23.8 55.8 ± 12.7
Acc—Accuracy; CV—Cross-Validation; STD—Standard Deviation. (a)—Correlation = 0.7 and new subjects = 2;
(b)—Correlation = 0.7, new subjects = 5.

5.1.3. Body Mass Index

Consistent with the first two tests, the Random Forest algorithm again demonstrated
the best results in the BMI classification test. Similar to previous patterns, test (b) stood
out with the highest performance. Consequently, for the BMI categorization, the achieved
accuracies were 80.6% in cross-validation (CV), 72.5% on the test data, and 56.7% on
new data.
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Table 8. ML results for the BMI test.

Algorithm Parameters
(a) (b)

Acc ± STD [%] Acc ± STD [%]

SVM
CV 71.3 ± 2.2 72.7 ± 2.2
Test 71.4 ± 2.9 71.0 ± 2.4

New Data 56.7 ± 23.7 55.2 ± 14.5

KNN
CV 71.3 ± 1.5 71.3 ± 1.5
Test 72.3 ± 2.8 72.5 ± 2.2

New Data 55.0 ± 21.7 51.7 ± 12.5

Random
Forest

CV 80.8 ± 0.8 80.6 ± 0.5
Test 70.6 ± 3.1 72.5 ± 1.4

New Data 59.2 ± 23.0 56.7 ± 11.3
Acc—Accuracy; CV—Cross-Validation; STD—Standard Deviation. (a)—Correlation = 0.7 and new subjects = 2;
(b)—Correlation = 0.7, new subjects = 5.

5.1.4. Chest Wall Perimeter

Mirroring the pattern observed in the other tests, the Random Forest algorithm again
delivers the best results. In this algorithm, test (a) distinguishes itself from the rest, achiev-
ing the following accuracy values: 82.1% in cross-validation (CV), 74.6% on the test data,
and 66.1% on new data.

Table 9. ML results for the CWP test.

Algorithm Parameters
(a) (b)

Acc ± STD [%] Acc ± STD [%]

SVM
CV 76.4 ± 2.0 75.3 ± 2.2
Test 76.4 ± 2.3 76.8 ± 2.2

New Data 59.2 ± 18.9 57.1 ± 16.3

KNN
CV 75.3 ± 1.5 75.4 ± 1.8
Test 75.8 ± 3.1 75.6 ± 2.8

New Data 51.7 ± 17.9 54.0 ± 11.1

Random
Forest

CV 82.1 ± 0.5 82.2 ± 0.5
Test 74.6 ± 2.2 73.3 ± 2.7

New Data 66.1 ± 25.4 61.6 ± 15.8
Acc—Accuracy; CV—Cross-Validation; STD—Standard Deviation. (a)—Correlation = 0.7 and new subjects = 2;
(b)—Correlation = 0.7, new subjects = 5.

5.2. Results Discussion

In the same way as the other tests, the Random Forest algorithm achieves the best
results. In the Random Forest algorithm, test (a) stands out from the remaining tests.
This test achieves the following accuracy values: 82.1% on the CV, 74.6% on the test
data, and 66.1% on the new data. The results indicate that test (a) performed better in
characterizing gender and Chest Wall Perimeter (CWP), while test (b) excelled in age and
Body Mass Index (BMI) characterization. A parallel study examined the impact of reducing
correlation to 0.5, but this did not enhance the results.

When applied to new data, the results were lower than those obtained in cross-
validation and with test subjects, which is expected as these subjects were previously
unknown to the algorithm. CWP was the easiest to classify, achieving the highest accuracy
of 66.11% with new subjects. This could be due to the Bio-Radar system’s direct measure-
ment of chest wall displacement in individuals with higher CWP. Conversely, age was
the hardest to classify, with the lowest accuracy of 55.78% for new subjects. This could be
because certain characteristics become more pronounced with age.
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The respiratory signal features from both tests suggest the possibility of distinguishing
between different classification groups in all binary tests. The accuracy results from cross-
validation and the hold-out test are mostly similar, indicating the model’s robustness.

Adjusting the number of new subjects showed that better results correspond to a
larger number of people for testing and training. However, the values achieved with test
(b) did not significantly differ from those obtained with test (a), consistently remaining
above 50% in all tests. These findings indicate that the dataset of 90 individuals may not be
fully representative of the overall population. Nonetheless, the results achieved with the
test population, reaching around 70%, suggest the possibility of successfully distinguishing
the classes within this specific population.

6. Conclusions

In conclusion, this study presents preliminary results demonstrating the potential of
using machine learning algorithms in analyzing physiological and body stature variations
in signals acquired by Bio-Radar. With the application of three ML algorithms, the following
accuracy values were achieved in test data: 76.66% for gender, 71.13% for age, 72.52% for
BMI, and 74.61% for CWP. CWP is the easiest test to classify, followed by gender, then BMI,
and finally, age. While the results may not yet reach high levels of accuracy, they provide
valuable insights and a promising foundation for future research.

The application of these algorithms has enabled us to distinguish between different
genders, age ranges, BMI categories, and CWP measurements. These findings suggest that
physiological and body stature variations can indeed be detected by the Bio-Radar, which
is a significant step forward in the field of non-contact vital sign monitoring.

For future work, the models will be refined and more data gathered. It is anticipated
that the accuracy of predictions will improve. These preliminary results are encouraging
and provide a solid foundation for further exploration and development in this area.

Author Contributions: Conceptualization, D.A. and B.S.; methodology, D.A. and B.S.; software, D.A.
and B.S.; validation, B.S., D.A., C.G. and P.P.; formal analysis, B.S.; investigation, B.S., D.A., C.G. and
P.P.; data curation, B.S.; writing—original draft preparation, B.S.; writing—review and editing, B.S.,
D.A., C.G. and P.P.; supervision, D.A., C.G. and P.P.; funding acquisition, B.S., D.A., C.G. and P.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by FCT/MCTES through national funds and when applicable co-
funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020.

Institutional Review Board Statement: This study received approval from the Ethics and Deontol-
ogy Committee of the University of Aveiro, Portugal (No. 29-CED/2021), and was conducted in
accordance with the Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jung, J.; Lim, S.; Kim, B.K.; Lee, S. CNN-based driver monitoring using millimeter-wave radar sensor. IEEE Sens. Lett. 2021,

5, 3500404. [CrossRef]
2. Kagawa, M.; Suzumura, K.; Matsui, T. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors. In

Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Orlando, FL, USA, 16–20 August 2016; pp. 4913–4916.

3. Gouveia, C.; Tomé, A.; Barros, F.; Soares, S.C.; Vieira, J.; Pinho, P. Study on the usage feasibility of continuous-wave radar for
emotion recognition. Biomed. Signal Process. Control 2020, 58, 101835. [CrossRef]

4. Lubecke, O.B.; Ong, P.W.; Lubecke, V.M. 10 GHz Doppler radar sensing of respiration and heart movement. In Proceedings of the
Proceedings of the IEEE 28th Annual Northeast Bio Engineering Conference, Philadelphia, PA, USA, 21 April 2002; pp. 55–56.

http://doi.org/10.1109/LSENS.2021.3063086
http://dx.doi.org/10.1016/j.bspc.2019.101835


Appl. Sci. 2024, 14, 921 19 of 20

5. Ichapurapu, R.; Jain, S.; John, G.; Lie, D.Y.; Banister, R.; Griswold, J. A 2.4 GHz non-contact biosensor system for continuous
vital-signs monitoring. In Proceedings of the 2009 IEEE 10th Annual Wireless and Microwave Technology Conference, Clearwater,
FL, USA, 20–21 April 2009; pp. 1–3.

6. Massagram, W.; Lubecke, V.M.; HØst-Madsen, A.; Boric-Lubecke, O. Assessment of Heart Rate Variability and Respiratory Sinus
Arrhythmia via Doppler Radar. IEEE Trans. Microw. Theory Tech. 2009, 57, 2542–2549. [CrossRef]

7. Tan, H.; Qiao, D.; Li, Y. Non-contact heart rate tracking using Doppler radar. In Proceedings of the 2012 International Conference
on Systems and Informatics, Yantai, China, 19–20 May 2012; pp. 1711–1714.

8. Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact
quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2013, 61, 725–735. [CrossRef] [PubMed]

9. Kuutti, J.; Paukkunen, M.; Aalto, M.; Eskelinen, P.; Sepponen, R.E. Evaluation of a Doppler radar sensor system for vital signs
detection and activity monitoring in a radio-frequency shielded room. Measurement 2015, 68, 135–142. [CrossRef]

10. Tu, J.; Lin, J. Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique.
IEEE Trans. Instrum. Meas. 2016, 65, 112–122. [CrossRef]

11. Li, M.; Lin, J. Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8 GHz CW Doppler
radar. IEEE Trans. Microw. Theory Tech. 2018, 66, 568–576. [CrossRef]

12. Will, C.; Shi, K.; Schellenberger, S.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. Radar-based heart
sound detection. Sci. Rep. 2018, 8, 11551. [CrossRef]

13. Yamamoto, K.; Toyoda, K.; Ohtsuki, T. Spectrogram-based non-contact RRI estimation by accurate peak detection algorithm.
IEEE Access 2018, 6, 60369–60379. [CrossRef]

14. Park, J.H.; Jeong, Y.J.; Lee, G.E.; Oh, J.T.; Yang, J.R. 915 MHz continuous wave Doppler radar sensor for detection of vital signs.
Electronics 2019, 8, 561. [CrossRef]

15. Kim, J.Y.; Park, J.H.; Jang, S.Y.; Yang, J.R. Peak detection algorithm for vital sign detection using Doppler radar sensors. Sensors
2019, 19, 1575. [CrossRef] [PubMed]

16. Schellenberger, S.; Shi, K.; Steigleder, T.; Malessa, A.; Michler, F.; Hameyer, L.; Neumann, N.; Lurz, F.; Weigel, R.; Ostgathe,
C.; et al. A dataset of clinically recorded radar vital signs with synchronised reference sensor signals. Sci. Data 2020, 7, 291.
[CrossRef] [PubMed]

17. Shi, K.; Schellenberger, S.; Will, C.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. A dataset of
radar-recorded heart sounds and vital signs including synchronised reference sensor signals. Sci. Data 2020, 7, 50. [CrossRef]
[PubMed]

18. Kebe, M.; Gadhafi, R.; Mohammad, B.; S.; uleanu, M.; Saleh, H.; Al-Qutayri, M. Human vital signs detection methods and
potential using radars: A review. Sensors 2020, 20, 1454. [CrossRef] [PubMed]

19. Xia, W.; Li, Y.; Dong, S. Radar-Based High-Accuracy Cardiac Activity Sensing. IEEE Trans. Instrum. Meas. 2021, 70, 4003213.
[CrossRef]

20. Diewald, A.R.; Landwehr, J.; Tatarinov, D.; Cola, P.D.; Watgen, C.; Mica, C.; Lu-Dac, M.; Larsen, P.; Gomez, O.; Goniva, T. RF
based child occupation detection in the vehicle interior. In Proceedings of the 2016 17th International Radar Symposium (IRS),
Krakow, Poland, 10–12 May 2016; pp. 1–4.

21. Anishchenko, L. Challenges and potential solutions of psychophysiological state monitoring with bio-radar technology. Diagnos-
tics 2018, 8, 73. [CrossRef] [PubMed]

22. Gao, Q.; Zhang, L.; Yan, J.; Zhao, H.; Ding, C.; Hong, H.; Zhu, X. Non-contact emotion recognition via CW Doppler radar. In
Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1468–1470.

23. Liang, Q.; Xu, L.; Bao, N.; Qi, L.; Shi, J.; Yang, Y.; Yao, Y. Research on non-contact monitoring system for human physiological
signal and body movement. Biosensors 2019, 9, 58. [CrossRef]

24. Zhang, L.; Xiong, J.; Zhao, H.; Hong, H.; Zhu, X.; Li, C. Sleep stages classification by CW Doppler radar using bagged trees
algorithm. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 788–791.

25. Boric-Lubecke, O.; Lubecke, V.M.; Host-Madsen, A.; Samardzija, D.; Cheung, K. Doppler radar sensing of multiple subjects in sin-
gle and multiple antenna systems. In Proceedings of the TELSIKS 2005–2005 uth International Conference on Telecommunication
in ModernSatellite, Cable and Broadcasting Services, Nis, Serbia, 28–30 September 2005; Volume 1, pp. 7–11.

26. Rahman, T.; Adams, A.T.; Ravich, R.V.; Zhang, M.; Patel, S.N.; Kientz, J.A.; Choudhury, T. DoppleSleep: A Contactless
Unobtrusive Sleep Sensing System Using Short-Range Doppler Radar. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; Volume 10, p. 1145.

27. Lomauro, A.; Aliverti, A. Sex differences in respiratory function. Breathe 2018, 14, 131–140. [CrossRef]
28. Romei, M.; Mauro, A.L.; D’angelo, M.G.; Turconi, A.C.; Bresolin, N.; Pedotti, A.; Aliverti, A. Effects of gender and posture on

thoraco-abdominal kinematics during quiet breathing in healthy adults. Respir. Physiol. Neurobiol. 2010, 172, 184–191. [CrossRef]
29. Bhatti, U.; Laghari, Z.A.; Syed, B.M. Effect of body mass index on respiratory parameters: A cross-sectional analytical study. Pak.

J. Med. Sci. 2019, 35, 1724. [CrossRef]
30. Sharma, G.; Goodwin, J. Effect of aging on respiratory system physiology and immunology. Clin. Interv. Aging 2006, 1, 253.

[CrossRef] [PubMed]
31. Rossi, A.; Ganassini, A.; Tantucci, C.; Grassi, V. Aging and the respiratory system. Aging Clin. Exp. Res. 1996, 8, 143–161.

[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TMTT.2009.2029716
http://dx.doi.org/10.1109/TBME.2013.2288319
http://www.ncbi.nlm.nih.gov/pubmed/24235293
http://dx.doi.org/10.1016/j.measurement.2015.02.048
http://dx.doi.org/10.1109/TIM.2015.2479103
http://dx.doi.org/10.1109/TMTT.2017.2730182
http://dx.doi.org/10.1038/s41598-018-29984-5
http://dx.doi.org/10.1109/ACCESS.2018.2875737
http://dx.doi.org/10.3390/electronics8050561
http://dx.doi.org/10.3390/s19071575
http://www.ncbi.nlm.nih.gov/pubmed/30939799
http://dx.doi.org/10.1038/s41597-020-00629-5
http://www.ncbi.nlm.nih.gov/pubmed/32901032
http://dx.doi.org/10.1038/s41597-020-0390-1
http://www.ncbi.nlm.nih.gov/pubmed/32054854
http://dx.doi.org/10.3390/s20051454
http://www.ncbi.nlm.nih.gov/pubmed/32155838
http://dx.doi.org/10.1109/TIM.2021.3050827
http://dx.doi.org/10.3390/diagnostics8040073
http://www.ncbi.nlm.nih.gov/pubmed/30336635
http://dx.doi.org/10.3390/bios9020058
http://dx.doi.org/10.1183/20734735.000318
http://dx.doi.org/10.1016/j.resp.2010.05.018
http://dx.doi.org/10.12669/pjms.35.6.746
http://dx.doi.org/10.2147/ciia.2006.1.3.253
http://www.ncbi.nlm.nih.gov/pubmed/18046878
http://dx.doi.org/10.1007/BF03339671
http://www.ncbi.nlm.nih.gov/pubmed/8862189


Appl. Sci. 2024, 14, 921 20 of 20

32. Boric-Lubecke, O.; Lubecke, V.M.; Droitcour, A.D.; Park, B.K.; Singh, A. Doppler Radar Physiological Sensing; John Wiley & Sons:
Hoboken, NJ, USA, 2015.

33. Gouveia, C. Bio-Radar. Master’s Thesis, Universidade de Aveiro, Aveiro, Portugal, 2017.
34. Ettus Research. UB200 Kit. Available online: https://www.ettus.com/all-products/ub200-kit/ (accessed on 16 November 2023).
35. Gouveia, C.; Albuquerque, D.; Vieira, J.; Pinho, P. Dynamic digital signal processing algorithm for vital signs extraction in

continuous-wave radars. Remote Sens. 2021, 13, 4079. [CrossRef]
36. Anishchenko, L.; Bochkarev, M.; Korostovtseva, L.; Sviryaev, Y.; Bugaev, A. Remote Limb Movement Analysis During Sleep by

Means of Bioradar. In Proceedings of the 2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Toulouse,
France, 14–17 December 2020; pp. 1–3.

37. Anishchenko, L.; Rutskova, E. Estimation of rat’s sleep-wake cycle using a bio-radar. In Proceedings of the 2017 International
Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 11–15 September 2017; pp. 468–471.

38. Lin, F.; Zhuang, Y.; Song, C.; Wang, A.; Li, Y.; Gu, C.; Li, C.; Xu, W. SleepSense: A noncontact and cost-effective sleep monitoring
system. IEEE Trans. Biomed. Circuits Syst. 2016, 11, 189–202. [CrossRef] [PubMed]

39. Anishchenko, L.; Turetzkaya, A. Improved Non-Contact Mental Stress Detection via Bioradar. In Proceedings of the 2020
International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 24–27 September 2020; pp. 21–24.

40. Matar, G.; Lina, J.M.; Carrier, J.; Kaddoum, G. Unobtrusive sleep monitoring using cardiac, breathing and movements activities:
An exhaustive review. IEEE Access 2018, 6, 45129–45152. [CrossRef]

41. Justo, I. Automatic Audio Signal Analysis for the Detection of Anomalies in Calls. Master’s Thesis, Universidade de Aveiro,
Aveiro, Portugal, 2017.

42. Beers, B. P-Value Definition. 2024. Available online: https://www.investopedia.com/terms/p/p-value.asp (accessed on 22
November 2023).

43. Hahs-Vaughn, D.L.; Lomax, R.G. Statistical Concepts: A Second Course; Routledge: London, UK, 2020.
44. Arnold, T.; Kane, M.; Lewis, B.W. A Computational Approach to Statistical Learning; Chapman and Hall/CRC: Boca Raton, FL, USA,

2019.
45. Sutherland, T.J.; McLachlan, C.R.; Sears, M.R.; Poulton, R.; Hancox, R.J. The relationship between body fat and respiratory

function in young adults. Eur. Respir. J. 2016, 48, 734–747. [CrossRef]
46. Ray, C.S.; Sue, D.Y.; Bray, G.; Hansen, J.E.; Wasserman, K. Effects of obesity on respiratory function. Am. Rev. Respir. Dis. 1983,

128, 501–506. [CrossRef]
47. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung Pattern Classification for Interstitial Lung

Diseases Using a Deep Convolutional Neural Network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]
48. Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and

comparison of performance to shallow methods for modeling bioactivity data. J. Cheminf. 2017, 9, 42. [CrossRef]
49. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in

cancer genomics. Cancer Genom. Proteom. 2018, 15, 41–51.
50. Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018,

23, 1538–1546. [CrossRef] [PubMed]
51. Knights, D.; Costello, E.K.; Knight, R. Supervised classification of human microbiota. FEMS Microbiol. Rev. 2011, 35, 343–359.

[CrossRef] [PubMed]
52. Vapnik, V.N. Conclusion: What is Important in Learning Theory? In The Nature of Statistical Learning Theory; Springer:

Berlin/Heidelberg, Germany, 1995; pp. 167–175.
53. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge

University Press: Cambridge, UK, 2022.
54. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
55. Pinto, G.; Carvalho, J.M.; Barros, F.; Soares, S.C.; Pinho, A.J.; Brás, S. Multimodal emotion evaluation: A physiological model for

cost-effective emotion classification. Sensors 2020, 20, 3510. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.ettus.com/all-products/ub200-kit/
http://dx.doi.org/10.3390/rs13204079
http://dx.doi.org/10.1109/TBCAS.2016.2541680
http://www.ncbi.nlm.nih.gov/pubmed/27483474
http://dx.doi.org/10.1109/ACCESS.2018.2865487
https://www.investopedia.com/terms/p/p-value.asp
http://dx.doi.org/10.1183/13993003.02216-2015
http://dx.doi.org/10.1164/arrd.1983.128.3.501
http://dx.doi.org/10.1109/TMI.2016.2535865
http://dx.doi.org/10.1186/s13321-017-0226-y
http://dx.doi.org/10.1016/j.drudis.2018.05.010
http://www.ncbi.nlm.nih.gov/pubmed/29750902
http://dx.doi.org/10.1111/j.1574-6976.2010.00251.x
http://www.ncbi.nlm.nih.gov/pubmed/21039646
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/s20123510

	Introduction
	Bio-Radar Prototype Description
	Data Records and Procedures
	Features Selection and Analysis
	Features Description
	Features Representation of Physiological and Physical Structure Differences
	Feature Selection
	Gender
	Age
	Body Mass Index
	Chest Wall Perimeter


	Machine Learning Implementation
	Results
	Gender
	Age
	Body Mass Index
	Chest Wall Perimeter

	Results Discussion

	Conclusions
	References

