Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects
<p>Examples of the specimens: (<b>a</b>) Brazilian splitting test, (<b>b</b>) uniaxial compression test, and (<b>c</b>) direct shear test.</p> "> Figure 2
<p>Testing equipment: (<b>a</b>) uniaxial compressive strength test, (<b>b</b>) direct shear test, and (<b>c</b>) Brazilian splitting test.</p> "> Figure 3
<p>The failed specimens: (<b>a</b>) Brazilian splitting test, (<b>b</b>) uniaxial compression test, and (<b>c</b>) direct shear test.</p> "> Figure 4
<p>The direct shear testing parameters at different weathering times.</p> "> Figure 5
<p>Constitutive model and material division in the mining areas.</p> "> Figure 6
<p>Calculated results for slope height of 50 m at angle of 45°.</p> "> Figure 6 Cont.
<p>Calculated results for slope height of 50 m at angle of 45°.</p> "> Figure 7
<p>Calculated results for slope height of 50 m at angle of 47°.</p> "> Figure 7 Cont.
<p>Calculated results for slope height of 50 m at angle of 47°.</p> ">
Abstract
:1. Introduction
2. Laboratory Tests of Weathering Effects
2.1. Testing Specimens
2.2. Experimental Methodologies
2.3. Mechanical Properties Test Results
3. Numerical Simulation of Slope Stability Analysis
3.1. Numerical Simulation Methodologies
3.2. Weathering Assessment Results
4. Slope Stability Evaluation and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrero, A.M. The shear strength of reinforced rock joints. Int. J. Rock Mech. Min. Sci. 1995, 32, 595–605. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Mechanism of brittle fracture of rock: Part II—Experimental studies. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1967, 4, 407–423. [Google Scholar] [CrossRef]
- Hoek, E.; Bieniawski, Z.T. Brittle fracture propagation in rock under compression. Int. J. Fract. Mech. 1965, 1, 137–155. [Google Scholar] [CrossRef]
- Li, Y.C.; Tang, C.A.; Li, D.Q.; Wu, C.Z. A New Shear Strength Criterion of Three-Dimensional Rock Joints. Rock Mech. Rock Eng. 2020, 53, 1477–1483. [Google Scholar] [CrossRef]
- Wu, S.; Ma, X.; Zhang, X.; Chen, J.; Yao, Y.; Li, D. Investigation into hydrogen induced fracture of cable bolts under deep stress corrosion coupling conditions. Tunn. Undergr. Space Technol. 2024, 147, 105729. [Google Scholar] [CrossRef]
- Windsor, C.R. Rock reinforcing systems. Int. J. Rock Mech. Min. Sci. 1997, 34, 919–951. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Momeni, A.A. Assessment of granitic rocks degradability susceptive to acid solutions in urban area. Environ. Earth Sci. 2011, 64, 753–760. [Google Scholar] [CrossRef]
- Tapponnier, P.; Brace, W.F. Development of stress-induced microcracks in Westerly Granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 103–112. [Google Scholar] [CrossRef]
- Wu, S.; Hao, W.Q.; Yao, Y.; Li, D.Q. Investigation into durability degradation and fracture of cable bolts through laboratorial tests and hydrogeochemical modelling in underground conditions. Tunn. Undergr. Space Technol. 2023, 138, 105198. [Google Scholar] [CrossRef]
- Gong, B.; Jiang, Y.J.; Chen, L.J. Feasibility investigation of the mechanical behavior of methane hydrate-bearing specimens using the multiple failure method. J. Nat. Gas Sci. Eng. 2019, 69, 13. [Google Scholar] [CrossRef]
- Wang, S.R.; Wu, X.G.; Zhao, Y.H.; Hagan, P.; Cao, C. Evolution Characteristics of Composite Pressure-Arch in Thin Bedrock of Overlying Strata During Shallow Coal Mining. Int. J. Appl. Mech. 2019, 11, 20. [Google Scholar] [CrossRef]
- Gong, B.; Jiang, Y.J.; Yan, P.; Zhang, S.H. Discrete element numerical simulation of mechanical properties of methane hydrate-bearing specimen considering deposit angles. J. Nat. Gas Sci. Eng. 2020, 76, 17. [Google Scholar] [CrossRef]
- Wu, S.S.; Chen, H.H.; Craig, P.; Ramandi, H.L.; Timms, W.; Hagan, P.C.; Crosky, A.; Hebblewhite, B.; Saydam, S. An experimental framework for simulating stress corrosion cracking in cable bolts. Tunn. Undergr. Space Technol. 2018, 76, 121–132. [Google Scholar] [CrossRef]
- Gong, J.; He, M.; Zhang, J.; Liang, W.; Wang, S. Dynamic impact mechanical properties of red sandstone based on digital image correlation method. Int. J. Min. Reclam. Environ. 2024, 1–16. [Google Scholar] [CrossRef]
- Gökceoğlu, C.; Ulusay, R.; Sönmez, H. Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng. Geol. 2000, 57, 215–237. [Google Scholar] [CrossRef]
- Liu, J.Q.; Chen, W.Z.; Liu, T.G.; Yu, J.X.; Dong, J.L.; Nie, W. Effects of Initial Porosity and Water Pressure on Seepage-Erosion Properties of Water Inrush in Completely Weathered Granite. Geofluids 2018, 2018, 4103645. [Google Scholar]
- Wang, S.R.; Xiao, H.G.; Zou, Z.S.; Cao, C.; Wang, Y.H.; Wang, Z.L. Mechanical Performances of Transverse Rib Bar During Pull-Out Test. Int. J. Appl. Mech. 2019, 11, 15. [Google Scholar] [CrossRef]
- Wu, S.S.; Li, J.P.; Guo, J.P.; Shi, G.B.; Gu, Q.H.; Lu, C.W. Stress corrosion cracking fracture mechanism of cold-drawn high-carbon cable bolts. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, 769, 10. [Google Scholar] [CrossRef]
- Li, Y.C.; Wu, C.Z.; Jang, B.A. Effect of Bedding Plane on the Permeability Evolution of Typical Sedimentary Rocks Under Triaxial Compression. Rock Mech. Rock Eng. 2014, 53, 5283–5291. [Google Scholar] [CrossRef]
- Basu, A.; TCelestino, B.; Bortolucci, A.A. Evaluation of rock mechanical behaviors under uniaxial compression with reference to assessed weathering grades. Rock Mech. Rock Eng. 2009, 42, 73–93. [Google Scholar] [CrossRef]
- Arias, D.; Pando, L.; López-Fernández, C.; Díaz-Díaz, L.M.; Rubio-Ordóñez, Á. Deep weathering of granitic rocks: A case of tunnelling in NW Spain. Catena 2016, 137, 572–580. [Google Scholar] [CrossRef]
- Heidari, M.; Khanlari, G.; Momeni, A.; Jafargholizadeh, H. The relationship between geomechanical properties and weathering indices of granitic rocks, Hamedan, Iran. Geomech. Geoengin. 2011, 6, 59–68. [Google Scholar] [CrossRef]
- Ceryan, S.; Zorlu, K.; Gokceoglu, C.; Temel, A. The use of cation packing index for characterizing the weathering degree of granitic rocks. Eng. Geol. 2008, 98, 60–74. [Google Scholar] [CrossRef]
- Ceryan, S. New weathering indices for evaluating durability and weathering characterization of crystalline rock material: A case study from NE Turkey. J. Afr. Earth Sci. 2015, 103, 54–64. [Google Scholar] [CrossRef]
- Heidari, M.; Momeni, A.A.; Naseri, F. New weathering classifications for granitic rocks based on geomechanical parameters. Eng. Geol. 2013, 166, 65–73. [Google Scholar] [CrossRef]
- Momeni, A.A.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A.; Bazvand, E. New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 2015, 185, 43–51. [Google Scholar] [CrossRef]
- Abad, S.A.N.K.; Tugrul, A.; Gokceoglu, C.; Armaghani, D.J. Characteristics of weathering zones of granitic rocks in Malaysia for geotechnical engineering design. Eng. Geol. 2016, 200, 94–103. [Google Scholar] [CrossRef]
- Wu, S.; Northover, M.; Craig, P.; Canbulat, I.; Hagan, P.C.; Saydam, S. Environmental influence on mesh corrosion in underground coal mines. Int. J. Min. Reclam. Environ. 2018, 32, 519–535. [Google Scholar] [CrossRef]
- Qi, S.; Yue, Z.Q.; Liu, C.; Zhou, Y. Significance of outward dipping strata in argillaceous limestones in the area of the Three Gorges reservoir, China. Bull. Eng. Geol. Environ. 2009, 68, 195–200. [Google Scholar] [CrossRef]
- Wu, S.S.; Ramandi, H.L.; Chen, H.H.; Crosky, A.; Hagan, P.; Saydam, S. Mineralogically influenced stress corrosion cracking of rockbolts and cable bolts in underground mines. Int. J. Rock Mech. Min. Sci. 2019, 119, 109–116. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X.; Li, J.; Wang, Z. Investigation for influences of seepage on mechanical properties of rocks using acoustic emission technique. Geofluids 2020, 2020, 6693920. [Google Scholar] [CrossRef]
- Momeni, A.; Hashemi, S.S.; Khanlari, G.R.; Heidari, M. The effect of weathering on durability and deformability properties of granitoid rocks. Bull. Eng. Geol. Environ. 2017, 76, 1037–1049. [Google Scholar] [CrossRef]
- Germanovich, L.N.; Salganik, R.L.; Dyskin, A.V.; Lee, K.K. Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Appl. Geophys. 1994, 143, 117–149. [Google Scholar] [CrossRef]
- Wu, S.; Chen, H.; Ramandi, H.L.; Hagan, P.C.; Hebblewhite, B.; Crosky, A.; Saydam, S. Investigation of cable bolts for stress corrosion cracking failure. Constr. Build. Mater. 2018, 187, 1224–1231. [Google Scholar] [CrossRef]
- Erarslan, N.; Williams, D.J. Mixed-Mode Fracturing of Rocks Under Static and Cyclic Loading. Rock Mech. Rock Eng. 2013, 46, 1035–1052. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z.R.; Chen, J.H.; Yao, Y.; Li, D.Q. Characterisation of stress corrosion durability and time-dependent performance of cable bolts in underground mine environments. Eng. Fail. Anal. 2023, 150, 107292. [Google Scholar] [CrossRef]
- Zhu, D.; Yu, B.; Wang, D.; Zhang, Y. Fusion of finite element and machine learning methods to predict rock shear strength parameters. J. Geophys. Eng. 2024, 21, 1183–1193. [Google Scholar] [CrossRef]
- Wu, S.; Guo, J.; Shi, G.; Li, J.; Lu, C. Laboratory-Based Investigation into Stress Corrosion Cracking of Cable Bolts. Materials 2019, 12, 16. [Google Scholar] [CrossRef]
- ISRM Society. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials; International Society for Rock Mechanics: Lisbon, Portugal, 1978; pp. 137–156. [Google Scholar]
- Liu, L.-L.; Wang, Y. Quantification of stratigraphic boundary uncertainty from limited boreholes and its effect on slope stability analysis. Eng. Geol. 2022, 306, 106770. [Google Scholar] [CrossRef]
- Rezaei, M.; Seyed, S.Z. Mousavi, Slope stability analysis of an open pit mine with considering the weathering agent: Field, laboratory and numerical studies. Eng. Geol. 2024, 333, 107503. [Google Scholar] [CrossRef]
- Xu, S.; Wang, B.; Wang, D.; Zhang, J. A practical stability/instability chart analysis for slope large deformations using the material point method. Eng. Geol. 2024, 338, 107611. [Google Scholar] [CrossRef]
ID | Weathering (Days) | Number of Specimens | ||
---|---|---|---|---|
Brazilian Split Tests | Uniaxial Compression Tests | Direct Shear Tests | ||
1 | 0 | 3 | 3 | 3 |
2 | 7 | 3 | 3 | 3 |
3 | 14 | 3 | 3 | 3 |
4 | 21 | 3 | 3 | 3 |
5 | 28 | 3 | 3 | 3 |
Weathering (Days) | Specimen | Tensile Strength | |
---|---|---|---|
Diameter (mm) | Height (mm) | ||
0 | 47.08 | 23.6 | 9.82 |
7 | 46.94 | 24.42 | 6.91 |
14 | 47.36 | 24.12 | 5.09 |
21 | 47.20 | 24.02 | 4.02 |
28 | 47.26 | 23.96 | 2.98 |
Weathering (Days) | Specimen | Uniaxial Compression Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | |
---|---|---|---|---|---|
Diameter (mm) | Height (mm) | ||||
0 | 47.22 | 95.44 | 66.48 | 13.29 | 0.160 |
7 | 47.18 | 95.80 | 39.51 | 4.70 | 0.295 |
14 | 47.26 | 96.26 | 24.25 | 4.34 | 0.339 |
21 | 47.04 | 94.46 | 15.29 | 3.92 | 0.379 |
28 | 47.12 | 95.08 | 10.09 | 3.55 | 0.408 |
Weathering (Days) | Fitting Results | Correlation Coefficient (R2) | Cohesion | Internal Friction Angle |
---|---|---|---|---|
0 | y = 0.9086x + 3.2702 | 0.9999 | 3.28 | 42.22 |
7 | y = 0.9298x + 1.6042 | 0.9611 | 1.60 | 42.92 |
14 | y = 0.8398x + 1.0663 | 0.9941 | 1.07 | 40.02 |
21 | y = 0.7849x + 0.6717 | 0.9946 | 0.67 | 38.10 |
28 | y = 0.7368x + 0.3809 | 0.9977 | 0.38 | 36.41 |
Weathering (Days) | Uniaxial Tensile Strength (MPa) | Uniaxial Compression Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | Internal Friction Angle | Cohesion (MPa) |
---|---|---|---|---|---|---|
0 | 9.82 | 66.48 | 13.29 | 0.160 | 42.22 | 3.28 |
7 | 6.91 | 39.51 | 4.70 | 0.295 | 42.92 | 1.60 |
14 | 5.09 | 24.25 | 4.34 | 0.339 | 40.02 | 1.07 |
21 | 4.02 | 15.29 | 3.92 | 0.379 | 38.10 | 0.67 |
28 | 2.98 | 10.09 | 3.55 | 0.408 | 36.41 | 0.38 |
Parameters | Type of Function | Fitting Formula | Correlation Coefficient (R2) |
---|---|---|---|
Uniaxial tensile strength | Exponential | y = 9.4964 × 10−0.042x | 0.9957 |
Uniaxial compression strength | Exponential | y = 64.337 × 10−0.067x | 0.9982 |
Elastic modulus | Quadratic | y = 0.0157 × 2 − 0.7738x + 13.079 | 0.9939 |
Poisson’s ratio | Quadratic | y = −0.0003 × 2 + 0.0171x + 0.1693 | 0.9797 |
Cohesion | Exponential | y = 3.0276 × 10−0.074x | 0.9916 |
Rock Properties | Uniaxial Compressive Strength/MPa | Elastic Modulus/GPa | Tensile Strength/MPa | Poisson’s Ratio | Cohesive Strength/MPa | Internal Friction Angle/° |
---|---|---|---|---|---|---|
Phosphate ore layer | 50.27 | 15.80 | 5.57 | 0.29 | 12.78 | 41.30 |
Light gray dolomite | 48.13 | 12.05 | 3.68 | 0.34 | 7.48 | 31.30 |
Dark gray dolomite | 59.10 | 16.26 | 6.18 | 0.28 | 13.05 | 47.23 |
Slope Height (m) | 0 Days | 7 Days | 14 Days | 21 Days | 28 Days |
---|---|---|---|---|---|
50 | 1.788 | 1.773 | 1.753 | 1.538 | 1.130 |
90 | 1.598 | 1.590 | 1.578 | 1.567 | 1.122 |
120 | 1.287 | 1.282 | 1.276 | 1.269 | 1.085 |
Slope Height (m) | 0 Days | 7 Days | 14 Days | 21 Days | 28 Days |
---|---|---|---|---|---|
50 | 1.720 | 1.705 | 1.683 | 1.599 | 1.094 |
90 | 1.353 | 1.346 | 1.336 | 1.325 | 1.050 |
120 | 1.230 | 1.225 | 1.219 | 1.231 | 1.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Sheng, G.; Kang, X.; Yang, M.; Li, D.; Wu, S. Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects. Appl. Sci. 2024, 14, 8449. https://doi.org/10.3390/app14188449
Liu W, Sheng G, Kang X, Yang M, Li D, Wu S. Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects. Applied Sciences. 2024; 14(18):8449. https://doi.org/10.3390/app14188449
Chicago/Turabian StyleLiu, Wei, Gang Sheng, Xin Kang, Min Yang, Danqi Li, and Saisai Wu. 2024. "Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects" Applied Sciences 14, no. 18: 8449. https://doi.org/10.3390/app14188449
APA StyleLiu, W., Sheng, G., Kang, X., Yang, M., Li, D., & Wu, S. (2024). Slope Stability Analysis of Open-Pit Mine Considering Weathering Effects. Applied Sciences, 14(18), 8449. https://doi.org/10.3390/app14188449