Adolescent Aggressive Riding Behavior: An Application of the Theory of Planned Behavior and the Prototype Willingness Model
Abstract
:1. Introduction
1.1. Background
1.2. Factors Influencing Risky Riding Behaviors
1.3. Model Framework
1.3.1. Theory of Planned Behavior
1.3.2. Prototype Willingness Model
1.3.3. Integrated Model
1.4. The Current Study
- Attitudes, subjective norms, and perceived behavioral control are significantly associated with behavioral intentions;
- Prototype perceptions (prototype favorability and prototype similarity) are related to behavioral willingness;
- Behavioral intention and willingness are associated with aggressive riding behaviors.
2. Methodology
2.1. Study Area and Participant
2.2. Questionnaire Design
2.2.1. The Factors of TPB
2.2.2. The Factors of PWM
2.2.3. Additional Factors
3. Results
3.1. Measurement Model
3.2. Structural Equation Modeling
3.3. Comparison of Models
3.4. The Pathway Analysis of the Integrated Model
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Götschi, T.; Garrard, J.; Giles-Corti, B. Cycling as a Part of Daily Life: A Review of Health Perspectives. Transp. Rev. 2015, 36, 45–71. [Google Scholar] [CrossRef] [Green Version]
- Hull, A.; O’Holleran, C. Bicycle infrastructure: Can good design encourage cycling? Urban Plan. Transp. Res. 2014, 2, 369–406. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.A.; Reynolds, C.C.; Winters, M.; Chipman, M.; Cripton, P.A.; Cusimano, M.D.; Teschke, K. The Bicyclists’ Injuries and the Cycling Environment study: A protocol to tackle methodological issues facing studies of bicycling safety. Inj. Prev. 2011, 17, e6. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, S.; Ulfarsson, G.F.; Porrello, L.A. Bicyclist injury severities in bicycle-motor vehicle accidents. Accid. Anal. Prev. 2007, 39, 238–251. [Google Scholar] [CrossRef]
- Behnood, A.; Mannering, F. Determinants of bicyclist injury severities in bicycle-vehicle crashes: A random parameters approach with heterogeneity in means and variances. Anal. Methods Accid. Res. 2017, 16, 35–47. [Google Scholar] [CrossRef]
- Klieger, J.; Savage, I. Motor-vehicle drivers’ behavioral response to increased bicycle traffic. J. Saf. Res. 2020, 74, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Simsekoglu, O. How do attitudes, personality traits, and driver behaviors relate to pedestrian behaviors? A Turkish case. Traffic Inj. Prev. 2015, 16, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Zhang, H.; Zhao, W.; Zhang, K.; Ge, Y. The effect of cognitive errors, mindfulness and personality traits on pedestrian behavior in a Chinese sample. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 29–37. [Google Scholar] [CrossRef]
- Preece, C.; Watson, A.; Kaye, S.-A.; Fleiter, J. Understanding the psychological precursors of young drivers’ willingness to speed and text while driving. Accid. Anal. Prev. 2018, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Geiger-Brown, J.; Beck, K.H. Intentions and willingness to drive while drowsy among university students: An application of an extended theory of planned behavior model. Accid. Anal. Prev. 2016, 93, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Albert, D.; Chein, J.; Steinberg, L. Peer Influences on Adolescent Decision Making. Curr. Dir. Psychol. Sci. 2013, 22, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Analysis Report on Portraits of Cyclists in China. Available online: https://www.163.com/dy/article/FNKN1GGH0538OBFN.html (accessed on 28 September 2022).
- Lusk, A.C.; Wen, X.; Zhou, L. Gender and used/preferred differences of bicycle routes, parking, intersection signals, and bicycle type: Professional middle class preferences in Hangzhou, China. J. Transp. Health 2014, 1, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Gu, T.; Kim, I.; Currie, G. To be or not to be dockless: Empirical analysis of dockless bikeshare development in China. Transp. Res. Part A Policy Pract. 2019, 119, 122–147. [Google Scholar] [CrossRef]
- Fan, A.; Chen, X.; Wan, T. How have travelers changed mode choices for first/last mile trips after the introduction of bicycle-sharing systems: An empirical study in Beijing, China. J. Adv. Transp. 2019, 2019, 5426080. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Useche, S.A.; Zhang, Y.; Wang, Y.; Oviedo-Trespalacios, O.; Haworth, N. Comparing the cycling behaviours of Australian, Chinese and Colombian cyclists using a behavioural questionnaire paradigm. Accid. Anal. Prev. 2022, 164, 106471. [Google Scholar] [CrossRef]
- Road Safety in the Western Pacific. Available online: https://www.who.int/westernpacific/health-topics/road-safety (accessed on 12 July 2022).
- Feenstra, H.; Ruiter, R.A.; Kok, G. Social-cognitive correlates of risky adolescent cycling behavior. BMC Public Health 2010, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Tongklao, A.; Jaruratanasirikul, S.; Sriplung, H. Risky behaviors and helmet use among young adolescent motorcyclists in Southern Thailand. Traffic Inj. Prev. 2016, 17, 80–85. [Google Scholar] [CrossRef]
- Soh, P.C.-H.; Chew, K.W.; Koay, K.Y.; Ang, P.H. Parents vs peers’ influence on teenagers’ Internet addiction and risky online activities. Telemat. Inform. 2018, 35, 225–236. [Google Scholar] [CrossRef]
- Van Hoorn, J.; Crone, E.A.; Van Leijenhorst, L. Hanging out with the right crowd: Peer influence on risk-taking behavior in adolescence. J. Res. Adolesc. 2017, 27, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, A.; Su, F.; Schwebel, D.C. The effect of age and sensation seeking on pedestrian crossing safety in a virtual reality street. Transp. Res. Part F Traffic Psychol. Behav. 2022, 88, 99–110. [Google Scholar] [CrossRef]
- O’Callaghan, F.V.; Nausbaum, S. Predicting bicycle helmet wearing intentions and behavior among adolescents. J. Saf. Res. 2006, 37, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Baswail, A.; Allinson, L.; Goddard, P.; Pfeffer, K. Adolescents’ mobile phone use while crossing the road. Safety 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Demir, B.; Özkan, T.; Demir, S. Pedestrian violations: Reasoned or social reactive? Comparing theory of planned behavior and prototype willingness model. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 560–572. [Google Scholar] [CrossRef]
- Ram, T.; Chand, K. Effect of drivers’ risk perception and perception of driving tasks on road safety attitude. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 162–176. [Google Scholar] [CrossRef]
- Useche, S.A.; Alonso, F.; Montoro, L.; Esteban, C. Explaining self-reported traffic crashes of cyclists: An empirical study based on age and road risky behaviors. Saf. Sci. 2019, 113, 105–114. [Google Scholar] [CrossRef]
- Vanparijs, J.; Int Panis, L.; Meeusen, R.; de Geus, B. Exposure measurement in bicycle safety analysis: A review of the literature. Accid. Anal. Prev. 2015, 84, 9–19. [Google Scholar] [CrossRef]
- Prati, G.; Fraboni, F.; De Angelis, M.; Pietrantoni, L. Gender differences in cyclists’ crashes: An analysis of routinely recorded crash data. Int. J. Inj. Control. Saf. Promot. 2019, 26, 391–398. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, Y.; Cheng, J. Cycling anger in China: The relationship with gender roles, cycling-related experience, risky and aggressive riding. Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 52–66. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Feng, Z.; Wang, K.; Gao, Y. Exploring factors Influencing the risky cycling behaviors of young cyclists aged 15–24 years: A questionnaire-based study in China. Risk Anal. 2020, 40, 1554–1570. [Google Scholar] [CrossRef] [PubMed]
- Oehl, M.; Brandenburg, S.; Huemer, A.K. Cyclists’ anger experiences in traffic: The cycling anger scale. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 564–574. [Google Scholar] [CrossRef]
- Møller, M.; Haustein, S. Anger expression among Danish cyclists and drivers: A comparison based on mode specific anger expression inventories. Accid. Anal. Prev. 2017, 108, 354–360. [Google Scholar] [CrossRef]
- Deffenbacher, J.; Stephens, A.; Sullman, M.J. Driving anger as a psychological construct: Twenty years of research using the Driving Anger Scale. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 236–247. [Google Scholar] [CrossRef]
- Grey, M.; Triggs, T.; Haworth, N. Driver aggression: The role of personality, social characteristics, risk and motivation. STAYSAFE 1989, 58, 90. [Google Scholar]
- Singhal, D.; Wiesenthal, D. Evolutionary Psychology and Dangerous Driving Behaviour. In The SAGE Handbook of Evolutionary Psychology: Applications of Evolutionary Psychology; SAGE Publications: Newbury Park, CA, USA, 2020; p. 374. [Google Scholar]
- Bandura, A. Psychological mechanisms of aggression. Aggress. Theor. Empir. Rev. 1983, 1, 1–40. [Google Scholar]
- Kummeneje, A.-M.; Rundmo, T. Attitudes, risk perception and risk-taking behaviour among regular cyclists in Norway. Transp. Res. Part F Traffic Psychol. Behav. 2020, 69, 135–150. [Google Scholar] [CrossRef]
- Useche, S.A.; Montoro, L.; Alonso, F.; Tortosa, F.M. Does gender really matter? A structural equation model to explain risky and positive cycling behaviors. Accid. Anal. Prev. 2018, 118, 86–95. [Google Scholar] [CrossRef]
- Cristea, M.; Gheorghiu, A. Attitude, perceived behavioral control, and intention to adopt risky behaviors. Transp. Res. Part F Traffic Psychol. Behav. 2016, 43, 157–165. [Google Scholar] [CrossRef]
- Stephens, A.N.; O’Hern, S.; Young, K.L.; Chambers, R.; Hassed, C.; Koppel, S. Self-reported mindfulness, cyclist anger and aggression. Accid. Anal. Prev. 2020, 144, 105625. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Sheeran, P.; Orbell, S. Augmenting the Theory of Planned Behavior: Roles for Anticipated Regret and Descriptive Norms1. J. Appl. Soc. Psychol. 1999, 29, 2107–2142. [Google Scholar] [CrossRef]
- Kraft, P.; Rise, J.; Sutton, S.; Røysamb, E. Perceived difficulty in the theory of planned behaviour: Perceived behavioural control or affective attitude? Br. J. Soc. Psychol. 2005, 44, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Trafimow, D.; Sheeran, P.; Conner, M.; Finlay, K.A. Evidence that perceived behavioural control is a multidimensional construct: Perceived control and perceived difficulty. Br. J. Soc. Psychol. 2002, 41, 101–121. [Google Scholar] [CrossRef]
- Frater, J.; Kingham, S. Gender equity in health and the influence of intrapersonal factors on adolescent girls’ decisions to bicycle to school. J. Transp. Geogr. 2018, 71, 130–138. [Google Scholar] [CrossRef]
- Lois, D.; Moriano, J.A.; Rondinella, G. Cycle commuting intention: A model based on theory of planned behaviour and social identity. Transp. Res. Part F Traffic Psychol. Behav. 2015, 32, 101–113. [Google Scholar] [CrossRef]
- Forward, S.E. The theory of planned behaviour: The role of descriptive norms and past behaviour in the prediction of drivers’ intentions to violate. Transp. Res. Part F Traffic Psychol. Behav. 2009, 12, 198–207. [Google Scholar] [CrossRef]
- Benson, T.; McLaughlin, M.; Giles, M. The factors underlying the decision to text while driving. Transp. Res. Part F Traffic Psychol. Behav. 2015, 35, 85–100. [Google Scholar] [CrossRef]
- Moan, I.S.; Rise, J. Predicting intentions not to “drink and drive” using an extended version of the theory of planned behaviour. Accid. Anal. Prev. 2011, 43, 1378–1384. [Google Scholar] [CrossRef]
- Zimmermann, F.; Sieverding, M. Young adults’ social drinking as explained by an augmented theory of planned behaviour: The roles of prototypes, willingness, and gender. Br. J. Health Psychol. 2010, 15, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, F.X.; Gerrard, M.; Blanton, H.; Russell, D.W. Reasoned action and social reaction: Willingness and intention as independent predictors of health risk. J. Personal. Soc. Psychol. 1998, 74, 1164. [Google Scholar] [CrossRef]
- Gerrard, M.; Gibbons, F.X.; Houlihan, A.E.; Stock, M.L.; Pomery, E.A. A dual-process approach to health risk decision making: The prototype willingness model. Dev. Rev. 2008, 28, 29–61. [Google Scholar] [CrossRef]
- Hukkelberg, S.S.; Dykstra, J.L. Using the Prototype/Willingness model to predict smoking behaviour among Norwegian adolescents. Addict. Behav. 2009, 34, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Litt, D.M.; Lewis, M.A. Examining a social reaction model in the prediction of adolescent alcohol use. Addict. Behav. 2016, 60, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vranken, I.; Brimmel, N.; Vandenbosch, L.; Trekels, J. Television, news media, social media and adolescents’ and young adults’ violations of the COVID-19 lockdown measures: A prototype willingness model. Telemat. Inform. 2022, 70, 101817. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, L. Factors Influencing Young Drivers’ Willingness to Engage in Risky Driving Behavior: Continuous Lane-Changing. Sustainability 2021, 13, 6459. [Google Scholar] [CrossRef]
- Caputo, A. Comparing theoretical models for the understanding of health-risk behaviour: Towards an integrative model of adolescent alcohol consumption. Eur. J. Psychol. 2020, 16, 418. [Google Scholar] [CrossRef] [PubMed]
- Esmaeli, S.; Aghabayk, K.; Bates, L. Willingness and intention to run a red light among motorcyclists. J. Saf. Res. 2022, 83, 66–78. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, Z.; Feng, Z.; Yu, Z.; Bao, S.; Huang, Z. Mobile phone use while cycling: A study based on the theory of planned behavior. Transp. Res. Part F Traffic Psychol. Behav. 2019, 64, 388–400. [Google Scholar] [CrossRef]
- Mandic, S.; Hopkins, D.; Bengoechea, E.G.; Flaherty, C.; Coppell, K.; Moore, A.; Williams, J.; Spence, J.C. Differences in parental perceptions of walking and cycling to high school according to distance. Transp. Res. Part F Traffic Psychol. Behav. 2020, 71, 238–249. [Google Scholar] [CrossRef]
- Jiang, K.; Ling, F.; Feng, Z.; Wang, K.; Shao, C. Why do drivers continue driving while fatigued? An application of the theory of planned behaviour. Transp. Res. Part A Policy Pract. 2017, 98, 141–149. [Google Scholar] [CrossRef]
- Scott-Parker, B.; Hyde, M.K.; Watson, B.; King, M.J. Speeding by young novice drivers: What can personal characteristics and psychosocial theory add to our understanding? Accid. Anal. Prev. 2013, 50, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.A.; McCartan, R.; Brewster, S.E.; Coyle, D.; Emerson, L.; Gibson, K. An application of the prototype willingness model to drivers’ speeding behaviour. Eur. J. Soc. Psychol. 2017, 47, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W.; Gopal, A.; Salisbury, W.D. Advancing the theory of adaptive structuration: The development of a scale to measure faithfulness of appropriation. Inf. Syst. Res. 1997, 8, 342–367. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; Tata McGraw-hill education: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hu, L.-t.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Neto, I.L.; Matsunaga, L.H.; Machado, C.C.; Günther, H.; Hillesheim, D.; Pimentel, C.E.; Vargas, J.C.; D’Orsi, E. Psychological determinants of walking in a Brazilian sample: An application of the Theory of Planned Behavior. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 391–398. [Google Scholar] [CrossRef]
- Bird, E.L.; Panter, J.; Baker, G.; Jones, T.; Ogilvie, D. Predicting walking and cycling behaviour change using an extended Theory of Planned Behaviour. J. Transp. Health 2018, 10, 11–27. [Google Scholar] [CrossRef]
- Frater, J.; Kuijer, R.; Kingham, S. Why adolescents don’t bicycle to school: Does the prototype/willingness model augment the theory of planned behaviour to explain intentions? Transp. Res. Part F Traffic Psychol. Behav. 2017, 46, 250–259. [Google Scholar] [CrossRef]
- Găianu, P.-A.; Giosan, C.; Sârbescu, P. From trait anger to aggressive violations in road traffic. Transp. Res. Part F Traffic Psychol. Behav. 2020, 70, 15–24. [Google Scholar] [CrossRef]
- Khaleghi, A.A.; Jafarzadeh, S.; Harsini, P.A.; Kashfi, S.H.; Mohammadkhah, F.; Jeihooni, A.K. Effect of educational intervention based on theory of planned behavior on aggression preventive behaviors in students. J. Aggress. Confl. Peace Res. 2022, 15, 152–162. [Google Scholar] [CrossRef]
- Eriksson, L.; Forward, S.E. Is the intention to travel in a pro-environmental manner and the intention to use the car determined by different factors? Transp. Res. Part D Transp. Environ. 2011, 16, 372–376. [Google Scholar] [CrossRef]
- Nash, S.G.; McQueen, A.; Bray, J.H. Pathways to adolescent alcohol use: Family environment, peer influence, and parental expectations. J. Adolesc. Health 2005, 37, 19–28. [Google Scholar] [CrossRef]
- Tsai, A.Y.; Tan, A.Y. The Expanded Theory of Planned Behavior in the Context of Environmental Protection Behaviors for Undergraduates: Roles of Moral Norms and University Class Standings. Int. J. Environ. Res. Public Health 2022, 19, 9256. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S. The role of legal and moral norms to regulate the behavior of texting while driving. Transp. Res. Part F Traffic Psychol. Behav. 2018, 52, 21–31. [Google Scholar] [CrossRef]
- Lazuras, L.; Brighi, A.; Barkoukis, V.; Guarini, A.; Tsorbatzoudis, H.; Genta, M.L. Moral disengagement and risk prototypes in the context of adolescent cyberbullying: Findings from two countries. Front. Psychol. 2019, 10, 1823. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tan, D.; Schwebel, D.C.; Shi, L.; Miao, L. Effect of age on children’s pedestrian behaviour: Results from an observational study. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 556–565. [Google Scholar] [CrossRef]
- Barton, B.K.; Schwebel, D.C. The roles of age, gender, inhibitory control, and parental supervision in children’s pedestrian safety. J. Pediatr. Psychol. 2007, 32, 517–526. [Google Scholar] [CrossRef] [Green Version]
Constructs | Standard Loading | Cronbach’s α | CR | AVE |
---|---|---|---|---|
Attitudes | 0.662–0.788 | 0.868 | 0.870 | 0.527 |
Subjective norms | 0.770–0.857 | 0.922 | 0.922 | 0.664 |
Descriptive norms | 0.639–0.833 | 0.900 | 0.900 | 0.602 |
Perceived behavioral control | 0.724–0.778 | 0.888 | 0.889 | 0.572 |
Prototype favorability | 0.625–0.827 | 0.891 | 0.895 | 0.589 |
Prototype similarity | 0.711–0.879 | 0.919 | 0.921 | 0.660 |
Behavioral intentions | 0.733–0.827 | 0.902 | 0.903 | 0.607 |
Behavioral willingness | 0.609–0.820 | 0.864 | 0.869 | 0.527 |
Moral norms | 0.748–0.795 | 0.897 | 0.897 | 0.593 |
Behaviors | 0.649–0.798 | 0.880 | 0.881 | 0.554 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.726 | |||||||||
2 | 0.547 | 0.815 | ||||||||
3 | −0.014 | −0.007 | 0.776 | |||||||
4 | 0.479 | 0.317 | −0.133 | 0.756 | ||||||
5 | 0.361 | 0.283 | −0.066 | 0.337 | 0.767 | |||||
6 | −0.136 | −0.095 | 0.294 | −0.211 | −0.159 | 0.812 | ||||
7 | 0.545 | 0.440 | −0.101 | 0.541 | 0.330 | −0.211 | 0.779 | |||
8 | −0.216 | −0.142 | 0.405 | −0.299 | −0.212 | 0.454 | −0.362 | 0.726 | ||
9 | 0.539 | 0.371 | −0.119 | 0.430 | 0.282 | −0.181 | 0.400 | −0.312 | 0.770 | |
10 | −0.198 | −0.111 | 0.279 | −0.268 | −0.268 | 0.354 | −0.353 | 0.510 | −0.205 | 0.744 |
Fit Index | Criterion | TPB | PWM | TPB + PWM | The Integrated Model |
---|---|---|---|---|---|
588.138 | 1373.637 | 1661.178 | 2462.961 | ||
DF | 397 | 804 | 1058 | 1673 | |
/DF | 1 < /DF < 3 | 1.481 | 1.709 | 1.570 | 1.472 |
CFI | >0.9 | 0.975 | 0.950 | 0.953 | 0.952 |
TLI | >0.9 | 0.973 | 0.947 | 0.950 | 0.949 |
RMSEA | <0.08 | 0.032 | 0.039 | 0.035 | 0.032 |
SRMR | <0.08 | 0.040 | 0.049 | 0.046 | 0.045 |
Models | Behavioral Intentions | Behavioral Willingness | Behaviors |
---|---|---|---|
TPB | 41.9 | 13.1 | |
PWM | 36.3 | 24.8 | 31.1 |
TPB + PWM | 43.1 | 29.4 | 31.1 |
Integrated model | 43.2 | 37.1 | 31.4 |
Behavioral Intention | Behavior | |||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Attitudes | 0.388 *** (0.000) | −0.001 (0.957) | 0.386 *** (0.000) | - | −0.073 (0.135) | −0.073 (0.135) |
Subjective norms | 0.177 ** (0.001) | −0.002 (0.782) | 0.175 ** (0.001) | - | −0.028 (0.310) | −0.028 (0.310) |
Descriptive norms | 0.017 (0.776) | −0.035 (0.054) | −0.018 (0.741) | - | 0.140 *** (0.000) | 0.140 *** (0.000) |
Perceived behavioral control | 0.365 *** (0.000) | 0.021 (0.082) | 0.386 *** (0.000) | 0.017 (0.778) | −0.155 *** (0.000) | −0.138 *** (0.015) |
Moral norms | 0.027 | 0.014 | 0.041 | - | −0.064 * | −0.064 * |
(0.617) | (0.116) | (0.435) | (0.016) | (0.016) | ||
Prototype favoraiblity | - | 0.005 (0.285) | 0.005 (0.285) | - | −0.022 (0.210) | −0.022 (0.210) |
Prototype similarity | - | −0.026 * (0.048) | −0.026 * (0.048) | - | 0.105 *** (0.000) | 0.105 *** (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Chen, X.; Liu, J.; Liu, W. Adolescent Aggressive Riding Behavior: An Application of the Theory of Planned Behavior and the Prototype Willingness Model. Behav. Sci. 2023, 13, 309. https://doi.org/10.3390/bs13040309
Zhao S, Chen X, Liu J, Liu W. Adolescent Aggressive Riding Behavior: An Application of the Theory of Planned Behavior and the Prototype Willingness Model. Behavioral Sciences. 2023; 13(4):309. https://doi.org/10.3390/bs13040309
Chicago/Turabian StyleZhao, Sheng, Xinyu Chen, Jianrong Liu, and Weiming Liu. 2023. "Adolescent Aggressive Riding Behavior: An Application of the Theory of Planned Behavior and the Prototype Willingness Model" Behavioral Sciences 13, no. 4: 309. https://doi.org/10.3390/bs13040309
APA StyleZhao, S., Chen, X., Liu, J., & Liu, W. (2023). Adolescent Aggressive Riding Behavior: An Application of the Theory of Planned Behavior and the Prototype Willingness Model. Behavioral Sciences, 13(4), 309. https://doi.org/10.3390/bs13040309