
Citation: Chiper, D.F.; Dobrea, D.M. A

Novel Low-Complexity and Parallel

Algorithm for DCT IV Transform and

Its GPU Implementation. Appl. Sci.

2024, 14, 7491. https://doi.org/

10.3390/app14177491

Academic Editor: Gianluigi Ferrari

Received: 4 July 2024

Revised: 5 August 2024

Accepted: 22 August 2024

Published: 24 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Novel Low-Complexity and Parallel Algorithm for DCT IV
Transform and Its GPU Implementation
Doru Florin Chiper 1,2,3,* and Dan Marius Dobrea 1

1 Faculty of Electronics, Telecommunications and Information Technology, “Gheorghe Asachi” Technical
University of Iaşi, 700506 Iaşi, Romania; mdobrea@etti.tuiasi.ro

2 Technical Sciences Academy of Romania—ASTR, 700050 Iaşi, Romania
3 Academy of Romanian Scientists—AOSR, 030167 Bucharest, Romania
* Correspondence: chiper@etti.tuiasi.ro

Abstract: This study proposes a novel factorization method for the DCT IV algorithm that allows
for breaking it into four or eight sections that can be run in parallel. Moreover, the arithmetic
complexity has been significantly reduced. Based on the proposed new algorithm for DCT IV, the
speed performance has been improved substantially. The performance of this algorithm was verified
using two different GPU systems produced by the NVIDIA company. The experimental results show
that the novel proposed DCT algorithm achieves an impressive reduction in the total processing time.
The proposed method is very efficient, improving the algorithm speed by more than 4-times—that
was expected by segmenting the DCT algorithm into four sections running in parallel. The speed
improvements are about five-times higher—at least 5.41 on Jetson AGX Xavier, and 10.11 on Jetson
Orin Nano—if we compare with the classical implementation (based on a sequential approach) of
DCT IV. Using a parallel formulation with eight sections running in parallel, the improvement in
speed performance is even higher, at least 8.08-times on Jetson AGX Xavier and 11.81-times on Jetson
Orin Nano.

Keywords: parallel algorithms; discrete trigonometric transforms; DCT-IV; GPU

1. Introduction

In 1972, Nasir Ahmed proposed the discrete cosine transform for the first time [1]. It
is well known under the abbreviation DCT. DCT plays a crucial role in the digital world,
being used in data compression and coding for digital images (DCT is the base of the JPEG 1
standard—ISO/IEC 10918 [2]) [3,4], digital audio (used in modern audio coding standards
like Dolby Digital, WMA, MP3, HDC, MPEG-H 3D Audio or AAC) [5], speech coding
(such as AAC-LD, Siren, G.722.1, G.729.1 and Opus) [6,7], digital radio (such as AAC+ and
DAB+) [8], digital video (such as H.261, H.263, H.264 (AVC or MPEG-4), H.265 (HEVC
or MPEG-H Part 2) and H.266) [9,10], or digital television (in video coding standards for
SDTV, HDTV, and VOD) [9,10].

The acronyms used in this manuscript can be found in Table A1 in Appendix A.
In 2017, internet video traffic was 73% of all worldwide consumer traffic. Right now,

this percentage is more than 80% [11]. The pandemic outbreak reinforced and supported
this growth and the necessity of users to use video material. Moreover, a gradual transition
from the SD (standard-definition) video format to the HD (high-definition) video format is
observed, moving now towards the UHD (ultra-high-definition) video format [9,10].

From all of these, we have observed that DCT and its variants are extensively used in
all modern audio, image, and video compression standards [4,7]. There are several types of
DCT transforms, but the most known ones are DCT II, DCT III, and DCT IV. The DCT IV
and DST IV were first introduced by Jain [12] and have some important applications, such
as spectral analysis, audio and image coding, and signal processing [13–15].

Appl. Sci. 2024, 14, 7491. https://doi.org/10.3390/app14177491 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177491
https://doi.org/10.3390/app14177491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3322-4663
https://orcid.org/0000-0003-1657-9494
https://doi.org/10.3390/app14177491
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177491?type=check_update&version=1

Appl. Sci. 2024, 14, 7491 2 of 26

Both DCT IV and DST IV are computationally intensive, and, for real-time applica-
tions, fast software [16–19] and even more parallel software implementations or hardware
implementations [20,21] are required. In order to obtain efficient parallel software imple-
mentations, some efficient restructuring solutions to put in evidence parallel structures
with reduced arithmetic complexity are required. But, until now, there have only been a
few parallel software implementations for DCT IV, and how to obtain an efficient parallel
decomposition with reduced arithmetic complexity is a challenging problem.

For an efficient VLSI implementation, it was shown that using regular and modular
structures such as cycle convolution and circular correlation [22,23] and efficient restructur-
ing methods can lead to some optimal concurrent solutions.

In this study, using some similar ideas, we decomposed the computation of DCT IV
into parallel structures and, using the sub-expression sharing technique, we obtained an
efficient parallel implementation with reduced arithmetic complexity.

In conclusion, the primary goal of this study is to develop, implement, and test a
specific implementation of the DCT IV algorithm that is very fast and very “light”—with
minimal memory accesses. Of course, such an algorithm will also consume less energy. We
chose the GPU architecture for the parallel implementation as it has been proved to be an
excellent platform for the parallel implementation of numerical and DSP algorithms [24–29].

This study proposes a novel parallel implementation of the DCT IV algorithm that was
implemented on a GPU architecture, but it can be run on different parallel architectures
with at least four or eight cores. The novel algorithm was tested and analyzed using two
development boards, Jetson AGX Xavier and Jetson Orin Nano.

2. Related Works

As we saw previously, the DCT algorithm and its version MDCT (modified discrete
cosine transform)—a transform based on the type-IV discrete cosine transform (DCT
IV)—are widely used in a large number of audio/image/video applications, even if both of
them are computationally expensive. This is why research in this field focuses particularly
on finding methods to accelerate execution speed. The DCT IV algorithm was introduced
for the first time in the field of digital signal processing by A.K. Jain in [12]. The complexity
of the two-dimensional DCT classical algorithm is O(n4), but using an alternative way to
implement it—as row–column decomposition—the complexity is reduced to O(n2) [30].

Table 1 summarizes, in a synthetic way, the different related works along with the
fundamental characteristics of each approach.

Some of the previous research was conducted to accelerate the execution of the DCT II
and DCT IV algorithms based on their recursive implementation [19,31–33]. These fast and
recursive algorithms are built on the factorizations for DCT II/IV matrices based on the
divide-and-conquer technique that leads to stable, recursive, radix-2 algorithms [19]. This
study also analyzes the performance trade-offs between computational precision, chip area,
clock speed, and power consumption. These trade-offs are explored in both FPGA (Xilinx
Virtex-6 XC6VLX240T-1FFG1156) and custom CMOS implementation spaces—Austria
Micro Systems CMOS semiconductor kit using the 0.18-micrometer process node.

In the literature, a large number of systolic approaches are presented to implement
DCT-II or DCT-IV algorithms [20,34]. These systolic architectures are very good and effi-
cient for VLSI implementation, obtaining higher-speed performances based on pipelining
and parallelism. In [20], a new hardware algorithm was proposed to implement an integer
approximation of the standard DCT (Int-DCT) to further reduce the computational complex-
ity of the DCT implementation. Additionally, as well as an efficient VLSI implementation
having high-speed performances (the delay reduction on the critical paths was more than
93% compared to the referenced designs), an obfuscation technique with low overheads
(based on 22 four-way, one-bit multiplexers) was also implemented [20]. Systolic arrays
are faster than classical processors but are expensive, highly specialized, and inflexible
compared to implementations made with CPU and GPUs.

Appl. Sci. 2024, 14, 7491 3 of 26

The design presented in [35] proposes another efficient parallel-pipelined archi-
tecture able to achieve eight-sample throughput in parallel per each clock cycle. The
pipelined decoder supports videos at 4K at 30 fps. The novel algorithm saves around
1.03 million clock cycles by decoding a single 4K picture frame if we compare with the
classical implementation.

Due to the widespread existence of GPU-type systems in personal computers or smart
phones, many researchers started to develop different DCT implementations for GPU
systems [30,36–39].

In the first implementation approach, used by most researchers, the DCT algorithms
benefit only from the technologies implemented in the GPU system to accelerate their exe-
cutions. In [39], Cobrnic et al., based on thread vectorization, shared memory optimization,
and overlapping data transfers with computation, obtained a speedup factor of 2.46 when
coding a 4K frame. The reference implementation was based on the NVIDIA cuBLAS
library targeting a GPU of Kepler architecture. Alqudami et al. [30] also used several
optimization techniques to speed up the execution time of the DCT and obtained a speed
factor of 7.97. The code for parallel implementation was developed using OpenCL, and
the optimization factors employed were thread granularity, work-item mapping, workload
allocation, and vector-based memory access. The supported GPU was RadeonTM HD 6850,
produced by the AMD company. In other research [38], the steps required for MPEG video
coding (DCT transform, quantization, coefficients reordering, and Huffman coding) were
based on a combination of operations executed on a GPU and/or CPU. The conclusion
was that the best solution is a hybrid approach that performs parallel computations of
DCT and quantization in the GPU, followed by a final post-processing step in the CPU.
As a direct result, a speedup of 3.6 was obtained for an increase of four-times the num-
ber of parallel cores [38]. By using a concurrent kernel (i.e., a section of code) execution,
NVIDIA technology allows different kernels to be kept active and switches the execution
between kernels when one kernel is stalled. Based on this technology, in [37], a novel
code transformation was proposed to speed up the code execution. The main idea of this
approach is to merge different kernels to balance the resource usage on GPU. One of the
main advantages of this transformation is its ability to address the resource underutilization
problem for both AMD’s and NVIDIA’s GPUs. As a direct result, for AMD’s Radeon 5870,
an average speedup of 1.28 and a maximum speedup of 1.53 were obtained [37]. In the case
of NVIDIA’s GTX280 (which is based on Fermi architecture), an average speedup of 1.17
and a maximum speedup of 1.37 were obtained [37].

In the second approach, the DCT algorithm supported by the GPU obtained a perfor-
mance boost based on the parallel architecture of the GPU and, more importantly, on a
specific development of the mathematical part of the DCT algorithm. For example, based on
the convolution–multiplication properties of the discrete trigonometric transforms in [36],
a new method to compute the DCT is proposed. This algorithm also requires the calcu-
lation of DST coefficients. To calculate the DST coefficients, a novel fast CST (cosine to
sine transform) was developed to reduce the additional computational overhead of this
operation. By using this method, between 35 and 64% of the computations are saved.
However, this advantage comes with a cost—the new algorithm requires twice as much
memory as the classical one to store DCT and DST coefficients [36]. In the last five years,
three new important algorithms for DCT IV implementation have been reported [21,33,40].
In [21,40], two parallel algorithms for DCT IV were presented that were implemented in
hardware, but they can also be used for parallel implementation on GPU, as will be shown
in Section 6. The first algorithm [21] is based on factorization in four sections of the DCT IV
algorithm. These sections can work in parallel independently of each other. The second
algorithm [40] decomposes the DCT IV transform into six independent sections.

All of these algorithms, even if they are implemented or tested on FPGA, ASIC, or GPU
structures, are executed on devices implemented in CMOS technology characterized by
several limitations, like sensitivity to noise, operating frequency, limited voltage tolerance,
leakage current, design complexity, and manufacturing complexity [41]. To overcome these

Appl. Sci. 2024, 14, 7491 4 of 26

limitations, [42] presented an implementation of the DCT algorithm based on quantum-dot
cellular automata (QCA) technology. The QCA technology is a promising nanotechnology
capable of defeating the limitations of CMOS technology [42]. This new implementation
of the DCT algorithm, compared with the best previous design [43], obtained an area that
is 20% smaller, and the implemented DCT solutions dissipate 1.394 × 10−4 mW, whereas
CMOS is 0.195 mW while the previous best QCA architecture is 0.091 mW of power [42].
Although QCA was proposed as a replacement for CMOS technology, this technology has
not been widely adopted, and its global impact is minimal.

Table 1. A synthesis of similar research presented in the Related Work section.

Paper Main Goal Method Used to
Achieve the Goal(s)

Development
Device

Data
Representation Technology

[19]
Best trade-off between:

precision, chip area, speed,
and power consumption

Recursive
Implementation

FPGA and
VLSI simulation Fixed-Point CMOS

[32] High-speed,
Area-efficient VLSI simulation

[20]
High-speed,

Area-efficient,
Hardware security Systolic

implementation

VLSI simulation

Fixed-Point CMOS
[21] High-speed,

Area-efficient VLSI simulation

[34] High-speed FPGA

[40] High-speed,
Area-efficient VLSI simulation

[35]
Better Parallel-pipeline

implementation FPGA Fixed-Point CMOS(Hardware cost/throughput)

[30]

High-speed
Technologies

implemented in
the supporting

system

CPU (AMD64) or GPU (AMD)

Floating point CMOS
[37] GPU (AMD and NVIDIA)

[38] CPU (AMD64) and GPU
(NVIDIA)

[39] GPU (NVIDIA)
[42] Low power consumption Simulation Fixed-Point QCA

[21] High-speed,
area-efficient Specific development

of the mathematical
part of the algorithm

VLSI simulation Fixed-Point
CMOS[36] High-speed CPU (PA-RISC) Floating point

[40] High-speed, area-efficient VLSI simulation Fixed-Point

Implementations based on FPGA- or ASIC-type systems have the disadvantage of
being very inflexible. Another fundamental difference between implementations based on
CPU and/or GPU compared to those made in FPGAs is related to the data representation
method. The conventional DCT is inefficient for floating-point implementation within
the FPGA devices due to increased hardware complexity and lower-speed performance.
Moreover, after developing a new DCT-type algorithm, the system just created must
be embedded into the final product that uses the new DCT implementation. However,
using a GPU to implement and test new algorithms has a significant advantage: these
units are already implemented on all personal computers, laptops, and smartphones.
So, all the steps from algorithm development to its physical use in real applications are
considerably reduced.

3. Proposed DCT IV Algorithm for Parallel Implementation

Due to the wide range of applicability of the DCT IV transform and the interest shown
by the academic community, we present here the mathematical background of a novel
implementation of this algorithm.

Appl. Sci. 2024, 14, 7491 5 of 26

For a real input sequence x(i) : i = 0, 1, . . . , N − 1, type IV DCT (DCT-IV) is defined
using the following equation [44]:

Y(k) =

√
2
N

·
N−1

∑
i=0

x(i) · cos[(2i + 1)(2k + 1)α] (1)

where k = 0, 1 , . . . , N − 1 and
α =

π

4N
(2)

To simplify the presentation, we remove the constant coefficient
√

2
N from the DCT-IV

equation, and we add this multiplication at the end of the algorithm.
Equations (1) and (2) represent the classical definition of DCT IV and cannot be

implemented efficiently in parallel with low complexity.
In the following, we propose a new algorithm that, in addition to being an efficient

parallel implementation, by braking the computation into four or eight computational
structures that can be computed in parallel, has a low arithmetic complexity by using the
sub-expression sharing technique, as evidenced below.

In order to obtain an efficient parallel algorithm, we need to reformulate Equation (1)
using some auxiliary input and output restructuring sequences, and we reordered them in
an appropriate manner.

In the following, we consider the transform length a prime number N = 17.
The output sequence {Y(k) : k = 1 , 2 , . . . , N − 1} can be recursively computed using

the following equations:

Y(0) = xC(0) +
(N−1)/2

∑
i=1

[xC(i) + xC(N − 1 − i)] (3)

Y(k) = Tc(k)− Y(k − 1) for k = 1 , 2, . . . , N − 1 (4)

where we used an auxiliary output sequence {Tc(k) : k = 1, 2 , . . . , N − 1} and the follow-
ing auxiliary input sequence:

xC(i) = x(i) · cos[(2i + 1)α] for i = 0, 1, . . . , N − 1 (5)

The input auxiliary sequence {xa(i) : i = 0, . . . , N − 1} is recursively computed
as follows:

xa(N − 1) = xC(N − 1) (6)

xa(i) = xC(i)− xa(i + 1) (7)

for i = N − 2, . . . , 1, 0.
For a compact expression of the following relations, we note:

A =

1 1 1 0 −1
1 −1 1 −1 0
1 1 −1 0 1
1 −1 −1 1 0

 (8)

B =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 0 −1 0
0 1 0 −1

 (9)

Appl. Sci. 2024, 14, 7491 6 of 26

C =

1/4 1/4 1/4 1/4
1/4 −1/4 1/4 −1/4
1/2 0 −1/2 0
1/2 −1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2

 (10)

Using the above auxiliary input and output sequences and sub-expression sharing
technique, we obtained the below equations that can be efficiently computed in parallel
and have a reduced arithmetic complexity that allow for an efficient implementation on a
GPU significantly faster than the classical algorithm.

Thus, we have:
T(6)

−T(14)
T(10)
−T(12)

=

−[x a(1) + xa(16)] xa(8) + xa(9)

xa(2) + xa(15) −[x a(1) + xa(16)]
−[x a(4) + xa(13)] xa(2) + xa(15)

xa(8) + xa(9) −[x a(4) + xa(13)]
−[x a(4) + xa(13)] xa(2) + xa(15)

xa(8) + xa(9) −[x a(4) + xa(13)]
−[x a(1) + xa(16)] xa(8) + xa(9)

xa(2) + xa(15) −[x a(1) + xa(16)]

x

−2cos(12α)
2cos(28α)
−2cos(20α)
2cos(24α)

+

xa(3) + xa(14) −[x a(7) + xa(10)]

−[x a(6) + xa(11)] xa(3) + xa(14)
−[x a(5) + xa(12)] xa(6) + xa(11)

xa(7) + xa(10) −[x a(5) + xa(12)]
xa(5) + xa(12) −[x a(6) + xa(11)]

−[x a(7) + xa(10)] xa(5) + xa(12)
−[x a(3) + xa(14)] xa(7) + xa(10)

xa(6) + xa(11) −[x a(3) + xa(14)]

x

2cos(32α)
−2cos(16α)
−2cos(8α)
2cos(4α)

(11)

Using sub-expression sharing to reduce the arithmetic complexity, we can reformulate
the previous equation as follows:

T(6)
T(14)
T(10)
T(12)

 = A × diag

C ×

xa(1) + xa(16)
xa(2) + xa(15)
xa(4) + xa(13)
xa(8) + xa(9)

︸ ︷︷ ︸

XA1

× B ×

2cos(12α)
2cos(28α)
2cos(20α)
2cos(24α)

︸ ︷︷ ︸

cos2

+A × diag

C ×

xa(3) + xa(14)
xa(6) + xa(11)
xa(5) + xa(12)
xa(7) + xa(10)

︸ ︷︷ ︸

XA2

× B ×

2cos(32α)
2cos(16α)
2cos(8α)
2cos(4α)

︸ ︷︷ ︸

cos1

(12)

TC(6)

TC(14)
TC(10)
TC(12)

 =

(xa(0) + T(6)) ·2cos(6α)
(xa(0) + T(14)) ·2cos(14α)
(xa(0) + T(10)) ·2cos(10α)
(xa(0) + T(12)) ·2cos(12α)

 (13)

Also, we have:

Appl. Sci. 2024, 14, 7491 7 of 26

−T(16)
−T(8)
T(4)
−T(2)

=

xa(1) + xa(16) xa(8) + xa(9)
xa(2) + xa(15) xa(1) + xa(16)

−[x a(4) + xa(13)] −[xa(2) + xa(15)]
−[x a(8) + xa(9)] −[x a(4) + xa(13)]

−[x a(4) + xa(13)] −[xa(2) + xa(15)]
xa(8) + xa(9) xa(4) + xa(13)

xa(1) + xa(16) xa(8) + xa(9)
−[x a(2) + xa(15)] −[x a(1) + xa(16)]

x

−2cos(32α)
−2cos(16α)

2cos(8α)
2cos(4α)

+

xa(6) + xa(11) xa(3) + xa(14)

−[x a(5) + xa(12)] xa(6) + xa(11)
−[x a(7) + xa(10)] xa(5) + xa(12)

xa(3) + xa(14) xa(7) + xa(10)
xa(7) + xa(10) −[x a(5) + xa(12)]

−[x a(3) + xa(14)] xa(7) + xa(10)
−[x a(6) + xa(11)] −[x a(3) + xa(14)]

xa(5) + xa(12) xa(6) + xa(11)

x

2cos(12α)
−2cos(28α)
2cos(20α)
−2cos(24α)

(14)

Using sub-expression sharing to reduce the arithmetic complexity, we can reformulate
the previous equation as follows:

T(16)
T(8)
T(4)
T(2)

 = A × diag

C ×

xa(1) + xa(16)
xa(2) + xa(15)
xa(4) + xa(13)
xa(8) + xa(9)

× B ×

2cos(32α)
2cos(16α)
2cos(8α)
2cos(4α)

+A × diag

C ×

xa(6) + xa(11)
xa(5) + xa(12)
xa(7) + xa(10)
xa(3) + xa(14)

︸ ︷︷ ︸

XA3

× B ×

2cos(12α)
2cos(28α)
2cos(20α)
2cos(24α)

(15)

TC(16)
TC(8)
TC(4)
TC(2)

 =

(xa(0) + T(16)) ·2cos(16α)
(xa(0) + T(8)) ·2cos(8α)
(xa(0) + T(4)) ·2cos(4α)
(xa(0) + T(2)) ·2cos(2α)

 (16)

T(11)
T(3)
T(7)
T(5)

=

−[x a(1)− xa(16)] −[xa(8)− xa(9)]

xa(2)− (15) [x a(1)− xa(16)]
−[x a(4)− xa(13)] xa(2)− xa(15)
−[xa(8)− xa(9)] xa(4)− xa(13)]

[x a(4)− xa(13)] −[x a(2)− xa(15)]
xa(8)− xa(9) [x a(4)− xa(13)]

[x a(1)− xa(16)] xa(8)− xa(9)
−[x a(2)− xa(15)] −[x a(1)− xa(16)]

x

2cos(12α)
−2cos(28α)
−2cos(20α)
2cos(24α)

+

−[xa(3)− xa(14)] [x a(7)− xa(10)]
[x a(6)− xa(11)] xa(3)− xa(14)

−[x a(5)− xa(12)] −[xa(6)− xa(11)]
−[xa(7)− xa(10)] [x a(5)− xa(12)]

−[x a(5)− xa(12)] −[x a(6)− xa(11)]
−[x a(7)− xa(10)] xa(5)− xa(12)

−[x a(3)− xa(14)] xa(7)− xa(10)
[x a(6)− xa(11)] [x a(3)− xa(14)]

x

−2cos(32α)
2cos(16α)
−2cos(8α)
2cos(4α)

(17)

Appl. Sci. 2024, 14, 7491 8 of 26

Using sub-expression sharing to reduce the arithmetic complexity, we can reformulate
the previous equation as follows:

T(11)
T(3)
T(7)
T(5)

 = A × diag

C ×

−(xa(1)− xa(16))

xa(2)− xa(15)
xa(4)− xa(13)
xa(8)− xa(9)

︸ ︷︷ ︸

XA4

× B ×

2cos(12α)
2cos(28α)
2cos(20α)
2cos(24α)

+A × diag

C ×

xa(3)− xa(14)

−(xa(6)− xa(11))
xa(5)− xa(12)
xa(7)− xa(10)

︸ ︷︷ ︸

XA5

× B ×

2cos(32α)
2cos(16α)
2cos(8α)
2cos(4α)

(18)

TC(11)
TC(3)
TC(7)
TC(5)

 =

(xa(0) + T(11)) ·2cos(11α)
(xa(0) + T(3)) ·2cos(3α)
(xa(0) + T(7)) ·2cos(7α)
(xa(0) + T(5)) ·2cos(5α)

 (19)

T(1)
T(9)

T(13)
T(15)

=

−[x a(1)− xa(16)] xa(8)− xa(9)

xa(2)− xa(15) −[x a(1) + xa(16)]
[x a(4)− xa(13)] xa(2)− xa(15)

xa(8)− xa(9) [x a(4)− xa(13)]
[x a(4)− xa(13)] xa(2)− xa(15)

xa(8)− xa(9) [x a(4)− xa(13)]
−[x a(1)− xa(16)] xa(8)− xa(9)

xa(2)− xa(15) [x a(1)− xa(16)]

x

2cos(32α)
2cos(16α)
2cos(8α)
2cos(4α)

+

[x a(6)− xa(11)] −[x a(3)− xa(14)]
−[x a(5)− xa(12)] [x a(6)− xa(11)]

[x a(7)− xa(10)] xa(5)− xa(12)
xa(3)− xa(14) [x a(7)− xa(10)]

−[x a(7)− xa(10)] −[x a(5)− xa(12)]
−[x a(3)− xa(14)] −[xa(7)− xa(10)]

−[x a(6)− xa(11)] xa(3)− xa(14)
xa(5)− xa(12) −[x a(6)− xa(11)]

x

−2cos(12α)
−2cos(28α)
2cos(20α)
2cos(24α)

(20)

Using sub-expression sharing to reduce the arithmetic complexity, we can reformulate
the previous equation as follows:

T(1)
T(9)

T(13)
T(15)

 = A × diag

C ×

−(xa(1)− xa(16))

xa(2)− xa(15)
xa(4)− xa(13)
xa(8)− xa(9)

× B ×

2cos(32α)
2cos(16α)
2cos(8α)
2cos(4α)

+A × diag

C ×

−(xa(6)− xa(11))

xa(5)− xa(12)
xa(7)− xa(10)
xa(3)− xa(14)

︸ ︷︷ ︸

XA6

× B ×

2cos(12α)
2cos(28α)
2cos(20α)
2cos(24α)

(21)

TC(1)
TC(9)
TC(13)
TC(15)

 =

(xa(0) + T(1)) ·2cos(1α)
(xa(0) + T(9)) ·2cos(9α)
(xa(0) + T(13)) ·2cos(13α)
(xa(0) + T(15)) ·2cos(15α)

 (22)

In Equations (12), (15), (18) and (21), we have diag[a0, a1] =

[
a0 0
0 a1

]
.

Appl. Sci. 2024, 14, 7491 9 of 26

A flowchart of the parallel execution is shown in the following figure, Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 27

Figure 1. A flowchart of the parallel execution of the proposed algorithm.

4. Implementation
The implementation of the mathematical relation, previously presented, will be

shown in this section of this study, starting with a brief description of the development
boards used in all tests together with the analysis carried out in this study, followed by a
general overview of CUDA cores placed on these development boards.

We choose to present the performance of the algorithm on two different Nvidia
CUDA architectures so that the reader can have a clear and global picture of its perfor-
mance compared to the classical implementation of the DCT algorithm. The increase in
performance obtained with the new parallel algorithm presented in this study depends
on the architecture on which it will run. The architectures on which we will analyze the
performances of the parallel algorithm are Volta and Ampere.

4.1. Overview of Nvidia Used Development Boards
Due to the parallel nature of the developed algorithm, the NVIDIA graphical pro-

cessing units (GPUs) were chosen to be the base support processors on which the perfor-
mances of the developed algorithm were analyzed. As a direct result, two Nvidia Jetson
development boards were used. The Nvidia Jetson boards contain an ARM processor, a
GPU (composed mainly of different CUDA cores), memory, and various supporting cir-
cuits and interfaces.

The NVIDIA Jetson systems have various computing powers, power efficiency, and
form factors. As a rule of thumb, Jetson Nano systems are mainly designed for entry-level
applications—even if the difference between Jetson Nano and Jetson Orin Nano is huge,
the last family of development systems (Jetson Orin Nano) is the weakest from the entire
Jeson Orin series, composed of Jetson Orin Nano, Jetson Orin NX and Jetson AGX Orin.
The Jetson AGX (Xavier and Orin) systems offer exceptional computational performances,

Figure 1. A flowchart of the parallel execution of the proposed algorithm.

4. Implementation

The implementation of the mathematical relation, previously presented, will be shown
in this section of this study, starting with a brief description of the development boards
used in all tests together with the analysis carried out in this study, followed by a general
overview of CUDA cores placed on these development boards.

We choose to present the performance of the algorithm on two different Nvidia CUDA
architectures so that the reader can have a clear and global picture of its performance com-
pared to the classical implementation of the DCT algorithm. The increase in performance
obtained with the new parallel algorithm presented in this study depends on the architec-
ture on which it will run. The architectures on which we will analyze the performances of
the parallel algorithm are Volta and Ampere.

4.1. Overview of Nvidia Used Development Boards

Due to the parallel nature of the developed algorithm, the NVIDIA graphical process-
ing units (GPUs) were chosen to be the base support processors on which the performances
of the developed algorithm were analyzed. As a direct result, two Nvidia Jetson devel-
opment boards were used. The Nvidia Jetson boards contain an ARM processor, a GPU
(composed mainly of different CUDA cores), memory, and various supporting circuits
and interfaces.

The NVIDIA Jetson systems have various computing powers, power efficiency, and
form factors. As a rule of thumb, Jetson Nano systems are mainly designed for entry-level
applications—even if the difference between Jetson Nano and Jetson Orin Nano is huge,
the last family of development systems (Jetson Orin Nano) is the weakest from the entire
Jeson Orin series, composed of Jetson Orin Nano, Jetson Orin NX and Jetson AGX Orin.

Appl. Sci. 2024, 14, 7491 10 of 26

The Jetson AGX (Xavier and Orin) systems offer exceptional computational performances,
being the best from their families, e.g., providing up to 275 TOPS in the case of the Jetson
AGX Orin developer kit.

In our case, the proposed parallel algorithm was tested on two different development
systems, as shown in Table 2. The new algorithm ran on the NVIDIA GPU (CUDA
cores) in such a way that each section of the algorithm is executed on another core of the
development system.

Table 2. The main features of the development systems used in this research.

Development System: Jetson AGX Xavier Jetson Orin Nano

GPU:

Architecture Volta Ampere

SM Count 8 8

CUDA cores 512 1024

Tensor cores 64 32

L1 Cache/SM 128 KB 128 KB

L2 Cache 512 KB 256 KB

AI performance (INT8) 32 TOPS 40 TOPS

Floating point (FP32) 1.41 TFLOPS 1.28 TFLOPS

Min. Frequency 114 MHz 306 MHz

Max. Frequency 2.265 GHz 624 MHz

CPU:

Processor
8-core

NVIDIA Carmel
ARM v8.2

6-core
Arm Cortex-A78AE

v8.2

Memory
32 GB 256-bit,

LPDDR4x,
136.5 GB/s

8GB 128-bit,
LPDDR5,
68 GB/s

CPU max. frequency 1.2 GHz 1.5 GHz

Jetson Orin modules are the newest in the Jetson ecosystem series, being a big step in
AI, with a significant impact in all related applications (robotics, smart city, life science, etc.)
due to the huge computation power that brings to all of them, e.g., the performances of the
less powerful systems, of the Jetson Nano series, from the Orin family of modules is similar
or more powerful than the Jetson AGX development systems of the previous Xavier family.

The development systems are based on different ARM processors paired with
LPDDR4X, or LPDDR5 memory, which are connected using 128- and 256-bit memory
interfaces. As a direct result of memory type and memory bus interface, the maximum data
exchange rate varies between 68 GB/s and up to 136.5 GB/s—Table 2.

4.2. Overview of CUDA Used Architectures

NVIDIA developed CUDA as a general-purpose parallel computing platform and
as a programming model that can accelerate intensive applications that are executed on
GPUs. CUDA cores are the most basic floating-point unit, part of an NVIDIA GPU, and
are able to perform one operation per clock cycle. The CUDA cores are grouped inside
a GPU on several Streaming Multiprocessors (SMs). All GPUs on which we tested the
algorithm, existing on all the development systems, are CUDA capable and belong to
two different architecture generations: Volta and Ampere. The CUDA cores for both
architectures support mathematical operations on INT8, FP16, FP32, and FP64 precisions.

Each NVIDIA architecture brings new improvements and new concepts regarding
the previous architectures. For example, NVIDIA improved the design for the SM with
new data path placement, improved instruction scheduler, enhancements on workload
balancing, improvements to control logic partitioning, more efficient memory accesses,

Appl. Sci. 2024, 14, 7491 11 of 26

etc., in order to increase the efficiency of the previous architecture. Compared with the
earlier architecture, the Volta architecture increases the number of CUDA cores per SM to
64, while the Ampere architecture supports 128 CUDA cores per SM. Based on the load
of the GPU, their frequency can be varied between a minimum and a maximum limit, as
shown in Table 2. Another factor differentiating NVIDIA system architectures lies in the
L1 and L2 memory related to each SM—Table 2. However, along with the increased L2
capacity, the bandwidth of the L2 cache to the SMs is also different in different architectures.
So, the GPU performance is mainly determined by the number of CUDA cores, the clock
speed of each core, the architecture of the cores, and data throughput.

Different algorithms (e.g., AI algorithms) require the use of numbers with fewer frac-
tion bits (into the float representation) for obtaining a balance between the computationally
expensive FP32 representation (single-precision floating-point format imposed by IEEE754
standard [45]) and the reduced precision and range of the half-precision FP16 representation
(also enforced by IEEE754 standard). As a direct result, the Google company developed
the BFloat16 format to address this problem. The Ampere architecture is the first one from
the NVIDIA family of processors able to manipulate silicon numbers in BFloat16 precision,
Table 3.

Table 3. Supported CUDA and Tensor Core precisions for all NVIDIA-used architectures.

Volta Ampere

Supported CUDA
core precisions

INT8, FP16,
FP32, FP64

INT8, FP16,
Bfloat16, FP32, FP64

Supported Tensor
Core precisions FP16 INT1, INT4, INT8, FP16,

Bfloat16, TF32, FP64

One of the main differences between the different NVIDIA architectures, presented in
Table 2, is the presence or absence of the Tensor Core units. These units were introduced for
the first time in the Volta architecture and could matrix Fused Multiplication Addition and
add computation very quickly. In this mode, two 4 × 4 matrices are multiplied and added
to a 4 × 4 matrix. If the first two matrices have elements based on FP16 representation, for
the Volta architecture (Table 3), the last matrix can have elements based on FP16 or FP32
representation. The subsequent architecture supports a better precision representation and
brings novel approaches to improve computational performances. The Ampere architecture,
based on the third generation of the Tensor Core, adds computation capabilities of BFloat16,
TF32, and FP64 representation. In the Ampere architecture, other improvements exist, like
the ability to manage sparse matrix mathematics more efficiently.

So, CUDA units are designed to perform simple mathematical calculations efficiently,
while Tensor units perform complex matrix calculations in the most efficient way possible.

4.3. Program Implementation, Testing, and Analysis Approaches

To highlight and analyze the algorithm’s performance, introduced in this study, the
parallel DCT versions (with four and eight sections) were implemented in the C language,
and each section of the algorithm was executed on a different CUDA processor. At the
end of this study, we will present a comparison with two other algorithms for parallel
calculation of the DCT IV transform. All of these algorithms were implemented and tested
on the same development systems as the novel algorithm, so a reference is necessary.
Even in these conditions, where the testing is carried out under identical conditions for all
algorithms, a correct comparative evaluation of these algorithms is difficult. For example,
these algorithms use data sequences of 13 elements [21,40], while our algorithm works on
17 values. For this reason, we will compare all of them with a reference algorithm that will
work on the same number of elements, 13 and 17, and, in the end, the comparison will be
made based on the speed improvements obtained by these algorithms as compared with
the reference algorithm.

Appl. Sci. 2024, 14, 7491 12 of 26

As a reference, the C implementation of the classical DCT-IV algorithm was used,
given by the following relation [44]:

Xk =
2
N ∑N−1

n=0 xncos
[

π

N

(
n +

1
2

)(
k +

1
2

)]
for k = 0, . . . , N − 1 (23)

In the previous relation, the xn sequence, composed of N real numbers, is transformed
into another output sequence, Xk, of real numbers with the same length as the input one
through the DCT-IV transform. This classical implementation was also executed on a
CUDA core when performances were analyzed.

CUDA units can work with numbers in different representations, such as INT8, FP16,
Bfloat16, FP32, or FP64, Table 3. This study presents almost all results on the double (FP64)
data type only. This research mainly aims to show the performance improvements in the
new algorithm compared to other algorithms implemented with the exact data representa-
tion and operating under similar conditions. When algorithms use data representation with
fewer bits, they also achieve lower accuracy. This balance of execution speed/accuracy
depends on the requirements of each practical application. To have a deeper understanding
of the performance increase that can be achieved based on the use of a lower resolution, an
analysis based on a Bfloat16 representation was also performed.

Also, the DCT IV performance can be increased even more by using intrinsic-type
trigonometric functions in the algorithm implementation. The intrinsic implementation for
the trigonometric functions is faster but has domain restrictions and lower accuracy. The
less accurate trigonometric functions are fine for some applications, but the intrinsic may
not be sufficient for others. For this reason, we have avoided using these functions.

In what follows, a measurement cycle involves (1) copying data from CPU to GPU,
(2) the execution of a DCT IV transform (given by relation (1) or one of the novel DCT
transform implementation proposed in this study—with 4 sections or with 8 sections),
followed by (3) copying data from GPU to CPU. Appendix B depicts a short presentation
of how the novel algorithm with four sections was implemented. Based on this cycle,
one determination is the average value of 1000 sequential measurement cycles. For the
statistical values of the performances obtained on each architecture supported by each
development system, 30 such determinations were executed. Subsequently, the average
value and the standard deviation were calculated and are presented in the following section.
The dataset we used as input to calculate the DCT IV transforms is randomly generated by
the rand() function from the C language and mapped to [−1, 1].

In a parallel application, the minimum execution time is always higher than the time
required to execute the part of a program that cannot be executed in parallel. Accordingly,
Amdahl’s Law, the theoretical overall speedup of a program, is given by [46]:

Soverall =
1(

1 − portion_timeoptimized

)
+

portion_timeoptimized
Soptimized

(24)

In relation (24), portion_timeoptimized is the portion of execution time of the part of the
program that can benefit from parallel execution and Soptimized is the theoretical speedup
of the part able to benefit from parallel execution due to the improved system resources,
e.g., the number of cores. In the case of using two cores, the theoretical speedup, Soptimized,
is considered to be 2. However, working with two cores does not necessarily double the
performance of the part of the application where they are used. Many factors prevent
reaching this limit, such as the latency given by the data transfer to the parallel system or
the additional code required to transform a serial program to be modified to run in parallel.

The running time of the measurement cycle was calculated based on events, based on
CUDA event API. Functions like cudaEventCreate (), cudaEventRecord (), and cudaEven-
tElapsedTime () were used to measure the time. This time measurement approach has a
resolution of approximately one-half microsecond [47]. This time measurement technique
is extensively accepted for performance studies in the case of GPUs [47–50].

Appl. Sci. 2024, 14, 7491 13 of 26

Appendix C presents the modalities used to obtain the specific binary file associated
with a particular GPU architecture.

Also, the NVIDIA Nsight Compute package was used to profile the CUDA applications
for GPU utilization or memory workload.

5. Experimental Results

The execution time depends on many factors, like the programming language used,
compiler (mainly if different optimizations are used), operating system, hardware archi-
tecture, the quantity of available memory, system clock frequency, memory bus speed, the
activity and the number of programs with which it shares the resources of the processor on
which it runs, etc.

Analyzing the novel method of factorization of the DCT IV transformation given
by relations (12), (15), (18), and (21), we notice that these relations are independent of
each other, and they can be implemented in parallel on four different processors. This
implementation is presented in Appendix B and is mentioned throughout this study by
parallel implementation of the DCT IV algorithm with four sections. Moreover, each
of the relations (12), (15), (18), and (21) is presented as two products of matrices added
together. The parallel implementation of eight sections uses a single processor for each
matrix product previously mentioned. This last implementation is mentioned in this study
by parallel implementation of the DCT IV algorithm with eight sections. In conclusion, the
novel factorization of the DCT IV transform, presented in this study, can implement the
DCT IV transform only based on four or eight sections that can run in parallel.

In order to quantify the performance of the novel proposed algorithm as accurately as
possible, each section of the algorithm was executed on a different CUDA core, and no other
applications were run on any existing GPU cores while determining these performances.

The results from Tables 4–7 are presented as the values of mean, standard deviation
(Mean ± SD), minimum, and maximum of the execution time for each specific measurement
condition presented in the table. The algorithms were implemented based on a double
numeric representation.

Table 4. Performances were obtained by executing the two DCT computing algorithms (the classical
algorithm and the parallel implementation with 4 sections) when the GPU frequency was set to the
maximum values.

Processing
Parameters

Jetson AGX Xavier Jetson Orin Nano

Classical
Implementation

Parallel
Implementation

Classical
Implementation

Parallel
Implementation

Mean [ms]: 0.276 0.051 0.556 0.055
SD: 0.00080 0.00071 0.01393 0.00150

Min. [ms]: 0.275 0.048 0.547 0.054
Max. [ms]: 0.277 0.052 0.628 0.060

Speedup: 5.41 10.11

Table 5. Performances obtained by executing the two DCT computing algorithms (classical algo-
rithm and the parallel implementation with 4 sections) when the GPU frequency was set to the
minimum values.

Processing
Parameters

Jetson AGX Xavier Jetson Orin Nano

Classical
Implementation

Parallel
Implementation

Classical
Implementation

Parallel
Implementation

Mean [ms]: 2.590 0.214 1.101 0.092
SD: 0.00610 0.00132 0.03137 0.00025

Min. [ms]: 2.586 0.210 1.062 0.091
Max. [ms]: 2.620 0.216 1.200 0.093

Speedup: 12.1 11.97

Appl. Sci. 2024, 14, 7491 14 of 26

The most important result from Tables 4–7 is the practical speedup obtained by the
novel algorithm compared to the classical one based on the direct implementation of
relation (1).

Moreover, as a first observation of the obtained results, we can see that the existence
of a more powerful architecture (such as the Ampere type existing in the Jetson Orin Nano
development system) can obtain speed increases in the execution of the new algorithm
compared to the classical one, greater than those obtained on an older architecture such as
the Volta type existing in the GPU on the Jetson AGX Xavier board.

Table 6. Performances were obtained by executing the two DCT computing algorithms (classical
algorithm and the parallel implementation with 8 sections) when the GPU frequency was set to the
maximum values.

Processing
Parameters

Jetson AGX Xavier Jetson Orin Nano

Classical
Implementation

Parallel
Implementation

Classical
Implementation

Parallel
Implementation

Mean [ms]: 0.275 0.034 0.567 0.048
SD: 0.00118 0.00025 0.02028 0.00136

Min. [ms]: 0.272 0.034 0.551 0.047
Max. [ms]: 0.277 0.035 0.630 0.053

Speedup: 8.08 11.81

Table 7. Performances obtained by executing the two DCT computing algorithms (classical algorithm
and the parallel implementation with 8 sections) when GPUs frequency was set to the minimum values.

Processing
Parameters

Jetson AGX Xavier Jetson Orin Nano

Classical
Implementation

Parallel
Implementation

Classical
Implementation

Parallel
Implementation

Mean [ms]: 2.593 0.180 1.107 0.069
SD: 0.01165 0.00040 0.03348 0.00010

Min. [ms]: 2.587 0.179 1.063 0.069
Max. [ms]: 2.637 0.181 1.195 0.069

Speedup: 14.41 16.04

In all these cases, the DCT parallel implementations of the algorithm (with four
sections and with eight sections) have a performance increase of more than the maximal
theoretical limit given by the number of parallel sections in which the algorithm can be
split. Moreover, the theoretical speedup is always limited by the part of the algorithm that
cannot benefit from the parallel improvement. However, we observe, for the DCT algorithm
implemented in four sections, a performance increase between 5.41 and 12.1, as shown
in Tables 4 and 5, much more than the theoretical limit of 4. This can be explained by the
nature of the proposed parallel algorithm, where, in addition to parallel decomposition, we
developed an algorithm with low arithmetic complexity using the sub-expression sharing
technique. For the DCT algorithm implemented in eight sections, the speed performance
increases between 8.08 and 16.04.

Another possible issue that must be analyzed is the accuracy of the novel algorithm.
Due to the division of DCT IV into multiple sections, four or eight, it is possible to obtain
some performance loss. For this reason, the error was calculated between the output
parameters obtained by the new algorithm compared to the values obtained by the classical
implementation of DCT IV given by relation (1). This error was calculated using the
L2 norm. Exactly 1000 determinations were made, starting from a randomly generated
input vector in the interval [–1, 1]. For the first implementation of the algorithm with
four sections, the average error obtained was 4.451 × 10−6 having a standard deviation of

Appl. Sci. 2024, 14, 7491 15 of 26

8.76 × 10−12. In the case of the algorithm with eight sections, the average error obtained
was 7.186 × 10−6 having a standard deviation of 2.13 × 10−12. The error is minimal, mainly
because the introduced algorithm is not an approximation of the DCT IV algorithm but a
decomposition (factorization) into four and eight sections.

To gain a deeper understanding of the efficiency of the novel algorithm, a memory
analysis was conducted based on the NVIDIA Nsight Compute tool.

Memory is a very limiting factor for many applications, given that it exists in a limited
quantity and is slower than CUDA units. By conducting a memory workload analysis of
the classical algorithm, Figure 2, 2.31 K reading and 306 writing requests were made from
global memory, and 289 writing requests were performed from local memory to finish its
execution. The four-section parallel implementation of the same algorithm requires only
135 reading and 17 writing requests to the global memory and 94 requests to local memory
to accomplish its job. The local memory (viewed as a private storage for an executing
thread) has the same latency as the global memory—this memory is visible to all threads
running in the GPU. In a GPU system, the local and global memory reside off the GPU chip
and have the highest latency.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 27

Tables 4 and 5, much more than the theoretical limit of 4. This can be explained by the
nature of the proposed parallel algorithm, where, in addition to parallel decomposition,
we developed an algorithm with low arithmetic complexity using the sub-expression
sharing technique. For the DCT algorithm implemented in eight sections, the speed per-
formance increases between 8.08 and 16.04.

Another possible issue that must be analyzed is the accuracy of the novel algorithm.
Due to the division of DCT IV into multiple sections, four or eight, it is possible to obtain
some performance loss. For this reason, the error was calculated between the output pa-
rameters obtained by the new algorithm compared to the values obtained by the classical
implementation of DCT IV given by relation (1). This error was calculated using the L2
norm. Exactly 1000 determinations were made, starting from a randomly generated input
vector in the interval [–1, 1]. For the first implementation of the algorithm with four sec-
tions, the average error obtained was 4.451 × 10−6 having a standard deviation of 8.76 ×
10−12. In the case of the algorithm with eight sections, the average error obtained was 7.186
× 10−6 having a standard deviation of 2.13 × 10−12. The error is minimal, mainly because the
introduced algorithm is not an approximation of the DCT IV algorithm but a decomposi-
tion (factorization) into four and eight sections.

To gain a deeper understanding of the efficiency of the novel algorithm, a memory
analysis was conducted based on the NVIDIA Nsight Compute tool.

Memory is a very limiting factor for many applications, given that it exists in a limited
quantity and is slower than CUDA units. By conducting a memory workload analysis of
the classical algorithm, Figure 2, 2.31 K reading and 306 writing requests were made from
global memory, and 289 writing requests were performed from local memory to finish its
execution. The four-section parallel implementation of the same algorithm requires only
135 reading and 17 writing requests to the global memory and 94 requests to local memory
to accomplish its job. The local memory (viewed as a private storage for an executing
thread) has the same latency as the global memory—this memory is visible to all threads
running in the GPU. In a GPU system, the local and global memory reside off the GPU
chip and have the highest latency.

Figure 2. A detailed memory workload analysis of the GPU through NVIDIA Nsight Compute tool.

From all the results presented above, only by relating these write/read operations
performed by the two algorithms is it easy to see the superior efficiency of the novel algo-
rithm presented in this study.

To view a high-level overview of the obtained performances for all three ways of
implementing the DCT IV algorithm (classical implementation based on relation (1), novel

Figure 2. A detailed memory workload analysis of the GPU through NVIDIA Nsight Compute tool.

From all the results presented above, only by relating these write/read operations
performed by the two algorithms is it easy to see the superior efficiency of the novel
algorithm presented in this study.

To view a high-level overview of the obtained performances for all three ways of
implementing the DCT IV algorithm (classical implementation based on relation (1), novel
algorithm with four sections, and novel algorithm with eight sections) in Figures 3 and 4,
the computation throughput and memory resources of the GPU are presented for a specific
time frame presented in Table 8. All of these data were recorded on the Jetson AGX
Xavier development board using the NVIDIA Nsight Compute tool. The results from
Figures 3 and 4 are presented per SM unit and represent the achieved utilization percentage
reported to the theoretical maximum limit. At 114.75 MHz, the classical implementation of
the DCT IV algorithm obtained 3.76% of the overall compute throughput of an SM unit for
2.53 ms (Table 8). In the same conditions, our four-section parallel implementation of the
DCT IV algorithm generated a computational throughput of 28.05%, as compared with the
classical implementation for only 156.45 us.

Appl. Sci. 2024, 14, 7491 16 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 27

algorithm with four sections, and novel algorithm with eight sections) in Figures 3 and 4,
the computation throughput and memory resources of the GPU are presented for a spe-
cific time frame presented in Table 8. All of these data were recorded on the Jetson AGX
Xavier development board using the NVIDIA Nsight Compute tool. The results from Fig-
ures 3 and 4 are presented per SM unit and represent the achieved utilization percentage
reported to the theoretical maximum limit. At 114.75 MHz, the classical implementation
of the DCT IV algorithm obtained 3.76% of the overall compute throughput of an SM unit
for 2.53 ms (Table 8). In the same conditions, our four-section parallel implementation of
the DCT IV algorithm generated a computational throughput of 28.05%, as compared with
the classical implementation for only 156.45 us.

Figure 3. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
114.75 MHz.

Figure 4. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
1.377 GHz.

Table 8. The GPU throughput analysis.

Jetson AGX
Xavier

The Time Intervals in Which the GPU Throughputs from Fig-
ures 3 and 4 Are Obtained

Classical
Implementation

Four Sections in
Parallel

Eight Sections in
Parallel

114.75 MHz 2.53 ms 156.45 µs 132.70 µs
1.377 GHz 214.14 µs 15.68 µs 15.26 µs

The theoretical speedup of an application when multiple cores are used is limited by
the part of the task that cannot benefit from the improvement in the multiple cores. The
novel algorithm was developed in such a specific way that a part of it can be easily split
into four or eight different threads.

Table 9 presents the percentage of the algorithm that cannot be parallelized as a ratio
between the execution time of this part and the total execution time. The results are pre-
sented for the Volta architecture (the GPU existing on Jetson AGX Xavier development
board) for both parallel implementations (with four sections or with eight sections) and
for the lowest acceptable working frequency of the GPU (114.75 MHz) and the highest
working frequency of the GPU (1.377 GHz).

Figure 3. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
114.75 MHz.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 27

algorithm with four sections, and novel algorithm with eight sections) in Figures 3 and 4,
the computation throughput and memory resources of the GPU are presented for a spe-
cific time frame presented in Table 8. All of these data were recorded on the Jetson AGX
Xavier development board using the NVIDIA Nsight Compute tool. The results from Fig-
ures 3 and 4 are presented per SM unit and represent the achieved utilization percentage
reported to the theoretical maximum limit. At 114.75 MHz, the classical implementation
of the DCT IV algorithm obtained 3.76% of the overall compute throughput of an SM unit
for 2.53 ms (Table 8). In the same conditions, our four-section parallel implementation of
the DCT IV algorithm generated a computational throughput of 28.05%, as compared with
the classical implementation for only 156.45 us.

Figure 3. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
114.75 MHz.

Figure 4. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
1.377 GHz.

Table 8. The GPU throughput analysis.

Jetson AGX
Xavier

The Time Intervals in Which the GPU Throughputs from Fig-
ures 3 and 4 Are Obtained

Classical
Implementation

Four Sections in
Parallel

Eight Sections in
Parallel

114.75 MHz 2.53 ms 156.45 µs 132.70 µs
1.377 GHz 214.14 µs 15.68 µs 15.26 µs

The theoretical speedup of an application when multiple cores are used is limited by
the part of the task that cannot benefit from the improvement in the multiple cores. The
novel algorithm was developed in such a specific way that a part of it can be easily split
into four or eight different threads.

Table 9 presents the percentage of the algorithm that cannot be parallelized as a ratio
between the execution time of this part and the total execution time. The results are pre-
sented for the Volta architecture (the GPU existing on Jetson AGX Xavier development
board) for both parallel implementations (with four sections or with eight sections) and
for the lowest acceptable working frequency of the GPU (114.75 MHz) and the highest
working frequency of the GPU (1.377 GHz).

Figure 4. The GPU throughput for a SM unit (magenta—classical implementation, green—parallel
implementation with four sections, blue—parallel implementation with eight sections)—GPU at
1.377 GHz.

Table 8. The GPU throughput analysis.

Jetson AGX
Xavier

The Time Intervals in Which the GPU Throughputs
from Figures 3 and 4 Are Obtained

Classical
Implementation

Four Sections in
Parallel

Eight Sections in
Parallel

114.75 MHz 2.53 ms 156.45 µs 132.70 µs
1.377 GHz 214.14 µs 15.68 µs 15.26 µs

The theoretical speedup of an application when multiple cores are used is limited by
the part of the task that cannot benefit from the improvement in the multiple cores. The
novel algorithm was developed in such a specific way that a part of it can be easily split
into four or eight different threads.

Table 9 presents the percentage of the algorithm that cannot be parallelized as a ratio
between the execution time of this part and the total execution time. The results are
presented for the Volta architecture (the GPU existing on Jetson AGX Xavier development
board) for both parallel implementations (with four sections or with eight sections) and
for the lowest acceptable working frequency of the GPU (114.75 MHz) and the highest
working frequency of the GPU (1.377 GHz).

Table 9. Proportion of the whole task time part that cannot be accelerated through parallelization.

Jetson AGX
Xavier

The Proportion of Execution Time of the Part Not Benefiting
from Parallelization

Four Sections in Parallel Eight Sections in Parallel

114.75 MHz 36.76% 50.65%
1.377 GHz 47.38% 58.49%

The execution time of a specific program section is composed of the times required
to access memory for read/write operations and the time needed by the CUDA core to

Appl. Sci. 2024, 14, 7491 17 of 26

process the data. In our specific case, the part of the algorithm that cannot be parallelized
is composed mainly of data initialization—matrix initialization, the initialization of the
different cosine terms, and other elements necessary for the algorithm (see Appendix B). In
this section, there are very few mathematical computations. The sections of the algorithm
that can be parallelized are dominated by mathematical calculations and fewer memory
accesses. Once the CUDA core frequency increases from 114.75 MHz to 1.377 GHz, the
instruction execution speed increases 12-times while the memory access time remains
almost the same. This factor increases the proportion of the common part of the algorithm
from 36.7% to 47.4% in the case of the algorithm with four sections and from 50.6% to 58.5%
in the case of the algorithm with eight sections.

Due to the same process presented in the previous paragraph, the speedup factor is
higher at lower frequencies and lower to the higher frequencies of the CUDA core units,
Tables 4–7. To highlight the variation in the performance obtained by the new algorithm at
different working frequencies of the GPU system, the graph in Figure 5 was obtained.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 27

Table 9. Proportion of the whole task time part that cannot be accelerated through parallelization.

Jetson AGX
Xavier

The Proportion of Execution Time of the Part Not Benefit-
ing from Parallelization

Four Sections in Parallel Eight Sections in Parallel
114.75 MHz 36.76% 50.65%
1.377 GHz 47.38% 58.49%

The execution time of a specific program section is composed of the times required
to access memory for read/write operations and the time needed by the CUDA core to
process the data. In our specific case, the part of the algorithm that cannot be parallelized
is composed mainly of data initialization—matrix initialization, the initialization of the
different cosine terms, and other elements necessary for the algorithm (see Appendix B).
In this section, there are very few mathematical computations. The sections of the algo-
rithm that can be parallelized are dominated by mathematical calculations and fewer
memory accesses. Once the CUDA core frequency increases from 114.75 MHz to 1.377
GHz, the instruction execution speed increases 12-times while the memory access time
remains almost the same. This factor increases the proportion of the common part of the
algorithm from 36.7% to 47.4% in the case of the algorithm with four sections and from
50.6% to 58.5% in the case of the algorithm with eight sections.

Due to the same process presented in the previous paragraph, the speedup factor is
higher at lower frequencies and lower to the higher frequencies of the CUDA core units,
Tables 4–7. To highlight the variation in the performance obtained by the new algorithm
at different working frequencies of the GPU system, the graph in Figure 5 was obtained.

Figure 5. Speedup factor variation on different GPU working frequencies.

As Figure 5 illustrates, the speedup factor variation has no linear scale. The frequen-
cies on which the determinations were made are the following ones: 114.75 MHz, 216.75
MHz, 318.75 MHz, 420.75 MHz, 522.75 MHz, 624.75 MHz, 675.75 MHz, 828.75 MHz,
905.25 MHz, 1032.75 MHz, 1198.5 MHz, 1236.75 MHz, 1338.75 MHz and 1377 MHz. These
frequencies are several operating points preset by the manufacturer at which the GPU can
work. The measurements presented in Figure 5 were made under the same conditions as
those in Tables 4–7. The graph shows the average value and the standard deviation. An-
other interesting aspect can be seen from the figure: the variability in the determinations
of the speedup factor for the proposed algorithm is high at low frequencies. Then, it de-
creases with the increase in frequency.

In the following analyses, a BFloat16 variable representation was used for the novel
DCT IV algorithm implementation proposed in this study. The CUDA library supports
this numerical implementation, and all the computational operations are supported in sil-
icon in the frame of the Ampere architecture. The BFloat16 representation is used mainly

Figure 5. Speedup factor variation on different GPU working frequencies.

As Figure 5 illustrates, the speedup factor variation has no linear scale. The frequencies
on which the determinations were made are the following ones: 114.75 MHz, 216.75 MHz,
318.75 MHz, 420.75 MHz, 522.75 MHz, 624.75 MHz, 675.75 MHz, 828.75 MHz, 905.25 MHz,
1032.75 MHz, 1198.5 MHz, 1236.75 MHz, 1338.75 MHz and 1377 MHz. These frequencies
are several operating points preset by the manufacturer at which the GPU can work. The
measurements presented in Figure 5 were made under the same conditions as those in
Tables 4–7. The graph shows the average value and the standard deviation. Another
interesting aspect can be seen from the figure: the variability in the determinations of the
speedup factor for the proposed algorithm is high at low frequencies. Then, it decreases
with the increase in frequency.

In the following analyses, a BFloat16 variable representation was used for the novel
DCT IV algorithm implementation proposed in this study. The CUDA library supports this
numerical implementation, and all the computational operations are supported in silicon
in the frame of the Ampere architecture. The BFloat16 representation is used mainly to
increase the calculation speed and to reduce the storage requirements of different types of
algorithms.

From Tables 10 and 11, a performance improvement of 1.21- up to 1.88-times was
observed only by implementing the proposed algorithm using the BFloat16 numerical
representation.

Appl. Sci. 2024, 14, 7491 18 of 26

Table 10. Performance improvements obtained by using BFloat16 data format representation when
GPUs frequency was set to the maximum value (624 MHz) for Ampere architecture.

Processing
Parameters

Classical
Implementation

Four Section
Implementation

Classical
Implementation

Eight Section
Inplementation

Double Double BFloat16 Double Double BFloat16

Mean [ms]: 0.556 0.055 0.034 0.567 0.048 0.033
SD: 0.01393 0.00150 0.00113 0.02028 0.00136 0.00135

Speedup new DCT: 10.11 11.81
Speedup BFloat16: 1.62 1.45

Global speedup: 16.38 17.12

Table 11. Performance improvements were obtained by using BFloat16 data format representation
when the GPU frequency was set to the minimum value (306 MHz) for Ampere architecture.

Processing
Parameters

Classical
Implementation

Four Section
Implementation

Classical
Implementation

Eight Section
Inplementation

Double Double BFloat16 Double Double BFloat16

Mean [ms]: 1.101 0.092 0.049 1.107 0.069 0.057
SD: 0.03137 0.00025 0.00013 0.03348 0.00010 0.00027

Speedup new DCT: 11.97 16.04
Speedup BFloat16: 1.88 1.21

Global speedup: 22.5 19.41

Overall, the performance improvements are between 16.38 and 22.5 for the novel DCT
algorithm implemented in four sections and between 17.12 and up to 19.41 for the eight-
section approach. Of course, the use of the BFloat16 representation also has disadvantages.
Even if the dynamic range of the BFloat16 representation is identical to that of the float32
representation, the precision is limited to a maximum of three significant decimal digits.
Depending on the field in which this novel DCT IV algorithm will be used based on a
BFloat16 data representation, this low precision may represent a vital disadvantage or may
not matter much. The data from Tables 10 and 11 are presented so that a potential user of the
algorithm can estimate the advantages brought by this algorithm implementation compared
to the specific disadvantages generated by the loss of precision within its application.

6. Comparative Analysis

From the results presented in the previous section of this study, we observe the
superior performances of the proposed algorithm compared to the performances obtained
by a reference algorithm that implements the DCT IV transform using the implementation of
relation (1). However, the natural question is: “How does this algorithm behave compared
to other algorithms implemented by other researchers?” This section of the study will
answer this question.

Comparing our results with those reported in the literature, we only notice that in [30],
an increase in the execution speed by a factor of 7.97 could be obtained. This result is close
but inferior to those obtained in this work. However, this comparison is not very accurate
because these performances were obtained on a RadeonTM HD 6850 GPU produced by the
AMD company [30]—a GPU based on a different architecture and operating philosophy
compared to those of the NVIDIA company. As presented in Tables 4–8 and 11, the
performances of our algorithm, but not only, are strongly dependent on the architecture on
which it works.

In [37], Ryan et al. achieved a speed increase between 1.17 and 1.37 using an NVIDIA
GTX280 graphics card. Unfortunately, this graphics card has a Fermi architecture before the
Volta and Ampere architectures used in this work. Anyway, the performances are much

Appl. Sci. 2024, 14, 7491 19 of 26

lower than those obtained and reported in this study. The same can be said about the results
presented in [39]. This time, the performance increase was 2.46, but this was obtained on
a Kepler-type architecture (prior to the Volta and Ampere architectures) in the coding of
an entire frame—an operation composed both of the DCT transform and other operations
(quantization, zigzag serialization, Huffman coding, color space conversion, etc.).

It is not straightforward to compare the results presented above [30,37,39], with the
results obtained by the novel algorithm introduced in this study—the test conditions are
totally different (the architectures used, the working frequencies, the data buses between
the GPU and the main processor, etc.). These results were presented only to observe the
improvements obtained by the new algorithms compared to the previous DCT IV transform
implementations used as a reference in these papers.

To correct this situation, two algorithms [21,40] were implemented on the Jetson AGX
Xavier development board used in this study. The analysis methodology is similar to
the one used in Subsection 5 of this study. The reference algorithm directly implements
relation (1) of the DCT IV algorithm. By implementing the algorithms presented in [21,40],
we obtained the acceleration coefficient of the execution speed (speedup parameter from
Tables 12 and 13) due to these specific implementations, compared to the reference algo-
rithm. Tables 12 and 13 also show the number of global and local memory accesses each
algorithm makes. Since the performance of the algorithms fundamentally depends on the
GPU’s working frequency, Table 12 presents the obtained performance for the minimum
working frequency of the GPU. In contrast, in Table 13, the performances are given for the
maximum frequency accepted by the GPU.

By analyzing the data presented in Table 13, we can draw the false conclusion that
the algorithms proposed in this study [21,40] have superior performances compared to the
algorithm presented in this study with four sections due to a shorter execution time. But
these two algorithms work on 13 elements [21,40]. The algorithm proposed in this study
works on a number of elements equal to 17. As a direct conclusion, the direct comparison
of the execution times is not irrelevant. For this reason, we chose to compare the speed
improvement obtained by all four DCT IV algorithms against a reference algorithm, that
is, the classical implementation of DCT IV based on relation (1) on the same number
of samples.

As we consider the number of operations executed by each processing element in
parallel and considering that the length N is the same for all three algorithms, the number
of multiplications M is 5, the number of additions/subtractions A is 29 and the number
of shift operations that correspond to multiplications with ½ or ¼ is 18 for the proposed
algorithm and M = 16 and A = 12 for the algorithms from [21,40].

Table 12. Performances analysis of several DCT IV implementations (done on Jetson AGX Xavier
development board) when GPU frequency was set to the minimum value.

DCT IV
Algorithm

Implementation

Classical Implementation
Execution Time—Mean

[ms]

Parallel Implementation
Execution Time—Mean

[ms]

Number of Writing/Reading from

Speedup Global
Memory

Local
Memory

Clasical
implementation 2.590 - - 2616 289

four sections 2.590 0.214 12.1 152 94
eight sections 2.593 0.180 14.41 295 184

1st algorithm [21] 1.556 0.264 5.89 480 196

2nd algorithm [40] 1.557 0.254 6.12 162 72

Appl. Sci. 2024, 14, 7491 20 of 26

Table 13. Performances analysis of several DCT IV implementations (done on Jetson AGX Xavier
development board) when GPU frequency was set to the maximum value.

DCT IV
Algorithm

Implementation

Classical Implementation
Execution Time—Mean

[ms]

Parallel Implementation
Execution Time—Mean

[ms]

Number of Writing/Reading from

Speedup Global
Memory

Local
Memory

Clasical
implementation 0.276 - - 2616 289

four sections 0.276 0.051 5.41 152 94
eight sections 0.275 0.034 8.08 295 184

1st algorithm [21] 0.188 0.047 4.00 480 196

2nd algorithm [40] 0.187 0.044 4.25 162 72

From the data analysis presented in Tables 12 and 13, it can be seen that the new proposed
algorithm outperforms the algorithm presented in [21] from all points of view—speedup
(higher) and the number of memory access (lower).

The algorithm in [40] implements DCT IV transform on six sections working in parallel.
In the case of the algorithm presented in this study, it can be parallelized on four or eight
independent parallel sections. The speed performance of the algorithm implemented on
four and eight sections exceeds the acceleration factor obtained by the algorithm [40] in
all cases—5.41 and 8.08 versus 4.25 at the maximum working frequency of the GPU and,
respectively, 12.1 and 14.41 versus 6.12 at the minimum operating frequency of the GPU.

7. Conclusions

The results presented in the previous sections show that the novel implemented DCT
IV algorithm far exceeded our expectations. Due to the factorization method of the DCT
transform, the reduced number of mathematical operations involved, and its parallel
implementation, we obtained improvements in execution speed between 10.11- and 11.97-
times for the implementation based on four sections (Tables 4 and 5) and between 11.81-
and 16.04-times in the case of implementing the DCT algorithm based on eight independent
sections (Tables 6 and 7). All these results were obtained based on the Ampere architecture.
By using the numerical representation of the BFloat16 type, an existing representation
that can be manipulated hardware only within the Ampere architecture, we will obtain an
increase in performance between 1.21- and 1.88-times, in addition to the already existing
one—Tables 10 and 11.

The implementation of the new algorithm proposed in this study for the Volta architec-
ture brought the following performance gains: (a) for the implementation of the algorithm
based on the parallel execution of four sections, the increase in execution speed compared
to the classical implementation of the DCT IV algorithm was between 5.41 and 12.1, (b) and
in the case of the algorithm with eight sections, we obtained an increase in the execution
speed between 8.08- and 14.41-times.

Also, comparing the novel algorithm directly against recent algorithms [21,40] under
the same conditions, we notice that it surpasses them in all cases.

A disadvantage of this algorithm is that it can only be parallelized on four or eight
different units. This is due to the mathematical method of factorization, which is the basis
of its implementation.

This research aimed not to develop an algorithm that can efficiently use a GPU and
fill out all its cores. But this is not a big problem for our algorithm. The DCT transform
classical scenario usage is to be a component of the image compression algorithm. In such
a case, it works on non-overlapping quadratic regions that, all together, make up the image.
So, based on this approach, an ultra-HD image (3840 × 2160) can be split into more than
32,000 quadratic regions, and the DCT IV will be computed simultaneously in parallel on
all cores of the GPU on each area. In this mode, many, if not all, CUDA units will be used.

Appl. Sci. 2024, 14, 7491 21 of 26

In conclusion, we can say that the new algorithm introduced is a very high-performance
one capable of obtaining remarkable accelerations in the execution speed of the DCT IV
transform through a parallel implementation on four sections and based on the reduced
number of mathematical operations. If the requirements compel an additional acceleration
in the execution speed, the implementation based on eight parallel sections of this algorithm
can be used.

Author Contributions: Conceptualization, D.F.C. and D.M.D.; methodology, D.F.C. and D.M.D.; soft-
ware, D.M.D.; validation, D.F.C. and D.M.D.; investigation, D.M.D.; resources, D.M.D.; writing—original
draft preparation: D.F.C. and D.M.D.; writing—review and editing: D.M.D. and D.F.C.; supervision:
D.F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The acronyms used in this manuscript are listed in Table A1.

Table A1. The acronyms used in the manuscript.

Symbol Significance

3D Tridimensional
AAC Advanced Audio Coding

AAC-LD AAC Low Delay
AGX Advanced Graphics eXtended

AI Artificial intelligence
AMD Advanced Micro Devices

AMD64 64-bit CPU architecture used in Intel and AMD processors
API Application programming interface

ARM Advanced RISC Machines
ASIC Application-specific integrated circuit
AVC Advanced Video Coding

Bfloat16 Brain floating point on 16 bits
CMOS Complementary metal–oxide–semiconductor
CPU Central processing unit
CST Cosine to sine transform

CUDA Compute Unified Device Architecture
DAB Digital Audio Broadcasting
DCT Discrete cosine transform
DSP Digital signal processing
DST Discrete sine transform

FP16, 32, 64 Floating-point on 16, 32 or 64 bits
FPGA Field-programmable gate array

G.722.1 Licensed royalty-free standard audio codec
G.729.1 Speech and audio codec

GB Gigabyte
GHz Giga hertz
GPU Graphics processing unit

H.261, 263, 264, 265 Video compression standards
HD High-definition

HDC Hybrid Digital Coding or High-Definition Coding
HDTV High-definition television
HEVC High Efficiency Video Coding

IEC International Electrotechnical Commission

Appl. Sci. 2024, 14, 7491 22 of 26

Table A1. Cont.

Symbol Significance

INT1, 4, 8 Integer representation on 1, 4, 8 bits
ISO International Organization for Standardization

JPEG Joint Photographic Experts Group
L1 Level 1 cache
L2 Level 2 cache

LPDDR4, 5 Low-Power Double Data Rate generation 4 and 5
MHz Mega hertz
MP3 Coding format (formally MPEG-1 or MPEG-2 Audio Layer III)

MPEG Moving Picture Experts Group
OpenCL Open Computing Language

Opus Lossy audio coding format
QCA Quantum-dot cellular automata
SD Standard-definition

SDK Software development kit
SDTV Standard-definition television
Siren Wideband audio coding
SM Streaming Multiprocessors

TF32 TensorFloat-32
FLOPS Floating point operations per second

TFLOPS Tera FLOPS
TOPS Tera Operations Per Second

Ultra HD, UHD Ultra-high-definition
VLSI Very-large-scale integration
VOD Video on demand
WMA Windows Media Audio

Appendix B

In the following, the pseudocode of the implemented algorithm is presented. The
implemented algorithm is the one with four sections running in parallel. The values for
all matrices and vectors (e.g., A, B, C, cos1, cos2, XA1, XA2, XA3, XA4, XA5, and XA6) are
those presented in relations (12), (15), (18) and (21).

//main program
main()

{
N = 17;
. . .
//host system (CPU) vector declaration
double in_cpu[N], out_cpu[N];
//GPU system pointer declaration
double *in_gpu, *out_gpu;
//CUDA events declaration
cudaEvent_t start, stop;
//creates CUDA event objects
cudaEventCreate (&start); cudaEventCreate (&stop);
//allocate the memory on GPU: input data vector and output data vector
cudaMalloc(&in_gpu, N * sizeof(double));
cudaMalloc(&out_gpu, N * sizeof(double));
in_cpu [] ⇐ generateNrandomValues()
cudaEventRecord (start); //“start” CUDA event recording
//copy input data from CPU to GPU
cudaMemcpy(in_gpu, in_cpu, N * sizeof(double), cudaMemcpyHostToDevice)
//run kernels in parallel

Appl. Sci. 2024, 14, 7491 23 of 26

dctIV_pp <<<4,1>>> (in_gpu, out_gpu);
cudaEventRecord (stop); //“stop” CUDA event recording
//copy DCT IV results from GPU to CPU
cudaMemcpy (out_cpu, out_gpu, N * sizeof(double), cudaMemcpyDeviceToHost)
//get and display the number of milliseconds time elapsed
//between the recording of “start” and “stop” events
cudaEventSynchronize(stop);
milliseconds = 0;
cudaEventElapsedTime (&milliseconds, start, stop);
printf (“Processing time on GPU—paralel alg. executed paralel [ms] = %f\n”, milliseconds);
. . .
}

dctIV_pp (double *in, double *out)
{
tid ⇐ getGlobalThreadIdentifier();
myPI = 3.1415926; alfa = myPI/(2*N);
//initialization of vectors and matrices are according to relations (8)—(15)
A, B, C, cos1, cos2, XA1, XA2, XA3, XA4, XA5, XA6 ⇐ initialization();
for (i = 0; i < N; i++)

Xc[i] = in[i] * cos ((2*I + 1)*alfa/2);
Xa[N − 1] = Xc[N−1];
for (i = N−2; i >= 0; i−−)

Xa[i] = Xc[i] − Xa[i + 1];
If (tid == 0)

{
tmp0_1 = A × diag (C × XA1) × B × cos2;
tmp0_2 = A × diag (C × XA2) × B × cos1;

T6
T14
T10
T12

 = tmp0_1 + tmp0_2 ;

out [6] = 2 * (Xa[0] + T6) * cos (6 * alfa);
out [14] = 2 * (Xa[0] + T14) * cos (14 * alfa);
out [10] = 2 * (Xa[0] + T10) * cos (10 * alfa);
out [12] = 2 * (Xa[0] + T12) * cos (12 * alfa);
}

If (tid == 1)
{
tmp1_1 = A × diag (C × XA1) × B × cos1;
tmp1_2 = A × diag (C × XA3) × B × cos2;
T16
T8
T4
T2

 = tmp1_1 + tmp1_2 ;

out [16] = 2 * (Xa[0] + T16) * cos (16 * alfa);
out [8] = 2 * (Xa[0] + T8) * cos (8 * alfa);
out [4] = 2 * (Xa[0] + T4) * cos (4 * alfa);
out [2] = 2 * (Xa[0] + T2) * cos (2 * alfa);
}

If (tid == 2)
{
tmp2_1 = A × diag (C × XA4) × B × cos2;
tmp2_2 = A × diag (C × XA5) × B × cos1;

Appl. Sci. 2024, 14, 7491 24 of 26

T11
T3
T7
T5

 = tmp2_1 + tmp2_2 ;

out [11] = 2 * (Xa[0] + T11) * cos (11 * alfa);
out [3] = 2 * (Xa[0] + T3) * cos (3 * alfa);
out [7] = 2 * (Xa[0] + T7) * cos (7 * alfa);
out [5] = 2 * (Xa[0] + T5) * cos (5 * alfa);
}

If (tid == 3)
{
tmp3_1 = A × diag (C × XA4) × B × cos1;
tmp3_2 = A × diag (C × XA6) × B × cos2;

T1
T9
T13
T15

 = tmp3_1 + tmp3_2 ;

out [1] = 2 * (Xa[0] + T1) * cos (1 * alfa);
out [9] = 2 * (Xa[0] + T9) * cos (9 * alfa);
out [13] = 2 * (Xa[0] + T13) * cos (13 * alfa);
out [15] = 2 * (Xa[0] + T15) * cos (15 * alfa);
}
}

Appendix C

The Nvidia CUDA compiler (nvcc) was used to obtain the binary file. The compiler is
a component of the Nvidia JetPack SDK—this software suite provides a complete develop-
ment environment for building C and C++ GPU-accelerated programs and AI applications.
We used different Nvidia JetPack SDK versions depending on each specific development
board. The Jetson AGX Xavier development board has JetPack 5.1.2 and, on Jetson, Orin
Nano JetPack 6.0 is running. After compilation, the resulting programs were executed only
into the CUDA units, not on the Tensor Core units.

Since each new Nvidia GPU generation has improved functionalities and an improved
or novel CUDA core architecture, the developed program was explicitly compiled for each
architecture. In this mode, the resulting binary file is compatible with the architecture on
which it runs. Moreover, we were sure, thus, that the maximum possible performances
were attained in this mode. The following two lines present the compiler flags used for the
Volta architecture (for Jetson AGX Xavier development board—the first line) and for the
Ampere architecture (in the case of Jetson Orin Nano development board—the second line):

$ nvcc source_code_name.cu -o binary_name -v -arch = sm_72

$ nvcc source_code_name.cu -o binary_name -v -arch = sm_87

References
1. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete Cosine Transform. IEEE Trans. Comput. 1974, C-23, 90–93. [CrossRef]
2. ISO/IEC 10918-7:2023; Information technology—Digital compression and coding of continuous-tone still images—Part 7: Refer-

ence software. ISO Publishing House: Geneva, Switzerland, 2023.
3. Chen, J.; Moon, A.; Son, S.W. Towards Guaranteeing Error Bound in DCT-based Lossy Compression. In Proceedings of the IEEE

International Conference on Big Data, Osaka, Japan, 17–20 December 2022.
4. Chaudhary, P.K. FBSE-Based JPEG Image Compression. IEEE Sens. Lett. 2024, 8, 7001104. [CrossRef]
5. Lai, S.C.; Lei, S.F.; Luo, C.H. Common Architecture Design of Novel Recursive MDCT and IMDCT Algorithms for Application to

AAC, AAC in DRM, and MP3 Codecs. IEEE Trans. Circuits Syst. II Express Br. 2009, 56, 793–797.
6. Jamal, M.; Hassan, T.A. Speech Coding Using Discrete Cosine Transform and Chaotic Map. Ing. Syst. Inf. 2022, 27, 673–677.

[CrossRef]
7. Nagaraja, B.G.; Anees, M.; Thimmaraja, Y.G. Speech coding techniques and challenges: A comprehensive literature survey.

Multimed. Tools Appl. 2024, 83, 29859–29879.

https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/LSENS.2023.3349112
https://doi.org/10.18280/isi.270419

Appl. Sci. 2024, 14, 7491 25 of 26

8. Feng, X.; Ye, J.; Yan, L.; Luo, J.; Li, P.; Pan, W.; Zou, X.; Luo, B. Improving spectral efficiency of digital radio-over-fiber transmission
using two-dimensional discrete cosine transform with vector quantization. Opt. Express 2021, 29, 25868–25875. [CrossRef]
[PubMed]

9. Goebel, J.; Costa, V.; Agostini, L.; Zatt, B.; Porto, M. A High-Throughput Design for the H.266/VVC Low-Frequency Non-
Separable Transform. In Proceedings of the IEEE International Symposium on Circuits and System, Austin, TX, USA, 27 May–1
June 2022.

10. Kavitha, T.; Sankar, K.J. H.264 Video Compression Using Novel Refined Huffman Codes for Omnipresent Applications. Wirel.
Pers. Commun. 2023, 131, 2949–2967. [CrossRef]

11. CISCO, VNI Complete Forecast Highlights. Available online: https://www.cisco.com/c/dam/m/en_us/solutions/service-
provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf (accessed on 27 February 2024).

12. Jain, A.K. A sinusoidal family of unitary transforms. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 356–365. [CrossRef]
13. Malvar, H.S. Lapped transforms for efficient transforms/subband coding. IEEE Trans. Acoust. Speech Signal Process 1990, 38,

969–978. [CrossRef]
14. Malvar, H.S. Signal Processing with Lapped Transforms; Artech House: Norwood, MA, USA, 1991.
15. Jing, C.; Tai, H.M. Fast algorithm for computing modulated lapped transform. Electron. Lett. 2001, 37, 796–797. [CrossRef]
16. Britanak, V. The fast DCT-IV/DST-IV computation via the MDCT. Signal Process. 2003, 83, 1803–1813. [CrossRef]
17. Hsu, H.W.; Liu, C.M. Fast Radix-q and Mixed-Radix Algorithms for Type-IV DCT. IEEE Signal Process. Lett. 2008, 15, 910–913.

[CrossRef]
18. Britanak, V. Comments on Fast Radix-9 Algorithm for the DCT-IV Computation. IEEE Signal Process. Lett. 2009, 16, 1005–1006.

[CrossRef]
19. Perera, S.M.; Madanayake, A.; Dornback, N.; Udayanga, N. Design and Digital Implementation of Fast and Recursive DCT II–IV

Algorithms. Circuits Syst. Signal Process. 2019, 38, 529–555. [CrossRef]
20. Chiper, D.F.; Cracan, A. An Efficient Algorithm and Architecture for the VLSI Implementation of Integer DCT That Allows an

Efficient Incorporation of the Hardware Security with a Low Overhead. Appl. Sci. 2023, 13, 6927. [CrossRef]
21. Chiper, D.F.; Cracan, A. An Area-Efficient Unified VLSI Architecture for Type IV DCT/DST Having an Efficient Hardware

Security with Low Overheads. Electronics 2023, 12, 4471. [CrossRef]
22. Meher, P.K.; Swamy, M.N.S. New Systolic Algorithm and Array Architecture for Prime-Length Discrete Sine Transform. IEEE

Trans. Circuits Syst. II Express Briefs 2007, 54, 262–266. [CrossRef]
23. Chiper, D.F.; Cracan, A. A novel algorithm and architecture for a high-throughput VLSI implementation of DST using short

pseudo-cycle convolutions. In Proceedings of the International Symposium on Signals, Circuits and Systems, Iasi, Romania,
13–14 July 2017.

24. McCoo, M.D. Signal Processing and General-Purpose Computing on GPUs. IEEE Signal Process. Mag. 2007, 24, 109–114.
25. Wu, C.; Yang, B.; Zhu, W.; Zhang, Y. Toward High Mobile GPU Performance Through Collaborative Workload Offloading. IEEE

Trans. Parallel Distrib. Syst. 2017, 29, 435–449. [CrossRef]
26. Huda, N.; Syukriyah, Z.A. Numerical Fourier-Bessel Transform on CUDA GPU Implementation. In Proceedings of the Interna-

tional Conference on Communication, Networks and Satellite, Malang, Indonesia, 23–25 November 2023.
27. Silva, B.; Lopes, L.G. A GPU-Based Parallel Implementation of the GWO Algorithm: Application to the Solution of Large-Scale

Nonlinear Equation Systems. In Proceedings of the Eleventh International Symposium on Computing and Networking, Matsue,
Japan, 28 November–1 December 2023.

28. Xie, X.; Peng, H.; Hasan, A.; Huang, S.; Zhao, J.; Fang, H.; Zhang, W.; Geng, T.; Khan, O.; Ding, C. Accel-GCN: High-Performance
GPU Accelerator Design for Graph Convolution Networks. In Proceedings of the IEEE/ACM International Conference on
Computer Aided Design, San Francisco, CA, USA, 29 October–2 November 2023.

29. Kukutla, V.; Achar, R.; Lee, W.K. TC-QR: Tensor Core-based QR Solver for Efficient GPU-based Vector Fitting. In Proceedings of
the IEEE 27th Workshop on Signal and Power Integrity, Aveiro, Portugal, 7–10 May 2023.

30. Alqudami, N.; Kim, S.D. OpenCL-based optimization methods for utilizing forward DCT and quantization of image compression
on a heterogeneous platform. J. Real-Time Image Proc. 2016, 12, 219–235. [CrossRef]

31. Chiang, H.C.; Liu, J.C. Regressive implementations for the forward and inverse MDCT in MPEG audio coding. IEEE Signal
Process. Lett. 1996, 3, 116–118. [CrossRef]

32. Dahiya, P.; Jain, P. Efficient MDCT Recursive Structure for VLSI Implementation. Circuits Syst. Signal Process 2020, 39, 1372–1386.
[CrossRef]

33. Perera, S.M.; Liu, J. Complexity reduction, self/completely recursive, radix-2 DCT I/IV algorithms. J. Comput. Appl. Math. 2020,
379, 112936. [CrossRef]

34. Krishna, D.C.C.; Tripathi, S. Hybrid Architecture for Multiple Transforms for Signal Processing Applications. J. Intell. Fuzzy Syst.
2020, 38, 6383–6390. [CrossRef]

35. Poola, L.; Aparna, P. An efficient parallel-pipelined intra prediction architecture to support DCT/DST engine of HEVC encoder. J.
Real-Time Image Proc. 2022, 19, 539–550. [CrossRef]

36. Kresch, R.; Merhav, N. Fast DCT domain filtering using the DCT and the DST. IEEE Trans. Image Process 1999, 8, 821–833.
[CrossRef]

https://doi.org/10.1364/OE.432973
https://www.ncbi.nlm.nih.gov/pubmed/34614906
https://doi.org/10.1007/s11277-023-10590-2
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://doi.org/10.1109/TPAMI.1979.4766944
https://doi.org/10.1109/29.56057
https://doi.org/10.1049/el:20010539
https://doi.org/10.1016/S0165-1684(03)00109-9
https://doi.org/10.1109/LSP.2008.2005441
https://doi.org/10.1109/LSP.2009.2028450
https://doi.org/10.1007/s00034-018-0891-8
https://doi.org/10.3390/app13126927
https://doi.org/10.3390/electronics12214471
https://doi.org/10.1109/TCSII.2006.889453
https://doi.org/10.1109/TPDS.2017.2754482
https://doi.org/10.1007/s11554-015-0507-5
https://doi.org/10.1109/97.489065
https://doi.org/10.1007/s00034-019-01195-x
https://doi.org/10.1016/j.cam.2020.112936
https://doi.org/10.3233/JIFS-179719
https://doi.org/10.1007/s11554-022-01206-2
https://doi.org/10.1109/83.766859

Appl. Sci. 2024, 14, 7491 26 of 26

37. Ryan, T.; Xiaoming, L. A Code Merging Optimization Technique for GPU. In Languages and Compilers for Parallel Computing,
Proceedings of the 24th International Workshop, LCPC 2011, Fort Collins, CO, USA, 8–10 September 2011; Lecture Notes in Computer
Science; Rajopadhye, S., Strout, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7146, pp. 218–236.

38. Montero, P.; Gulías, V.M.; Taibo, J.; Rivas, S. Optimising lossless stages in a GPU-based MPEG encoder. Multimed. Tools Appl. 2013,
65, 495–520. [CrossRef]

39. Cobrnic, M.; Duspara, A.; Dragic, L.; Piljic, I.; Kovac, M. Highly parallel GPU accelerator for HEVC transform and quantization.
In Proceedings of the International Conference on Image, Video Processing and Artificial Intelligence, Shanghai, China, 21–23
August 2020.

40. Chiper, D.F.; Cotorobai, L.T. A New Approach for a Unified Architecture for Type IV DCT/DST with an Efficient Incorporation of
Obfuscation Technique. Electronics 2021, 10, 1656. [CrossRef]

41. Bespalov, V.A.; Dyuzhev, N.A.; Kireev, V.Y. Possibilities and Limitations of CMOS Technology for the Production of Various
Microelectronic Systems and Devices. Nanobiotechnol. Rep. 2022, 17, 24–38. [CrossRef]

42. Bahar, A.N.; Wahid, K.A. Design and Implementation of Approximate DCT Architecture in Quantum-Dot Cellular Automata.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2530–2539. [CrossRef]

43. Gassoumi, I.; Touil, L.; Ouni, B.; Mtibaa, A. An efficient design of DCT approximation based on quantum dot cellular automata
(QCA) technology. J. Electr. Comput. Eng. 2019, 2019, 9029526. [CrossRef]

44. Britanak, V. Discrete Cosine and Sine Transforms. In The Transform and Data Compression Handbook; Rao, K.R., Yip, P.C., Eds.; CRC
Press LLC: Boca Raton, FL, USA, 2001; pp. 138–216.

45. IEEE754-2019; IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers Publishing
House: Ney York, NY, USA, 2019.

46. Bakos, J.D. Multicore and data-level optimization: OpenMP and SIMD. In Embedded Systems, 1st ed.; Merken, S., Ed.; Elsevier:
Waltham, MA, USA, 2016; pp. 49–103.

47. Harris, M. How to Implement Performance Metrics in CUDA C/C++, Nvidia Developer Technical Blog. Available online:
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/ (accessed on 27 February 2024).

48. Cheng, J.; Grossman, M.; McKercher, T. Professional CUDA C Programming; John Wiley & Sons, Inc.: Indianapolis, IN, USA, 2014;
pp. 273–275.

49. Stokfiszewski, K.; Wieloch, K.; Yatsymirskyy, M. An efficient implementation of one-dimensional discrete wavelet transform
algorithms for GPU architectures. J. Supercomput. 2022, 78, 11539–11563. [CrossRef]

50. Keluskar, Y.C.; Singhaniya, N.G.; Vyawahare, V.A.; Jage, C.S.; Patil, P.; Espinosa-Paredes, G. Solution of nonlinear fractional-order
models of nuclear reactor with parallel computing: Implementation on GPU platform. Ann. Nucl. Energy 2024, 195, 110134.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-012-1053-9
https://doi.org/10.3390/electronics10141656
https://doi.org/10.1134/S2635167622010037
https://doi.org/10.1109/TVLSI.2020.3013724
https://doi.org/10.1155/2019/9029526
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://doi.org/10.1007/s11227-022-04331-8
https://doi.org/10.1016/j.anucene.2023.110134

	Introduction
	Related Works
	Proposed DCT IV Algorithm for Parallel Implementation
	Implementation
	Overview of Nvidia Used Development Boards
	Overview of CUDA Used Architectures
	Program Implementation, Testing, and Analysis Approaches

	Experimental Results
	Comparative Analysis
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

