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Abstract

:

The multi-stage, multi-level assembly job shop scheduling problem (MsMlAJSP) is commonly encountered in the manufacturing of complex customized products. Ensuring production efficiency while effectively improving energy utilization is a key focus in the industry. For the energy-efficient MsMlAJSP (EEMsMlAJSP), an improved imperialist competitive algorithm based on Q-learning (IICA-QL) is proposed to minimize the maximum completion time and total energy consumption. In IICA-QL, a decoding strategy with energy-efficient triggers based on problem characteristics is designed to ensure solution quality while effectively enhancing search efficiency. Additionally, an assimilation operation with operator parameter self-adaptation based on Q-learning is devised to overcome the challenge of balancing exploration and exploitation with fixed parameters; thus, the convergence and diversity of the algorithmic search are enhanced. Finally, the effectiveness of the energy-efficient strategy decoding trigger mechanism and the operator parameter self-adaptation operation based on Q-learning is demonstrated through experimental results, and the effectiveness of IICA-QL for solving the EEMsMlAJSP is verified by comparing it with other algorithms.
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1. Introduction


Since the manufacturing industry is one of the most energy-intensive sectors, the question of how to effectively improve energy efficiency while maintaining production efficiency is currently a major focus within the industry [1]. Energy-efficient scheduling (EES) utilizes limited resources to rationally arrange production and optimize the production process, which is an effective way to effectively reduce the energy consumption in manufacturing systems [2]. Recently, EES has been successfully applied to various scheduling problems in discrete manufacturing industries, yielding positive results.



As an extension of the classic job shop scheduling problem (JSP), the multi-stage, multi-level assembly job shop scheduling problem (MsMlAJSP) not only involves multiple stages of production from processing to assembly but also considers complex assemblies composed of multiple jobs with a tree-like multi-level structure consisting of components and subassemblies [3]. It plays an important role in quickly responding to the manufacturing of customized products with multi-variety and small batches.



However, as the complexity of the problem increases, leading to more product structural levels and manufacturing stages, constraints become more complex. This results in idle time between and within stages, significantly increasing idle energy consumption [4]. Therefore, further research is needed to explore the energy-efficient multi-stage, multi-level assembly job shop scheduling problem (EEMsMlAJSP) for complex multi-level products.



The EEMsMlAJSP is highly complex with a vast solution space, presenting challenges for efficient resolution. Currently, solutions to such complex energy-efficient scheduling problems typically focus on two main areas: energy-efficient strategies and algorithm design. Energy-efficient strategies primarily include three key approaches: turning off/on [5], block-moving strategy [6], and machine speed adjustment [7]. Among these, the block-moving energy-efficient strategy is one of the most widely used techniques [8]. It allows for a reduction in energy consumption by adjusting the processing sequence of operations without compromising other objectives. However, while this strategy has been extensively applied, an area that has not been fully explored is how to enhance its computational efficiency while maintaining solution quality. In terms of algorithm design, the imperialist competitive algorithm (ICA) has been successfully applied to various energy-efficient scheduling problems due to its strong global and local search capabilities [9,10]. However, further research is needed to explore and design mechanisms that can effectively balance the exploration and exploitation capabilities of the ICA when solving large-scale, complex scheduling problems like the EEMsMlAJSP.



To address these issues, we propose an improved ICA based on Q-learning (IICA-QL) to solve the EEMsMlAJSP, aiming to minimize the maximum completion time and total energy consumption. The main contributions of this paper are as follows:




	(1)

	
A mathematical model for the EEMsMlAJSP with the optimization objectives of minimizing the maximum completion time and total energy consumption is established.




	(2)

	
An energy-efficient strategy decoding trigger mechanism is designed to simultaneously enhance solution quality and search efficiency.




	(3)

	
A dynamic adaptive adjustment strategy for the assimilation operator parameter is implemented based on Q-learning to enhance convergence speed while maintaining population diversity; thus, the exploration and exploitation capabilities of the algorithm are better balanced.









The specific structure of this paper is as follows: The literature review and related work are shown in Section 2. The problem definition and mathematical model are established in Section 3. The encoding and decoding design is presented in Section 4. The introduction of the improved imperialist competitive algorithm based on Q-learning (IICA-QL) is described in Section 5. The experimental results and analysis are provided in Section 6. The conclusion to this paper is given in Section 7.




2. Literature Review and Related Work


2.1. Multi-Stage, Multi-Level Assembly Job Shop Scheduling Problem


In recent years, with the increase in customized product orders, the production model of multi-variety and small-batch manufacturing has gradually become mainstream [11]. Products under this model typically have complex multi-level structures, which significantly increases the complexity of scheduling. Additionally, processed jobs need to be transported in batches to the assembly stage, and the transportation time cannot be overlooked [12]. As a result, the MsMlAJSP has become a key focus in recent research.



Wang et al. [13] addressed the distributed MsMlAJSP considering maintenance, aiming to minimize the maximum tardiness. Cheng et al. [14] proposed batch transfer and mixed-model assembly for the MsMlAJSP with the optimization objectives of minimizing manufacturing and transportation costs. Building on this, Cheng et al. [15] further considered lot streaming with the objective of minimizing total completion time and production cost. All of the above studies already conducted relevant work on the MsMlAJSP, primarily focusing on improving production efficiency and economic benefits. However, with the increasing awareness of energy consumption and sustainability in modern manufacturing systems [16], there is a growing need to address energy efficiency in the EEMsMlAJSP, where the optimization objectives are not only centered on production efficiency but also on minimizing energy consumption throughout the entire scheduling process.



In the EEMsMlAJSP, energy consumption becomes a critical factor due to the involvement of multiple production stages and levels, where idle times, machine setups, and transportation processes can lead to significant energy wastage. Therefore, optimizing both production schedules and energy usage concurrently presents a complex, multi-objective problem that requires advanced strategies and algorithms to balance production efficiency and energy conservation.




2.2. Energy-Efficient Strategies in Scheduling Problem


Currently, solving the energy-efficient scheduling problem in complex manufacturing systems mainly focuses on energy-efficient strategies, aiming to reduce idle energy consumption without deteriorating other objectives [17]. Among these strategies, the block-moving energy-efficient strategy, which makes operations within stages more compact by moving process operations, can effectively reduce idle energy consumption. This is currently an effective method for handling multi-operation and complex multi-stage scheduling problems. Gong et al. [18] addressed the energy-efficient flexible job shop scheduling problem and proposed a two-stage Memetic algorithm (TMA) to solve the problem. In the TMA, a block-moving energy-efficient strategy operator was designed to further optimize total energy consumption and the number of machine restarts without altering the makespan. Wang et al. [19] addressed the energy-aware distributed hybrid flow shop scheduling problem and designed an energy-efficient strategy based on the block-moving strategy. This approach further reduces the energy consumption of the non-dominated solutions without altering the makespan, thereby obtaining superior non-dominated solutions. Meng et al. [20] tackled the multi-objective flexible job shop scheduling problem with controllable processing times by incorporating an energy-efficient strategy based on the block-moving strategy into the individual decoding process, thereby achieving lower individual energy consumption.



From the aforementioned literature, it can be seen that there are two main approaches to using the block-moving energy-efficient strategy: One is to apply the block-moving strategy only to the solutions in the non-dominated set to further reduce energy consumption; however, this operation may cause the loss of some potential solutions, resulting in a local rather than a global optimum. The other approach is to embed the block-moving strategy into the individual decoding process to avoid losing the global optimal solution; however, such a design can lead to the waste of computational resources and severely slow down the search efficiency of the algorithm. Therefore, it is an urgent need to design an efficient block-moving strategy that improves solution quality and search efficiency without losing the global optimum.




2.3. Imperialist Competitive Algorithm


The imperialist competitive algorithm (ICA) is an effective evolutionary algorithm framework [21]. It facilitates population evolution through mechanisms such as assimilation, colonial revolutions, and imperial competition, demonstrating efficient global and local search capabilities. For the past few years, the ICA has been successfully applied to solving various multi-objective energy-efficient scheduling problems.



Lei et al. [22] designed a two-phase meta-heuristic (TPM) algorithm based on the ICA and variable neighborhood search (VNS) for a multi-objective flexible job shop scheduling problem (FJSP) with energy consumption thresholds, aiming to minimize the makespan and total tardiness. Li et al. [23] proposed a two-level imperialist competitive algorithm (TICA) for the energy-efficient hybrid flow shop scheduling problem. In this algorithm, the strongest empire and other empires are divided into two levels, with the strongest empire not participating in the competition. To generate high-quality solutions, different assimilation and revolution operations are performed during various search phases within the empire. Zhou et al. [24] addressed the energy-efficient hybrid flow shop scheduling problem with uncertain processing times by proposing an Empire Grouping Imperialist Competitive Algorithm (EGICA). This algorithm constructs initial empires through the normalized total cost under interval scenarios and groups them into empire groups. By executing assimilation operations on different parts of the encoding and performing adaptive revolutions, it enhances performance. Additionally, a two-phase imperialist competition operation is used to maintain population diversity.



From the above literature, it is evident that many researchers have made significant improvements to the ICA and successfully applied it to various scheduling problems. For the assimilation in the global search of the algorithm, existing studies mostly adopt the uniform crossover (UX) operator [17], with the probability parameters preset through experiments. However, applying traditional static parameters to the ICA may not ensure optimal search efficiency and solution quality due to the complexity of the EEMsMlAJSP [25]. Therefore, it is necessary to design a reasonable dynamic parameter adaptive adjustment mechanism to balance the exploration and exploitation of the algorithm.




2.4. Evolutionary Algorithms Integrated with Reinforcement Learning


Reinforcement Learning (RL), such as Q-learning, possesses strong decision-making and optimization capabilities. Recent studies have shown that Q-learning can effectively adjust algorithm parameters, enhancing the balance between exploration and exploitation and improving solution quality. Chen et al. [26] applied SARSA and Q-learning to adaptively adjust the crossover and mutation probabilities of a genetic algorithm (GA) during the early and late stages of optimization in flexible job shop scheduling problems. Chen et al. [25] used Q-learning to dynamically adjust key algorithm parameters in multi-objective planning and scheduling for PCB assembly lines. Li et al. [27] applied Q-learning to adaptively adjust neighborhood sizes in solving green flexible job shop scheduling problems with Type-II fuzzy processing times (ET2FJSP), thereby increasing the diversity of Pareto solutions. These studies demonstrate the effectiveness of Q-learning in parameter adjustment, highlighting its potential to improve the performance of algorithms in various scheduling problems. These successful applications of Q-learning in parameter adjustment encourage us to adopt this approach for solving the EEMsMlAJSP.





3. Problem Formulation


3.1. Basic Concepts of Multi-Objective Optimization


In general, a multi-objective optimization problem can be expressed as follows:


  min F (  x  ) = [  f 1  (  x  ) ,  f 2  (  x  ) , … ,  f k  (  x  ) ] ,  x  ∈  X   








where   F (  x  ) = [  f 1  (  x  ) ,  f 2  (  x  ) , … ,  f k  (  x  ) ]   represents the k objective functions to be optimized simultaneously, and    x  ∈  X    is the decision variable in the solution space.



For two solutions     x   1     and     x   2    , if and only if   ∀ i ∈ { 1 , 2 , … , k }  ,    f i  (   x   1   ) ≤  f i  (   x   2   )   and   ∃  i ′  ∈ { 1 , 2 , … , k }  ,   f i  (   x   1   ) <  f i  (   x   2   )  , then     x   1     is said to dominate     x   2     (denoted as     x   1   ≺   x   2    ). If no other solution dominates     x   1    , then     x   1     is called a non-dominated solution. The set of all non-dominated solutions is called the Pareto front.




3.2. Problem Definition


The EEMsMlAJSP addressed in this work consists of multiple stages, including processing, transportation, and assembly. The notations defined for use in the EEMsMlAJSP mathematical model are shown in Table 1. The problem is defined as follows. In the processing stage, transportation stage, and assembly stage, there are    N M    flexible processing machines    M  = {  M 1  , ⋯ ,  M m  , ⋯ ,  M   N M    }  ,    N T    transportation vehicles    V  = {  V 1  , ⋯ ,  V t  , ⋯ ,  V   N T    }   with the same load capacity    G  m a x    , and    N K    assembly machines    K  = {  K 1  , ⋯ ,  K k  , ⋯ ,  K   N K    }  , respectively. There is a product set    P  = {  P 1  , ⋯ ,  P z  , ⋯ ,  P   N P    }   that needs to be manufactured, where each product    P z  ∈  P    is composed of a set of various jobs     J   z     and should undergo an assembly operation set     A   z     to be assembled into the final product. Each job    J j  ∈   J   z     has a release time and consists of a set of processing operations     O   j    . All operations    O j i  ∈   O   j     must be completed before    J j    can be transported in batches by vehicles with the load capacity constraint. Once all jobs    J j    belonging to a product    P z    have been transported to the assembly stage, the assembly of    P z    can begin. In the processing stage, each operation    O j i    has a set of compatible machines     M   j   i     from which one machine is selected for processing. Once the operation is completed, the next operation for job    J j    is processed according to the specified sequence. In the transportation stage, a fleet of vehicles   V   is available to transport jobs from the processing stage to the assembly stage. Each vehicle    V t  ∈  V    departs from the processing shop and must return after completing its transportation tasks. The vehicles are subject to capacity constraints and are allowed to make multiple trips, with each trip carrying a batch of components produced in the processing stage. In the assembly stage, once all components belonging to product    P z    are ready, all operations    A z a  ∈   A   z     are sequentially completed according to the assembly process.



The optimization objectives of this problem are to simultaneously minimize    C  max     and TEC. It is a multi-objective problem and encompasses several sub-problems, including the sequencing of processing operations, assignment of processing machines, sequencing of job transportation, assignment of vehicles, sequencing of product assembly, sequencing of assembly operations, and assignment of assembly machines. The computational complexity of the mathematical model can be calculated as   O = ( (  N O  ! ) ×   N M   N O   × (  N Q  ! ) ×   N T   N Q   × (  N P  ! ) ×   N K   N A   )  . So as the problem size increases, the complexity grows exponentially. Moreover, as an extension of the well-known NP-hard problem JSP, the EEMsMlAJSP integrates assembly and batch transportation, making it an NP-hard problem as well and even more complex.



A schematic diagram of the EEMsMlAJSP model is shown in Figure 1. This figure illustrates the workflow of two products (P1, P2), each made up of multiple components and jobs. In the processing stage, these jobs are assigned to flexible machines (M1, M2, M3) for operations. Once processed, jobs are batch transported by three vehicles (V1, V2, V3) to the assembly stage. In this final stage, each product’s components are assembled on different machines (K1, K2) to form the final product. Some assumptions are listed below:




	
In the processing and assembly stages, any machine can only process one operation at a time.



	
Once started, processing operations, transportation processes, and assembly operations cannot be interrupted.



	
All machines and vehicles are available at time zero.



	
The transportation time between machines for consecutive processing (or assembly) operations is not considered.



	
Vehicles maintain a constant speed during transportation.



	
The initial setup time is included in the release time of the workpiece.









3.3. Mathematical Model


The mathematical model for the three stages with two optimization objectives in the EEMsMlAJSP is constructed as follows:



The first objective, the maximum completion time, is the time when all products are fully assembled, calculated as follows:


   C  max   = max { C T (  π a k  ) } , ∀ a , k  



(1)







The second objective, namely total energy consumption, is composed of three parts: total energy consumption in the processing stage, total energy consumption in the transportation stage, and total energy consumption in the assembly stage. The total energy consumption for each stage is calculated as follows:



(1) Processing stage: The total energy consumption in this stage is composed of the energy consumption of the processing machines, which is determined by four modes of machines: release mode, setup mode, working mode, and idle mode. The energy consumption for each mode of the processing machines is constructed as follows:



Release energy consumption: This refers to the energy consumption of machines before the first arrival time of the job. The release energy consumption in the processing stage is calculated as follows:


  E  C R  s t 1   =   ∑  m = 1    N M     P  P m  × R T (  π 1 m  )    



(2)







Setup energy consumption: This energy consumption is generated during the preparation process of the machine before entering the working mode. The setup energy consumption in the processing stage is calculated as follows:


  E  C S  s t 1   =   ∑  m = 1    N M       ∑  i = 2    N  O m      P  S m  × S P (  π  i − 1  m  ,  π i m  )      



(3)







Working energy consumption: This energy consumption is generated when the processing machine is in working mode. The working energy consumption in the processing stage is calculated as follows:


  E  C P  s t 1   =   ∑  m = 1    N M       ∑  i = 1    N  O m      P  P m  × P (  π i m  )      



(4)







Idle energy consumption: This energy consumption is generated during the time between processing two consecutive operations, excluding setup time. The idle energy consumption in the processing stage is calculated as follows:


  E  C I  s t 1   =   ∑  m = 1    N M       ∑  i = 2    N  O m      P  I m  × I P (  π  i − 1  m  ,  π i m  )      



(5)







The total energy consumption in the processing stage is calculated as follows:


  E  C  s t 1   = E  C R  s t 1   + E  C S  s t 1   + E  C P  s t 1   + E  C I  s t 1    



(6)







(2) Transportation stage: The total energy consumption in this stage consists of the energy consumption of the transportation vehicles, which is composed of two parts: loaded energy consumption and unloaded energy consumption. The total energy consumption in the transportation stage is calculated as follows:


  E  C  s t 2   =   ∑  t = 1    N T       ∑  w = 1    N  t w      P  T t  × (   D i  s  P − A      V 0        +    D i  s  P − A      V t w     )  



(7)







(3) Assembly stage: The total energy consumption in this stage consists of the energy consumption of the assembly machines, which is composed of two modes of modes: working mode and idle mode. The energy consumption for each mode of the assembly machines is constructed as follows:



Working energy consumption: This energy consumption is generated when the assembly machine is in working mode. The working energy consumption in the assembly stage is calculated as follows:


  E  C A  s t 3   =   ∑  k = 1    N K       ∑  a = 1    N  A k      P  P k      × P (  π a k  )  



(8)







Idle energy consumption: This refers to the energy consumption generated between two consecutive operations on the same assembly machine. The idle energy consumption of the machine in the assembly stage is calculated as follows:


  E  C I  s t 3   =   ∑  k = 1    N K       ∑  a = 2    N  A k      P  I k      × I P (  π  a − 1  k  ,  π a k  )  



(9)







The total energy consumption in the assembly stage is calculated as follows:


  E  C  s t 3   = E  C A  s t 3   + E  C I  s t 3    



(10)







The total energy consumption of the three stages is calculated as follows:


  T E C (  π  ) = E  C  s t 1   + E  C  s t 2   + E  C  s t 3    



(11)







The optimization objective is to find an optimal sequence in the set of all three-stage sequences  ∏ (   π  = [   π    s t 1    ,   π    s t 2    ,   π    s t 3    ] ∈ ∏  ) that simultaneously minimizes the maximum completion time and total energy consumption. The specific details are as follows:


   C  max   (  π  ) = max { C T (  π a k  ) } , ∀ a , k  



(12)






  T E C (  π  ) = E  C  s t 1   + E  C  s t 2   + E  C  s t 3    



(13)






       C  max   (   π  *  ) = min {  C  max   (   π    s t 1    ,   π    s t 2    ,   π    s t 3    ) } , T E C (   π  *  ) = min { T E C (   π    s t 1    ,   π    s t 2    ,   π    s t 3    ) }       π  *  = arg        C  max   (   π    s t 1    ,   π    s t 2    ,   π    s t 3    )       T E C (   π    s t 1    ,   π    s t 2    ,   π    s t 3    )       → min , ∀ (   π    s t 1    ,   π    s t 2    ,   π    s t 3    ) ∈ ∏      



(14)









4. Encoding and Decoding Design


As described in Section 2.1, the problem characteristics of the EEMsMlAJSP result in an exceptionally large solution space. If full encoding is applied to each stage, although the entire solution space can be effectively represented, it also results in the algorithm convergence being slowed and invalid solutions being generated during the algorithm iteration process needing to be repaired, thus affecting the search efficiency of the algorithm. Heuristic rules can effectively trim the solution space while maximizing the discovery of near-optimal solutions to the problem; thereby, the convergence speed of the algorithm is improved. Therefore, based on the coupling properties between the stages of the EEMsMlAJSP [28,29], only the processing operations in the processing stage are encoded, with the assignment of processing machines and the sub-problems in subsequent stages being decoded using heuristic rules.



4.1. Encoding


In this study, the solution to the problem is represented using an operation-based encoding method. The operations of a job are indicated by the number of the job, and the number of times that the job number appears represents which operation it is for that job. Due to the design order requirements of the products considered in this paper, and the possibility of identical jobs existing among different products, product information needs to be read sequentially to determine the required jobs for the product, and each job is assigned a unique code for identification. The pseudocode for the encoding is shown in Algorithm 1.



To better illustrate the encoding process, we use an example where the demand for product 1 is 2, and the demand for product 2 is 1. Product 1 consists of components 1 and 2, while product 2 consists of components 3 and 4. Component 1 is composed of job 1; component 2 is composed of jobs 2 and 3; component 3 is composed of jobs 2 and 4; and component 4 is composed of jobs 5, 6, and 7. Each job is processed through corresponding operations. For example, job 1 includes operation 1, operation 2, and operation 3. The bottom encoding sequence represents the order of operations for each job, such as [1 1 1 2 3 1 1 1 2 3 2 4 4 5 6 6 6 7], where [1 1 1] denotes the three operations of job 1. The specific encoding method for this example is shown in Figure 2.






	Algorithm 1. Encoding Method



	[image: Applsci 14 08712 i001]









4.2. Decoding Rules


To narrow the solution space while maximizing the discovery of near-optimal solutions to the problem, the heuristic decoding rules for allocation in the processing stage and subsequent transportation and assembly stages are as follows:




	(1)

	
Machine assignment in the processing stage









The earliest completion time (ECT) rule is used to assign operations to the machine that can complete them the earliest. If multiple machines can complete the operation at the same time, the minimum energy consumption first (MECF) rule is applied to select the machine with the lowest energy consumption.



	(2)

	
Job transportation sequence and vehicle allocation in the transportation stage







Under the constraint of vehicle load capacity, the first completed first transported (FCFT) rule is used to organize the batch transportation of jobs. This means that jobs are loaded into available vehicles in the order of their completion times, ensuring that no single vehicle is overloaded. Subsequent jobs are transported by following vehicles according to the same rule.



	(3)

	
Product assembly sequence and machine assignment in the assembly stage







When the jobs transported to the assembly shop are sufficient for the complete assembly of the product, the assembly is carried out according to the product assembly process. If multiple products simultaneously meet the assembly conditions, the minimum jobs first (MJF) rule is used to determine the assembly sequence. During product assembly, the machine assignment for assembly operations follows the same rules as in the processing stage to determine the assembly machine for each operation.




4.3. Design of Energy-Efficient Strategy Decoding Trigger Mechanism


To address the issue of substantial idle energy consumption caused by the hierarchical coupling characteristics of the EEMsMlAJSP, an energy-efficient strategy based on block-moving can reduce machine idle time by making dispersed operations more compact without changing the maximum completion time, thus reducing the idle energy consumption generated by machines.



However, as the problem scale increases, executing the energy-efficient strategy usually takes a long time and consumes significant computational resources. In fact, not all solutions benefit from this strategy in terms of improving the quality of non-dominated solutions. Therefore, we propose an adaptive trigger mechanism for the energy-efficient strategy decoding, which ensures potential high-quality solutions are not lost while improving the search efficiency. The specific operations are as follows:



Step 1: Apply the decoding rules and the active decoding method [30] to the individual to obtain the scheduling results    C  max   (  π  )   and   T E C (  π  )  , and record the idle time of all machines.



Step 2: According to Equations (15) and (16), obtain the upper bound of energy savings   E  S  U B     and the lower bound of energy consumption    E  L B    , respectively, for the scheduling scheme after applying the energy-efficient strategy.



Step 3: Determine the relationship between   (  C  max   (  π  ) ,  E  L B   )   and the current non-dominated solutions. If they are not dominated by the current non-dominated solutions or if they are mutually non-dominating, proceed to Step 5; otherwise, proceed to Step 4.



Step 4: Use the objective values    C  max   (  π  )   and   T E C (  π  )   obtained from the decoding rules as the decoding results of the scheduling scheme.



Step 5: Following the product assembly sequence of the scheduling scheme, check each product in reverse order from the last to the first according to the process sequence, and determine whether the block-moving condition is met according to Equation (17). If the condition is met, update the completion time of the operation according to Equation (18). Otherwise, check the preceding operation of this operation.



Step 6: If all operations have been checked, use Equation (19) to determine whether the idle intervals meet the shutdown conditions for profit and loss time, and output the results    C  max   (  π  )   and   T E C (  π  )   of the scheduling scheme after executing the energy-efficient strategy. Then, update the non-dominated solution set. Otherwise, return to Step 5.


  E  S  U B   =   ∑  a = 2    N A k     I P (  π  a − 1  k    ,  π a k  ) × P  I k   



(15)






   E  L B   = T E C (  π  ) − E  S  U B    



(16)






  P (  π a k  ) ≤ I P (  π l k  ,  π  l + 1  k  )  



(17)






  C T (  π a k  ) =     max ( C T  I i k  ) ,   ∀ i ,    π a k     is   the   final   assembly   operation   of   product        min { C (  π  l a s t a  k  ) , max ( C T  I i k  ) } ,    otherwise       



(18)






   T  o f f − o n   ≤   E  C  o f f − o n    /    E C  —     



(19)




where   I P (  π l k  ,  π  l + 1  k  )   is the idle time after the operation    π a k    on machine m,   l = a , a + 1 , ⋯ ,  N A k  − 1  .   C T  I i k    denotes the end time of the insertable idle interval for    π a k    on machine k, and    π  l a s t a  k    denotes the immediate subsequent operation of    π a k   .    T  o f f − o n     is the time required for the machine to turn off and on,   E  C  o f f − o n     is the energy consumption for the machine to turn off and on, and     E C  ¯    is the energy consumption per unit time of the machine. The flow of the energy-efficient strategy decoding trigger mechanism is shown in Figure 3.





5. IICA-QL for EEMsMlAJSP


5.1. Initialization of Empires


In IICA-QL, a country     π   i     denotes a solution to the problem, where   i = 1 , 2 , ⋯ , P s  , and Ps denotes the population size. The population    P o p ( g )    in generation g is composed of all countries in generation g, denoted as    P o p ( g )  = {   π    g , 1    ,   π    g , 2    , … ,   π    g , P s    }  . To obtain a high-quality initial population while maintaining population diversity, two heuristic methods are used to initialize the population.   λ × P s   countries, with  λ  set to 0.2, are generated using product aggregation (PA) and job aggregation (JA) rules, while the remaining countries are generated randomly. This approach ensures a high starting point for the search while maintaining search breadth.



Subsequently, according to Equation (20) [21], the cost    c i 1    of each country in the initial population is calculated in turn,   i = 1 , 2 , ⋯ , P s  . After sorting    c i 1    in non-ascending order, the countries with the highest costs are selected as    Ν  i m     imperialists for    Ν  i m     empires, while the other countries in the population are designated as colonies. The number of colonies    N  c o l     is then calculated according to Equation (21). Next, the normalized power of each imperialist   I m  p k   (  k = 1 , 2 , ⋯ ,  N  i m    ) is calculated according to Equation (22), and the number of colonies assigned to each colonial country   N  C k    is determined based on their normalized power. Finally, the corresponding number of colonies is randomly selected and assigned to the corresponding empires, and the selected colonies are removed from the original colony population.


   c i g  =   max   l = 1 , 2 , ⋯ , P s   { r a n  k l  } − r a n  k i  +   d i s  t i   /    ∑  j ∈  θ  r a n  k i       d i s  t j       



(20)






   N  c o l   = P S −  N  i m    



(21)






  P o  w k  =    c k g   /    ∑  k = 1    N  i m       c  k   g        



(22)






  N  C k  = r o u n d ( P o  w k  ×  N  c o l   )  



(23)







Before the iteration begins, an empty external archive set Ω is established to store the non-dominated set of the initial population, and it is dynamically updated during the iteration process.




5.2. Assimilation Based on Q-Learning Adaptive Adjustment of Operator Parameter


Assimilation is the process by which colonies within an empire are moved towards the imperialist, with population evolution achieved through the assimilation of colonies by the imperialist. To ensure convergence speed while maintaining population diversity, a dynamic adaptive adjustment strategy for the operator parameter based on Q-learning is designed. First, two different operator co-evolution operations are employed. Then, a Q-learning-based adaptive adjustment strategy for the UX operator parameter is implemented to enhance the convergence and diversity of the algorithm. Finally, an elite retention strategy is used to update the individuals of each empire, thereby improving the convergence speed. The pseudocode is shown in Algorithm 2.






	Algorithm 2. Assimilation based on Q-learning adaptive adjustment of operator parameter
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5.2.1. Adaptive Adjustment of UX Operator Parameter Based on Q-Learning


During the assimilation process, the uniform crossover (UX) operator [17] and the two-point Crossover (TPX) operator [31] are used, respectively applied to the movement of colonies towards the imperialist and the external archive set. Among these, the UX operator is used as the main evolutionary operator to guide the evolutionary process of population and can also be applied for local search [17], playing an important role in the quality of population evolution. The parameter of the UX operator determines the number of high-quality genes passed from parents to offspring. In the early stages of evolution, a larger parameter is helpful for the algorithm convergence, while in the later stages of evolution, a larger parameter can result in poor population diversity, causing the algorithm to fall into local optima. Therefore, a Q-learning-based adaptive adjustment strategy for the UX operator parameter is devised to dynamically adjust the evolutionary process of the population, enabling the algorithm to converge more efficiently to the Pareto front.



State: The state of the entire population is determined by evaluating the convergence metric   Δ G D   of the non-dominated solution set compared to the reference set and the diversity metric   Δ R a t i o  , which represents the coverage ratio of the solution space. Here,   Δ G D   represents the generational distance difference in the non-dominated solutions obtained compared to the Pareto front   P  F *    between generation t and t + 1.   P  F *    is a preset reference point, and   Δ R a t i o   represents the proportion of subregions occupied by the non-dominated solutions in the current generation in the objective space. The objective space is divided into several non-overlapping regions by weight vectors [32].   Δ G D   indicates the degree of convergence of generation t + 1 compared to generation t; the smaller the value of   Δ G D  , the better the convergence.   Δ R a t i o   represents the change in non-dominated set diversity, with   Δ R a t i o < 0   indicating a decrease in diversity and   Δ R a t i o > 0   indicating an increase in diversity. The calculations for   Δ G D   and   Δ R a t i o   are given by Equations (24) and (25), respectively, where     P  F t      and      ψ t      represent the number of non-dominated solutions in generation t and the proportion of the objective space they occupy. During the evolution, there are four possible states: (1)   Δ G D > = 0 ,   Δ R a t i o > 0  ; (2)   Δ G D > = 0 ,   Δ R a t i o < = 0  ; (3)   Δ G D < 0 ,   Δ R a t i o > 0  ; and (4)   Δ G D < 0 ,   Δ R a t i o < = 0  .


  Δ G D =   (     ∑  x ∈ P  F  t + 1        min   y ∈ P  F *    d   ( x , y )  2       /  | P  F  t + 1   |   ) −   (     ∑  x ∈ P  F t       min   y ∈ P  F *    d   ( x , y )  2       /  | P  F t  |   )  



(24)






  Δ R a t i o =    ψ  t + 1     −    ψ t     



(25)







Action: The action set  A  is composed of ten actions, representing ten levels of the UX operator parameter. By determining the current state of the population, the action with the highest Q-value in the Q-table is selected based on the ε-greedy strategy.



ε-greedy: In the initial iterations, Q-values usually lack prior knowledge, making it easy for the agent to fall into local optima during learning. Therefore, an ε-greedy strategy based on a sigmoid function is used to guide the learning of the agent. The mathematical expression for ε-greedy is as follows:


  ε = 0.1 + ( ε − 0.1 ) ×   1  1 +  e  ( − 0.2 × ( g − 50 ) )       



(26)




where g represents the number of iterations.



Reward: By calculating the values of   Δ G D   and   Δ R a t i o   after executing an action, the agent receives a corresponding reward and updates the Q-value of the action in the Q-table for the corresponding state according to Equation (27). If   Δ G D ≥ 0  ,    Δ R a t i o > 0  , then reward = 1; if   Δ G D ≥ 0  ,    Δ R a t i o < = 0  , then reward = −2; if   Δ G D < 0  ,    Δ R a t i o > 0  , then reward = 4; if   Δ G D < 0  ,    Δ R a t i o ≤ 0  , then reward = 2.


  Q (  s t  ,  a t  ) = Q (  s t  ,  a t  ) + α [ r e w a r  d  t + 1   + γ   max   a ∈ A   Q (  s  t + 1   , a ) − Q (  s t  ,  a t  ) ]  



(27)




where  α  and  γ  are the learning rate and discount factor, respectively, and  A  is the set of available actions.



Figure 4 provides an example. In Figure 4, the evolutionary process of the population is illustrated through the interaction between states and actions within the Q-learning framework. Initially, in generation t, the population is in state S3, where action A2 is selected, and after executing this action, a reward of 4 is received based on the performance indicators. The population then transitions to state S1 in generation t + 1, where action A10 is chosen. However, the performance does not improve significantly, resulting in a negative reward of −2, and the population moves to state S4 in generation t + 2. In this iterative process, rewards guide the selection of actions to achieve better solutions across generations, dynamically adjusting through Q-values (as shown in the table on the right), where specific actions in certain states (e.g., S3 with A2) yield high Q-values like 0.4, indicating the optimal choices learned over time.




5.2.2. Update Strategy


To achieve the rapid convergence of the population, an elite retention strategy is employed to select colonies that need to be retained after the assimilation process. The specific operations are as follows: Individuals generated during the assimilation process of imperialist   I m  p k    are placed into the colony offspring population   O f f s p r i n  g k   . After the assimilation operation within the empires is completed, the original colony population is merged with the colony offspring population to form a new population   S u b P o  p k   . Then, the individuals in   S u b P o  p k    are non-dominated sorted, and their crowding distances are calculated. A number of   N  C k    colonies are selected as the next generation of colonies. Additionally, for new solutions generated by the assimilation of the imperialist, if they are not dominated by the old solutions, the original imperialist is replaced by the new solutions; otherwise, no replacement is made.





5.3. Revolution Based on Hyper-Heuristic Variable Neighborhood Search


Colonial revolution is a process of further exploring and exploiting the neighborhood of superior colonies after completing the assimilation operation. In this paper, various neighborhood search (VNS) operations are designed, and high-level information constructed from a two-dimensional probability matrix is used to guide the selection of corresponding low-level variable neighborhood search operation sets. The selection of variable neighborhood search operators is dynamically adjusted by the high-level strategy based on the feedback information received from the environment after each application of the low-level variable neighborhood search operation set, thereby improving the search performance of the algorithm. The pseudocode is shown in Algorithm 3.






	Algorithm 3. Revolution based on hyper-heuristic variable neighborhood search
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5.3.1. Neighborhood Search (NS) Operations


To implement an effective perturbation strategy for individuals, two single-operation-based neighborhood operations and five block-based neighborhood operations are designed as neighborhood search operators. Figure 5 provides an illustrative example.



NS1: Single-operation insertion operation for individual encoding. A random operation is selected from the individual encoding and inserted into another position.



NS2: Single-operation exchange operation for individual encoding. Two different operations are randomly selected, and their positions are swapped.



NS3: Reversal operation for individual encoding. Two positions are randomly selected, and the segment of operations between these positions is reversed.



NS4: Segment exchange operation for individual encoding. Two segments of operations are randomly selected, and their positions are exchanged.



NS5: Segment insertion operation for individual encoding. Two segments of operations are randomly selected, and one segment is inserted into another position within the encoding.



NS6: Segment shuffling operation for individual encoding. A segment of operations is randomly selected, and operations within segment are randomly shuffled.



NS7: Segment gene dispersal operation for individual encoding. The individual encoding is divided into several segments, and the consecutive repeated genes within each segment are dispersed to different positions.




5.3.2. Two-Dimensional Probability Model


Define    N S  = { N  S  G , k   ( 1 ) , N  S  G , k   ( 2 ) , ⋯ , N  S  G , k   ( l ) }   as the neighborhood operations sequence executed by the k-th individual in generation G, where l represents the length of variable neighborhood search. The two-dimensional probability model     P   G    ( x , y )   , shown in Equation (28), is used as the high-level strategy to guide the selection of the low-level variable neighborhood search operation set.


    P   G    ( x , y )  =      P  l × l  G  ( 1 , 1 )   ⋯    P  l × l  G  ( 1 , l )     ⋮   ⋱   ⋮      P  l × l  G  ( l , 1 )   ⋯    P  l × l  G  ( l , l )      



(28)







The initialization of the two-dimensional probability model and its update in the G-th generation are shown in Equations (29) and (30), respectively.


   P 0  ( x , y ) =  1 /  l ,   x , y = 1 , 2 , ⋯ , l    



(29)






   P G  ( x , y ) = ( 1 + r e w a r d ) ×  P  G − 1   ( x , y ) , x = 1 , 2 , ⋯ , l , y = N S ( 1 ) , N S ( 2 ) , ⋯ , N S ( l )  



(30)






  r e w a r d =     0.1 ,    new   solution   is   not   dominated   by   old   solution      − 0.1 ,    otherwise       



(31)







After completing the revolution operations, the cost of each country within the empire is calculated, and the country with the highest cost is selected as the new imperialist, while the original imperialist becomes a colony.     P   G    ( x , y )    is updated according to Equation (31).





5.4. Joint Imperialist Invasion


Dividing the population into multiple subpopulations is helpful for individuals to extensively search different areas and balances the exploration and exploitation capabilities of the algorithm through co-evolution [33]. To address the issues of poor diversity and premature convergence in the basic imperialist competitive algorithm, a joint imperialist competition mechanism is designed to replace the standard imperialist competition operations. Each empire is regarded as a population that collaboratively searches different regions of the solution space. This mechanism ensures that the collaborative evolutionary search is maintained within each empire and that information sharing and interaction are enhanced between empires, thereby improving diversity and the search efficiency of the algorithm.



The specific operations of the joint imperialist invasion are as follows: The total cost of each imperial group is calculated and ranked according to Equation (32), where   E m  p k    represents the set of colonies owned by   I m  p k   , and  ξ  is the proportional coefficient of the total cost of the empire accounted for by the colonies, which is set to 0.1. The imperialists of the top    N  i m   − 1   empires perform POX crossover [18] with random solutions, and the corresponding numbers of the worst colonies in the worst-ranked empire are replaced by the newly generated solutions. Through joint imperialist competition, the collaborative evolution within each empire can be maintained, while information sharing and interaction between empires can be enhanced, thus improving diversity and increasing the search efficiency of the algorithm. The pseudocode is shown in Algorithm 4.


  T  C k g  =  c i g  + ξ     ∑  σ ∈ E m  p k      c σ g     /  N  C k     



(32)










	Algorithm 4. Joint imperialist invasion
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5.5. Algorithm Description


A flowchart of the proposed IICA-QL is shown in Figure 6. The process of IICA-QL is described as follows.



Step 1: Generate the initial population using heuristic rules and random generation methods. Select    N  i m     imperialist countries to form the initial empires.



Step 2: Construct the external archive set and update it based on non-dominated solutions.



Step 3: Select the UX operator parameter according to the Q-table, then perform assimilation in each empire and update Q-table. Meanwhile, retain colonies based on the elite retention strategy.



Step 4: Execute high-dimensional strategies constructed by the two-dimensional probability model to select low-level neighborhood search operation sequences. Update the probability model based on feedback information.



Step 5: Perform joint imperialist competition to achieve the collaborative evolution of empires.



Step 6: If the termination condition is met, stop the search; otherwise, return to Step 3.





6. Experimental Results and Discussion


The proposed IICA-QL is implemented in MATLAB R2021a. The experimental configuration is an Intel Core i7-13700K and CPU @3.40 GHz PC with 32 GB memory (Intel, Santa Clara, CA, USA). Since no prior research has been conducted on the EEMsMlAJSP, the test data are generated randomly. The problem scale is denoted by O/J/A_M/T/K, where O/J/A represent the number of processing operations, jobs, and assembly operations, respectively. M/T/K represent the total number of processing machines, transport vehicles, and assembly machines, respectively. Detailed information about the product structure, order information, and production parameter data used in the experiments can be found from https://github.com/captain-dyq/EEMsMlAJSP.git accessed on 22 August 2024. The experimental time    T  ( i )     for each problem scale is determined based on the specific problem scale, where    T  ( i )   = O × M + J × T + A × K  .



6.1. Performance Metrics


To comprehensively evaluate the convergence and diversity of the approximation Pareto fronts set obtained by the algorithm, the following three commonly used metrics are employed to measure the proposed IICA-QL.








	(1)

	
Solution set Coverage (C-metric). This metric measures the dominance relationship between two solution sets and is defined as follows:











  C ( A , B ) =    | x ∈ B | ∃ y ∈ A : y ≺ x |   | B |     



(33)




where A and B are two non-dominated solution sets obtained by the algorithm. C(A,B) represents the proportion of solutions in set B that are dominated by at least one solution in set A. The larger the value of C(A,B), the better the performance of A.




	(2)

	
Generational Distance (GD).









The proximity of the Pareto front PF obtained by the algorithm to the optimal Pareto front PF* is evaluated, where PF* is the true non-dominated solution set among the non-dominated sets obtained by all algorithms. For each solution x in PF, the nearest solution y in PF* is found, and their Euclidean distance is calculated. GD is the average of the shortest Euclidean distances, which is described as Equation (34). A smaller value of GD indicates better convergence and that the found PF is closer to the optimal Pareto front.


  G D =        ∑  x ∈ P F      min d   ( x , y )  2    y ∈ P  F *          | P F |     



(34)







	(3)

	
Hypervolume (HV)







The HV metric is a univariate metric that represents the volume of the region in the objective space enclosed by the non-dominated solution set obtained by the algorithm and the reference point, which is set to (1.01,1.01) [34]. The hypervolume metric is a comprehensive metric for evaluating the convergence and diversity of the non-dominated solution set obtained by the algorithm. The larger the HV value, the better the overall performance of the algorithm.


  H V ( E ) = L e b (  ∪  x ∈ E   [  f 1  ( x ) ,  r 1  ] × … × [  f m  ( x ) ,  r m  ] )  



(35)




where Leb(·) represents the Lebesgue measure, and m represents the number of objectives in the problem.



To eliminate the impact of different dimensions, the solutions in the solution set are normalized according to the following formula [30]:


   f i ′  =     f i  −  f i  min      f i  max   −  f i  min      ,   i = 1 , 2  



(36)








6.2. Parameter Settings


To determine the optimal values for the parameters in IICA-QL, the Design of Experiment (DOE) method is used for parameter setting. IICA-QL has a total of seven parameters, each with three levels to choose from. The orthogonal array L27 (37) is selected, and the meanings and optional parameter levels for each parameter are shown in Table 2. Experiments are conducted using a medium-sized experimental scale (82/42/71_3/3/3), with each parameter combination run 10 times and the runtime being    T  ( i )   = O × M + J × T + A × K  . The hypervolume (HV) metric is calculated after each run for each parameter combination, and the average of the ten HV values is used as the response value (RV). Additionally, the average RV and influence of each parameter level are shown in Table 3. According to Table 3, the optimal parameter set is Ps = 10, Nim = 3, Pa = 0.8, Pr = 0.1, α = 0.2, γ = 0.9, and ε = 0.6.




6.3. The Effectiveness of the Adaptive Trigger Mechanism for the Energy-Efficient Strategy


To verify the effectiveness of the adaptive trigger mechanism for the energy-efficient strategy, IICA-QL (denoted as A) is compared with IICA-QL executing the energy-efficient strategy on Pareto solutions (IICA-QL-PFE, denoted as B) and IICA-QL executing the energy-efficient strategy on all individuals (IICA-QL-AE, denoted as C). Using the same computation time as the termination condition, each algorithm runs independently, 10 times on 18 test instances. The average values of C-metric, GD, and HV obtained are shown in Table 4, with the best value for each metric highlighted in bold. The runtime of each algorithm on each scale is recorded in Table 5.



From the C-metric results in Table 4 and Figure 7, it can be seen that in all 18 test instances, C(A,B) is greater than C(B,A), and in 17 instances, C(A,C) is greater than C(C,A). This indicates that the non-dominated solutions obtained by IICA-QL generally dominate those obtained by IICA-QL-PFE and IICA-QL-AE. From the GD and HV metrics, it is evident that in most test instances, the values for IICA-QL are better than those for IICA-QL-PFE and IICA-QL-AE, and the values for IICA-QL-AE are better than those for IICA-QL-PFE. This shows that the adaptive trigger mechanism for the energy-efficient strategy improves the search quality of the algorithm by ensuring that it can more effectively explore and exploit the solution space, leading to better convergence speed and diversity. Furthermore, the superiority of IICA-QL is reinforced by the comparison of CPU times in Table 5 and Figure 8, where the execution time of IICA-QL is comparable to that of IICA-QL-PFE and significantly faster than that of IICA-QL-AE. This demonstrates that while IICA-QL-PFE also applies the energy-efficient strategy, the adaptive trigger mechanism in IICA-QL ensures that potential solutions are not lost while simultaneously speeding up the convergence process by avoiding unnecessary evaluations and making more efficient use of computational resources. The significantly longer time required by IICA-QL-AE suggests that applying the energy-efficient strategy indiscriminately to all individuals results in an inefficient search. By contrast, the adaptive trigger mechanism in IICA-QL ensures a balance between search efficiency and solution quality, optimizing both the computational cost and the effectiveness of the search.




6.4. Effectiveness of Operator Parameter Adaptive Adjustment Based on Q-Learning


To verify the effectiveness of the dynamic adaptive adjustment of the operator parameter based on Q-learning, IICA-QL (denoted as A) is compared with IICA-QL without this strategy (IICA-nQL, denoted as B), where the UX parameter is set to 0.55. Using the same computation time as the termination condition, each algorithm runs independently 10 times on 18 test instances. The average values of C-metric, GD, and HV obtained are shown in Table 6, with the best value for each metric highlighted in bold.



From the C-metric results in Table 6 and Figure 9, it can be seen that in 17 out of 18 test instances, C(A,B) is greater than C(B,A), and C(A,B) shows an increasing trend. This indicates that the non-dominated solutions obtained by IICA-QL generally dominate those obtained by IICA-nQL, and the advantage becomes more pronounced as the problem scale increases. From the GD and HV metrics, it is evident that in all test instances, the values for IICA-QL are better than those for IICA-nQL, indicating that IICA-QL has better convergence and diversity compared to IICA-nQL. This clearly shows that the dynamic adaptive adjustment strategy for the operator parameter based on Q-learning significantly improves the algorithm’s performance, especially in larger and more complex problem instances. Additionally, this strategy ensures that the algorithm can maintain a robust balance between exploration and exploitation, further enhancing the quality of the Pareto front.




6.5. Comparison with Other Algorithms


Since no existing research has been conducted on solving the EEMsMlAJSP, to verify the effectiveness of the algorithm, IICA-QL is compared with the algorithms BPBMO [31], PSO-GA [35], and KBOA [28], which solve similar problems to the EEMsMlAJSP. The parameters for BPBMO, PSO-GA, and KBOA are chosen as specified in their respective references. Each of the four algorithms is independently run 10 times for the runtime determined by the problem scale, and the average values of the evaluation metrics are calculated. The C-metric, GD, and HV values for each algorithm across 18 problem scales are shown in Table 7, with the best value for each metric highlighted in bold.



As seen in Table 7 and Figure 10, the GD and HV values obtained by IICA-QL are superior to those of BPBMO, PSO-GA, and KBOA in all test instances. Specifically, the performance of IICA-QL in terms of the GD metric, demonstrating its ability to find solutions that are very close to the Pareto optimal front in the solution space, highlights its significant advantage in convergence. From the HV metric, it is evident that the values obtained by IICA-QL are much higher than those of the other three algorithms, indicating that IICA-QL not only finds high-quality solutions but also maintains solution diversity, covering a broader Pareto front region. These results clearly validate the effectiveness of IICA-QL in solving the EEMsMlAJSP, showcasing its superiority in both convergence and diversity compared to existing approaches.



To further illustrate the performance of the compared algorithms, Figure 11 presents the Pareto results obtained by four algorithms on small-scale (25/13/22_2/2/2), medium-scale (82/42/71_3/3/3), and large-scale (202/104/175_4/3/4) instances. As shown in the figure, the Pareto front obtained by IICA-QL outperforms those of the other three algorithms across different instances, indicating that IICA-QL is able to achieve non-dominated solutions with lower makespan (   C  max    ) and total energy consumption (TEC) compared to BPBMO, PSO-GA, and KBOA. This further validates the effectiveness of IICA-QL in both convergence and diversity across different problem scales, as it consistently generates higher quality solutions with a broader coverage of the Pareto front.




6.6. Discussion


This paper presents a solution to the energy-efficient multi-stage multi-level assembly job shop scheduling problem (EEMsMlAJSP), a highly complex scheduling problem that arises in the manufacturing of multi-level products like ball valves and bogies. The multi-stage, multi-level structure of the EEMsMlAJSP involves not only the processing and assembly of various components but also intricate interdependencies between stages. These interdependencies often result in idle times, which contribute significantly to unnecessary energy consumption. The need to optimize both production efficiency and energy consumption makes the EEMsMlAJSP a challenging, yet important, problem in the manufacturing industry.



Through the research presented, the proposed IICA-QL has demonstrated its effectiveness in addressing the dual objectives of minimizing the maximum completion time and total energy consumption. The superiority of the proposed IICA-QL can be attributed to its two key designs:



	(1)

	
The energy-efficient decoding trigger mechanism is one of the key innovations of the IICA-QL. This mechanism ensures that, while maintaining high-quality solutions, the search process is significantly accelerated. This approach not only maintains the quality of the solutions but also expedites the convergence process, allowing the algorithm to explore the solution space more efficiently.




	(2)

	
IICA-QL achieves a balance between exploration and exploitation by using Q-learning to dynamically adjust operator parameters based on search feedback. This adaptive mechanism helps the algorithm explore new areas while refining high-quality solutions, ensuring efficient convergence, maintaining diversity, and avoiding premature stagnation.









7. Conclusions


This study addressed the multi-stage, multi-level assembly job shop scheduling problem, aiming to minimize the maximum completion time and total energy consumption. An improved imperialist competitive algorithm based on Q-learning (IICA-QL) was proposed. First, a mathematical model of the problem was established, and an energy-efficient strategy decoding trigger mechanism was designed to simultaneously enhance solution quality and search efficiency. Second, the IICA-QL for solving the EEMsMlAJSP was proposed. In IICA-QL, two heuristic rules and a random generation method are used to collaboratively construct an initial population with high quality and diversity. A dynamic adaptive adjustment strategy for the assimilation operator parameter was implemented based on Q-learning to enhance convergence speed while maintaining population diversity; thus, the exploration and exploitation capabilities of the algorithm are better balanced. A hyper-heuristic variable neighborhood search-guided revolution operation was designed to conduct detailed searches on identified high-quality colonies. The competitive phase was replaced with a joint imperialist invasion operation to achieve cooperative co-evolution and information exchange among multiple empires, resulting in more evenly distributed non-dominated solutions. Finally, the effectiveness of the proposed algorithm in solving the EEMsMlAJSP was verified through experimental results and comparison with other algorithms.



However, this study has certain limitations. First, the current model assumes static energy prices, but in real industrial environments, energy prices may fluctuate over time, which can significantly influence scheduling decisions. Therefore, future research could incorporate dynamic energy pricing models to better align with real production scenarios. Second, uncertainty is another important aspect not addressed in this study. We assumed a deterministic production environment, without considering uncertainties such as processing time fluctuations or machine breakdowns, which could greatly impact scheduling decisions in practice. Therefore, we will explore robust scheduling or scenario-based scheduling to address these uncertainties in future work.
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Figure 1. A schematic diagram of the EEMsMlAJSP. 
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Figure 2. Schematic diagram of encoding. 
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Figure 3. Illustration of trigger mechanism for decoding energy-efficient strategy. 






Figure 3. Illustration of trigger mechanism for decoding energy-efficient strategy.



[image: Applsci 14 08712 g003]







[image: Applsci 14 08712 g004] 





Figure 4. Q-table update diagram. 
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Figure 5. Schematic diagram of neighborhood structure. 
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Figure 6. Framework of IICA-QL. 
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Figure 7. Box plots of three metrics between IICA-QL and IICA-QL-PFE/IICA-QL-AE. 
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Figure 8. Box and line plots of CPU time between IICA-QL and IICA-QL-PFE/IICA-QL-AE. 
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Figure 9. Box plots of three metrics between IICA-QL and IICA-nQL. 
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Figure 10. Box plots of two metrics between IICA-QL and BPBMO/PSO-GA/ KBOA. 
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Figure 11. The Pareto fronts obtained by IICA-QL, BPBMO, PSO-GA, and KBOA with different scales. 
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Table 1. Notations of mathematical model.






Table 1. Notations of mathematical model.









	Notations
	Descriptions





	Indices
	



	  z  
	Index of products,   z = 1 , 2 , ⋯ ,  N P   



	  j  
	Index of jobs,   j = 1 , 2 , ⋯ ,  N Q   



	  i  
	Index of processing operations,   i = 1 , 2 , ⋯ ,  N O   



	  a  
	Index of assembly operations,   a = 1 , 2 , ⋯ ,  N A   



	  m  
	Index of processing machines,   m = 1 , 2 , ⋯ ,  N M   



	  t  
	Index of transportation vehicles,   t = 1 , 2 , ⋯ ,  N T   



	  w  
	Index of transportation vehicle load transportation,   w = 1 , 2 , ⋯ ,  N  t w    



	  k  
	Index of assembly machines,   k = 1 , 2 , ⋯ ,  N K   



	Parameters
	



	   M   
	Set of processing machines,    M  = {  M 1  , ⋯ ,  M m  , ⋯ ,  M   N M    }  



	   V   
	Set of transportation vehicles,    V  = {  V 1  , ⋯ ,  V t  , ⋯ ,  V   N T    }  



	   K   
	Set of assembly machine,    K  = {  K 1  , ⋯ ,  K k  , ⋯ ,  K   N K    }  



	   P   
	Set of products,    P  = {  P 1  , ⋯ ,  P z  , ⋯ ,  P   N P    }  



	    N p    
	Number of products



	    N Q    
	Number of jobs



	    N O    
	Number of processing operations



	    N A    
	Number of assembly operations



	    N M    
	Number of processing machines



	    N T    
	Number of transportation vehicles



	    N K    
	Number of assembly machines



	    N O m  ,  N A k    
	Number of operations on processing machine m and assembly machine k



	    N  t w     
	Number of load transportations by vehicle t



	    G  m a x     
	Maximum load capacity of vehicle



	    J j  ,   J   z     
	Job indexed by j, set of all jobs belonging to    P z   



	    O j i  ,   O   j     
	i-th processing operation of    J j   , set of all operations of    J j   



	    A z a  ,   A   z     
	a-th assembly operation and set of assembly operations of    P z   



	     M   j   i     
	Set of machines available for processing operation    O j i   



	   P  P m  , P  P k    
	Unit power consumption of processing machine m and assembly machine k in working mode



	   P  I m  , P  I k    
	Unit power consumption of processing machine m and assembly machine k in standby mode



	   P  S m    
	Unit power consumption of processing machine m in setup mode



	   P  T t    
	Unit power consumption of transportation vehicle t



	   D i  s  P − A     
	Distance between processing shop and assembly shop



	    V 0  ,  V t w    
	Speed of transportation vehicles when unloaded and speed of transportation vehicle t during w-th load transportation



	   P (  π i m  ) , P (  π a k  )   
	Processing time of operation    π i m    and    π a k   



	   S P (  π  i − 1  m  ,  π i m  )   
	Setup time of operation    π  i − 1  m    and    π i m   



	   I P (  π  i − 1  m  ,  π i m  )   
	Idle time between operation    π  i − 1  m    and    π i m    excluding setup time



	   I P (  π  a − 1  k  ,  π a k  )   
	Idle time between operation    π  a − 1  m    and    π a m   



	   R T (  π 1 m  )   
	Release time of job    π 1 m   



	Decision variables
	



	     π   m   = [  π 1 m  ,  π 2 m  , ⋯ ,  π   N O m   m  ]   
	Sequence of operations on processing machine m



	     π   k   = [  π 1 k  ,  π 2 k  , ⋯ ,  π   N A k   k  ]   
	Sequence of operations on assembly machine k



	     π    s t 1    ,   π    s t 2    ,   π    s t 3      
	Sequence of operations on processing stage, transportation stage, and assembly stage



	   S T (  π a k  ) , C T (  π a k  )   
	Start time and completion time of operation    π a k   



	   E  C R  s t 1   , E  C S  s t 1   , E  C P  s t 1   , E  C I  s t 1     
	Release energy consumption, setup energy consumption, processing energy consumption, and idle energy consumption in processing stage



	   E  C A  s t 3   , E  C I  s t 3     
	Assembly energy consumption and idle energy consumption in assembly stage



	   E  C  s t 1   , E  C  s t 2   , E  C  s t 3     
	Energy consumption in processing stage, transportation stage, and assembly stage



	    C  max     
	Maximum completion time of schedule



	TEC
	Total energy consumption










 





Table 2. Parameter levels.
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Parameter

	
Notation

	
Factor Level




	
1

	
2

	
3






	
Ps

	
population size

	
50

	
100

	
150




	
Nim

	
number of imperialists

	
3

	
5

	
7




	
Pa

	
assimilation probability

	
0.7

	
0.8

	
0.9




	
Pr

	
revolutionary probability

	
0.1

	
0.2

	
0.3




	
α

	
learning rate

	
0.1

	
0.2

	
0.3




	
γ

	
discount factor

	
0.7

	
0.8

	
0.9




	
ε

	
greed factor

	
0.3

	
0.6

	
0.9











 





Table 3. Average RVs and ranks of each parameter.
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	Level
	Ps
	Nim
	Pa
	Pr
	α
	γ
	ε





	1
	0.7855
	0.7943
	0.7786
	0.7912
	0.7868
	0.7844
	0.7851



	2
	0.7986
	0.7814
	0.7923
	0.7838
	0.7926
	0.7856
	0.7974



	3
	0.7786
	0.7869
	0.7917
	0.7877
	0.7832
	0.7926
	0.7801



	Delta
	0.0200
	0.0130
	0.0138
	0.0074
	0.0094
	0.0083
	0.0174



	Rank
	1
	4
	3
	7
	5
	6
	2










 





Table 4. Comparison results between IICA-QL and IICA-QL-PFE/IICA-QL-AE.
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O/J/A_M/T/K

	
C-Metric

	
GD

	
HV




	
C(A,B)

	
C(B,A)

	
C(A,C)

	
C(C,A)

	
A

	
B

	
C

	
A

	
B

	
C






	
25/13/22_2/2/2

	
0.3839

	
0.0400

	
0.2750

	
0.1600

	
0.0020

	
0.1062

	
0.0373

	
0.5436

	
0.5218

	
0.6807




	
25/13/22_3/2/2

	
0.6563

	
0.1050

	
0.2900

	
0.1409

	
0.0339

	
0.1394

	
0.0548

	
0.6450

	
0.5321

	
0.6181




	
25/13/22_3/3/3

	
0.4100

	
0.2100

	
0.3000

	
0.2000

	
0.0717

	
0.1468

	
0.1030

	
0.6490

	
0.5082

	
0.5965




	
44/23/39_2/2/2

	
0.5657

	
0.1820

	
0.3150

	
0.3000

	
0.0574

	
0.1509

	
0.0588

	
0.5470

	
0.3884

	
0.6212




	
44/23/39_3/2/2

	
0.4458

	
0.1650

	
0.3700

	
0.3450

	
0.0731

	
0.2145

	
0.1015

	
0.7129

	
0.3520

	
0.6705




	
44/23/39_3/3/3

	
0.5582

	
0.1350

	
0.3400

	
0.3133

	
0.1082

	
0.2129

	
0.0442

	
0.7045

	
0.3352

	
0.7143




	
82/42/71_2/2/2

	
0.4906

	
0.3996

	
0.5576

	
0.2904

	
0.1522

	
0.1231

	
0.1915

	
0.6359

	
0.5231

	
0.5631




	
82/42/71_3/2/2

	
0.7106

	
0.0514

	
0.4873

	
0.2845

	
0.0939

	
0.2222

	
0.0962

	
0.7420

	
0.4404

	
0.6939




	
82/42/71_3/3/3

	
0.4310

	
0.0681

	
0.2775

	
0.5630

	
0.1586

	
0.1963

	
0.0408

	
0.6667

	
0.2430

	
0.7947




	
135/70/120_3/3/3

	
0.4000

	
0.1630

	
0.5083

	
0.2593

	
0.0631

	
0.1542

	
0.0957

	
0.6700

	
0.3284

	
0.5469




	
135/70/120_4/3/3

	
0.2657

	
0.3518

	
0.4769

	
0.3038

	
0.1423

	
0.0738

	
0.1619

	
0.7283

	
0.6271

	
0.6485




	
135/70/120_4/3/4

	
0.3667

	
0.1672

	
0.5594

	
0.3510

	
0.0932

	
0.1349

	
0.1270

	
0.7616

	
0.4698

	
0.6264




	
173/88/151_3/3/3

	
0.6350

	
0.0258

	
0.7278

	
0.1113

	
0.0119

	
0.1721

	
0.1469

	
0.7686

	
0.1946

	
0.4786




	
173/88/151_4/3/3

	
0.6333

	
0.1595

	
0.8169

	
0.1060

	
0.0669

	
0.0912

	
0.2302

	
0.7864

	
0.4832

	
0.4958




	
173/88/151_4/3/4

	
0.3667

	
0.1445

	
0.7105

	
0.1496

	
0.0328

	
0.0415

	
0.1221

	
0.8258

	
0.5409

	
0.6232




	
202/104/175_3/3/3

	
0.4300

	
0.1385

	
0.3846

	
0.3389

	
0.0611

	
0.1018

	
0.0579

	
0.7153

	
0.2788

	
0.5539




	
202/104/175_4/3/3

	
0.4333

	
0.1494

	
0.8427

	
0.1018

	
0.0283

	
0.0734

	
0.1721

	
0.7675

	
0.4303

	
0.5742




	
202/104/175_4/3/4

	
0.4500

	
0.1076

	
0.6800

	
0.1413

	
0.0248

	
0.1309

	
0.0936

	
0.7295

	
0.2392

	
0.5453




	
Mean

	
0.4796

	
0.1535

	
0.4955

	
0.2478

	
0.0709

	
0.1381

	
0.1075

	
0.7000

	
0.4131

	
0.6137











 





Table 5. CPU time results of IICA-QL, IICA-QL-PFE, and IICA-QL-AE.
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O/J/A_M/T/K

	
CPU Time/10 Generations (s)




	
IICA-QL

	
IICA-QL-PFE

	
IICA-QL-AE






	
25/13/22_2/2/2

	
10.1695

	
8.3333

	
12.7660




	
25/13/22_3/2/2

	
8.1006

	
7.9235

	
9.6667




	
25/13/22_3/3/3

	
8.3721

	
8.1081

	
9.7297




	
44/23/39_2/2/2

	
9.7696

	
10.1435

	
13.9474




	
44/23/39_3/2/2

	
10.5785

	
10.1992

	
14.0659




	
44/23/39_3/3/3

	
9.8452

	
9.0857

	
12.1839




	
82/42/71_2/2/2

	
11.8182

	
12.5000

	
21.3115




	
82/42/71_3/2/2

	
12.4211

	
12.5199

	
22.4762




	
82/42/71_3/3/3

	
12.8855

	
12.8571

	
19.9659




	
135/70/120_3/3/3

	
15.5887

	
15.8373

	
32.7723




	
135/70/120_4/3/3

	
15.6354

	
16.0340

	
32.6225




	
135/70/120_4/3/4

	
16.1133

	
16.1133

	
30.3883




	
173/88/151_3/3/3

	
17.2385

	
17.6320

	
42.9167




	
173/88/151_4/3/3

	
17.0788

	
17.6345

	
42.4398




	
173/88/151_4/3/4

	
17.1053

	
16.7922

	
36.7059




	
202/104/175_3/3/3

	
18.2660

	
18.4342

	
49.8577




	
202/104/175_4/3/3

	
18.0452

	
17.8635

	
49.1385




	
202/104/175_4/3/4

	
19.1857

	
18.6786

	
44.3970




	
Mean

	
13.7898

	
13.7050

	
27.6306











 





Table 6. Comparison results between IICA-QL and IICA-nQL.
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O/J/A_M/T/K

	
C-Metric

	
GD

	
HV




	
IICA-QL(A)

	
IICA-nQL (B)

	
IICA-QL

	
IICA-nQL

	
IICA-QL

	
IICA-nQL




	
C(A,B)

	
C(B,A)

	

	

	

	






	
25/13/22_2/2/2

	
0.3206

	
0.3050

	
0.0471

	
0.0585

	
0.6789

	
0.6848




	
25/13/22_3/2/2

	
0.3767

	
0.2617

	
0.0540

	
0.0669

	
0.6966

	
0.6940




	
25/13/22_3/3/3

	
0.3937

	
0.2950

	
0.0861

	
0.1289

	
0.7014

	
0.6438




	
44/23/39_2/2/2

	
0.3283

	
0.3679

	
0.0627

	
0.0633

	
0.7132

	
0.6424




	
44/23/39_3/2/2

	
0.3922

	
0.3344

	
0.0373

	
0.1339

	
0.7103

	
0.6975




	
44/23/39_3/3/3

	
0.5367

	
0.3250

	
0.0622

	
0.1823

	
0.7490

	
0.6484




	
82/42/71_2/2/2

	
0.5235

	
0.2410

	
0.0253

	
0.1227

	
0.7581

	
0.6368




	
82/42/71_3/2/2

	
0.4920

	
0.3293

	
0.0297

	
0.0703

	
0.7999

	
0.7471




	
82/42/71_3/3/3

	
0.4343

	
0.3915

	
0.0928

	
0.1081

	
0.7274

	
0.7228




	
135/70/120_3/3/3

	
0.6492

	
0.3096

	
0.0351

	
0.0767

	
0.7898

	
0.7387




	
135/70/120_4/3/3

	
0.5101

	
0.3000

	
0.0383

	
0.0632

	
0.7579

	
0.7362




	
135/70/120_4/3/4

	
0.5018

	
0.4549

	
0.0406

	
0.0647

	
0.7681

	
0.7496




	
173/88/151_3/3/3

	
0.5481

	
0.3214

	
0.0431

	
0.0605

	
0.7361

	
0.7087




	
173/88/151_4/3/3

	
0.6261

	
0.3101

	
0.0342

	
0.1021

	
0.7803

	
0.7031




	
173/88/151_4/3/4

	
0.4405

	
0.4014

	
0.0472

	
0.1128

	
0.8402

	
0.7989




	
202/104/175_3/3/3

	
0.5780

	
0.2200

	
0.0200

	
0.1030

	
0.7784

	
0.6613




	
202/104/175_4/3/3

	
0.6417

	
0.2254

	
0.0232

	
0.1256

	
0.8142

	
0.6995




	
202/104/175_4/3/4

	
0.6208

	
0.3661

	
0.0353

	
0.0846

	
0.8250

	
0.7784




	
Mean

	
0.4952

	
0.3200

	
0.0452

	
0.0960

	
0.7569

	
0.7051











 





Table 7. Comparison of GD and HV results for IICA-QL, BPBMO [31], PSO-GA [35], and KBOA [28].
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O/J/A_M/T/K

	
GD

	
HV




	
IICA-QL

	
BPBMO

	
PSO-GA

	
KBOA

	
IICA-QL

	
BPBMO

	
PSO-GA

	
BOA






	
25/13/22_2/2/2

	
0.0028

	
0.2698

	
0.3198

	
0.2026

	
0.7888

	
0.4022

	
0.3688

	
0.5433




	
25/13/22_3/2/2

	
0.0174

	
0.1952

	
0.3166

	
0.2087

	
0.8628

	
0.5660

	
0.4059

	
0.5858




	
25/13/22_3/3/3

	
0.0021

	
0.4099

	
0.3654

	
0.2204

	
0.8997

	
0.3544

	
0.3958

	
0.5970




	
44/23/39_2/2/2

	
0.0034

	
0.3417

	
0.3449

	
0.2514

	
0.8786

	
0.3625

	
0.3508

	
0.4630




	
44/23/39_3/2/2

	
0.0017

	
0.4248

	
0.5155

	
0.3644

	
0.9560

	
0.4654

	
0.3790

	
0.5477




	
44/23/39_3/3/3

	
0

	
0.4992

	
0.3343

	
0.1943

	
0.9531

	
0.3060

	
0.3785

	
0.6688




	
82/42/71_2/2/2

	
0.0013

	
0.2599

	
0.4022

	
0.2959

	
0.8988

	
0.5376

	
0.3174

	
0.4242




	
82/42/71_3/2/2

	
0.0127

	
0.1507

	
0.3259

	
0.1707

	
0.8421

	
0.4690

	
0.3655

	
0.4644




	
82/42/71_3/3/3

	
0.0075

	
0.3547

	
0.3316

	
0.0941

	
0.7589

	
0.3434

	
0.3313

	
0.4765




	
135/70/120_3/3/3

	
0.0003

	
0.0777

	
0.3235

	
0.2528

	
0.7709

	
0.3298

	
0.2637

	
0.4445




	
135/70/120_4/3/3

	
0.0005

	
0.3859

	
0.4102

	
0.4588

	
0.9723

	
0.4449

	
0.3878

	
0.3356




	
135/70/120_4/3/4

	
0.0010

	
0.2352

	
0.4640

	
0.2639

	
0.9323

	
0.6075

	
0.3326

	
0.2695




	
173/88/151_3/3/3

	
0.0031

	
0.1326

	
0.2997

	
0.2859

	
0.8063

	
0.3339

	
0.3163

	
0.4845




	
173/88/151_4/3/3

	
0

	
0.0733

	
0.2559

	
0.1525

	
0.7225

	
0.3928

	
0.3541

	
0.4779




	
173/88/151_4/3/4

	
0.0117

	
0.0677

	
0.3560

	
0.2144

	
0.7672

	
0.6232

	
0.3032

	
0.3667




	
202/104/175_3/3/3

	
0

	
0.0676

	
0.2872

	
0.2337

	
0.8153

	
0.3370

	
0.2904

	
0.4662




	
202/104/175_4/3/3

	
0.0049

	
0.0878

	
0.2991

	
0.1570

	
0.7052

	
0.3648

	
0.2861

	
0.4667




	
202/104/175_4/3/4

	
0.0217

	
0.0575

	
0.3204

	
0.2630

	
0.7515

	
0.6474

	
0.3274

	
0.4378




	
Mean

	
0.0051

	
0.2273

	
0.3485

	
0.2380

	
0.8379

	
0.4382

	
0.3419

	
0.4733
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