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Abstract: This study presents a novel AI method for extracting polygon and point features from
historical geologic maps, representing a pivotal step for assessing the mineral resources needed for
energy transition. Our innovative method involves using map units in the legends as prompts for
one-shot segmentation and detection in geological feature extraction. The model, integrated with a
human-in-the-loop system, enables geologists to refine results efficiently, combining the power of AI
with expert oversight. Tested on geologic maps annotated by USGS and DARPA for the AI4CMA
DARPA Challenge, our approach achieved a median F1 score of 0.91 for polygon feature segmentation
and 0.73 for point feature detection when such features had abundant annotated data, outperforming
current benchmarks. By efficiently and accurately digitizing historical geologic map, our method
promises to provide crucial insights for responsible policymaking and effective resource management
in the global energy transition.

Keywords: geologic map; feature extraction; open-set segmentation; critical mineral assessment

1. Introduction

Geologic maps are essential tools that visually represent the distribution of different
rock types and unconsolidated minerals at or near the Earth’s surface by using distinct
colors and patterns to convey information about the composition, age, and structure of
these geologic units [1]. These maps detail the distribution of rock types, structures,
and surface features that are critical for identifying regions favorable for mineral deposits.
Despite their importance, the inclusion of geologic map data in mineral assessment is often
hindered by the challenge of quickly digitizing historical geologic maps. Although there
are approximately 100,000 scanned geologic maps in the USGS National Geologic Map
Database (NGMDB) [2], only a few have been digitized in a manner suitable for proper
mineral assessment. The manual digitization of these maps is a labor-intensive process,
often taking days to weeks for a single map, and it poses a significant bottleneck in
advancing the objectives of Earth MRI (Mineral Resources Initiative) [3]. To overcome this
challenge, the use of image processing and AI technologies is essential, enabling the faster
and more efficient digitization of geologic maps and thereby accelerating progress toward
comprehensive critical mineral assessments.

Digitizing geologic maps has become increasingly urgent due to the vulnerable do-
mestic supply chain of critical minerals. The transition to sustainable energy is critically
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dependent on the availability of critical minerals, such as lithium, copper, and uranium.
The scarcity or absence of these critical minerals could severely hinder the development
of sustainable energy solutions and threaten national economic stability. To mitigate the
risks associated with potential supply chain disruptions, a comprehensive understanding
of domestic mineral resources is imperative. This is where critical minerals assessment
(CMA) becomes vital, as it helps identify vulnerabilities and secure the necessary materials
for the future. The U.S. Geological Survey (USGS) has taken the lead in enhancing our
understanding of the geologic framework across the United States through initiatives
like the Earth MRI [3]. This program specifically aims to identify areas that may contain
undiscovered critical mineral resources. By bolstering the domestic mineral supply, Earth
MRI seeks to reduce the nation’s reliance on foreign sources of these essential minerals,
which are fundamental to national security and economic well-being.

Initial efforts under Earth MRI have primarily concentrated on geophysical and geo-
chemical data. Geophysical data provide insights into the subsurface by measuring physical
properties such as magnetism, gravity, and electrical conductivity, enabling the detection of
buried mineral deposits and a better understanding of the geological structures that control
their formation. Geochemical data, including the analysis of bedrock and stream sediment,
offer crucial information on the chemical composition of surface materials, aiding in the
identification of elemental anomalies associated with critical minerals. The integration of
geophysical and geochemical data with geologic maps enables the creation of comprehen-
sive models of potential critical mineral deposits, and such multi-source data have been
explored for mineral prospectivity mapping [4].

Digitizing geologic maps involves segmenting complex regions with overlapping
layers, intertwined lines, and irregular geometries. This process requires manually tracing
key points, lines, and polygons to create vector features and linking them to corresponding
legend descriptions. Polygon features are essential, as they represent the physical, chem-
ical, and geological components of mineral resources. These features are defined by the
concentration of natural materials in quantities that determine the economic feasibility of
extraction. Point symbols on geologic maps are also essential, and they can represent a
variety of features, including the location of fossils, mineral occurrences, or sample sites.
Unlike standard segmentation/detection tasks, this is challenging due to the frequent
overlap, discontinuity, and varying shapes and sizes of features like polygons, points,
lines, and text in mineral field maps. Additionally, the same feature type can be repre-
sented by different symbols or patterns across different maps, which is a problem known
as “inconsistent symbology” [5]. This inconsistency, driven by changes in cartographic
design over time, complicates the development of a universal identifier for features such
as mine locations or mineral resource tracts. To facilitate polygon segmentation and point
detection based on map units in the legend, we refer to the task as “prompt-based segmenta-
tion/detection”, where each map unit acts as a “prompt” to guide the model’s segmentation
and detection processes. In this study, we developed a deep learning method to extract
polygon/point features from scanned maps with inconsistent symbology. We developed
a prompt-based model to help automate the feature extraction process. For our study,
the map image and prompt image were concatenated into a 6-channel array to serve as the
model input.

In summary, the inclusion of digitized geologic map data is vital for enhancing the
accuracy and reliability of probabilistic estimates of undiscovered mineral resources. This
initiative builds upon the most comprehensive mineral site compilation to date, serving as
a crucial foundation for the development of the first national-scale mineral prospectivity
maps. Moreover, this advanced toolset for identifying polygon and point features could
also be valuable in other applications, such as the digitization of historical CAD drawings
or chemical process diagrams.
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The main contributions of this paper can be summarized as follows:

1. We developed an automated pipeline for geologic map feature extraction. Initially,
we extracted map units from the legend region, and then we used a prompt-based
method for open-set polygon and point feature extraction, utilizing the legend items
as prompts.

2. We systematically evaluated the effects of patch size, model backbone, and data
augmentation methods on model performance, including hyperparameter tuning,
to enhance both accuracy and generalizability.

3. We vectorized the extracted polygon and point features to facilitate their integration
with geophysical and geochemical data, enabling multi-source mineral prospectiv-
ity mapping.

2. Related Work
2.1. Geologic Map Digitization

A geologic map is characterized by its detailed and large-scale representation of
geographical features, including polygons, contour lines, and cartographic symbols. Vec-
torizing such geologic maps, the process of manually creating the vector representation of a
raster map image, is tedious and time-consuming. Key features, such as boundaries, labels,
and symbols, are traced and converted from raster (pixel-based) format to vector format.
This is often done using software tools (ArcGIS, QGIS, and GRASS GIS) that can automate
some of the tracing or require manual input. In a geologic map, each rock unit is assigned a
unique color and symbol, which we describe in our paper as a “polygon feature”—a type
of map unit found in the legend. Strike and dip symbols are referred to as “point features”
in our work. The final product of the digitization is a digitized version of the original
scanned geological map, which includes detailed representations of the polygon and point
features. While traditional digitization methods require a certain degree of user interac-
tion, modern techniques employing machine learning algorithms have been developed
to automate this process entirely. Machine learning models can effectively identify and
classify geological features with high accuracy, even when working with complex or noisy
data. However, these methods also have their weaknesses. They often require a substantial
amount of labeled training data to perform well, which may not always be available for
historical maps.

Several methods have been proposed and explored to address the ongoing challenges
associated with the labor-intensive process of manual map annotation. One approach
involves template matching combined with active learning [6], as well as creating bench-
mark datasets for pretraining through crowdsourcing [7]. Another alternative is weakly
supervised learning, which leverages incomplete, coarse, or inaccurate data to mitigate the
scarcity of training data [8].

Despite these advancements, these methods still require significant human interven-
tion from domain experts. A closely related field to our “legend-prompted” segmentation
is visual reference segmentation [9,10], which aims to utilize a semantically annotated
reference image to instruct the segmentation of regions in the target image that share
the same semantics as those in the reference image. Given its indispensable role in han-
dling unknown scenes, large-scale vision models have prioritized this task recently [10,11].
The term “visual reference segmentation” is often used interchangeably with “prompted
segmentation”, “query segmentation”, and “one-shot segmentation”, as they all address an
“open-set” problem, with the goal of guiding the detection of regions in the target image
that share the same semantics as those in a reference image.

2.2. Open-Set Segmentation

In deep learning-based feature extraction from raster maps, much of the research
concentrates on extracting a single type of feature from a map, either the buildings foot-
prints [8,12], surface mine extents [13], or lithological boundary [14], among others. In geo-
logic mapping, these traditional closed-set segmentation methods fall short because they
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assume that all classes encountered during inference are present in the training data. How-
ever, geologic maps often feature previously unmapped rock types or formations, leading
to out-of-distribution (OOD) regions. Segmentation methods must effectively identify and
handle these unseen classes to ensure that novel geological features are accurately classified
or flagged as unknown. As Nunes et al. [15] noted, open-set segmentation is gaining
attention but remains challenging due to the need for precise pixel-wise classification and
differentiation between known and unknown classes.

Recent advances in open-set segmentation have significantly impacted both remote
sensing and geologic map segmentation, addressing the challenge of identifying and seg-
menting unknown classes in complex imagery. In remote sensing, methods like Conditional
Reconstruction for Open-Set Semantic Segmentation and approaches such as OpenPixel
have demonstrated effectiveness in detecting OOD pixels, achieving robust results [16–18].

For geologic map segmentation, where the complexity of diverse and overlapping
geological features is particularly challenging, methods like polygon metadata exploitation
have shown promise by leveraging convolutional neural networks to automate the digitiza-
tion of historical maps, thereby improving the efficiency of geological analyses and critical
mineral assessments [19]. Integrating these advanced open-set segmentation techniques
into geologic map digitization workflows holds the potential to significantly enhance the
accuracy and efficiency of critical mineral assessments and other geological analyses.

2.3. Open-Set Detection

In terms of symbol detection, traditional object detection algorithms are often limited to
a fixed category, and they can only detect a predefined set of object categories included in the
training datasets. For instance, an object detector trained on COCO [20] can only recognize
80 classes and cannot detect new categories beyond those it was trained on. Multiple
studies have been conducted on object detection in geological maps. Budig et al. used
active learning, crowdsourcing, and interactive methods to enhance cartographic symbol
recognition in historical maps without annotated data [6,7]. Uhl et al. weakly supervised a
convolutional neural network using large amounts of training data for settlement symbols
in USGS maps [21]. Jiao et al. developed an efficient method for generating training data
through symbol reconstruction for road extraction [22]. Despite these advances, challenges
remain, such as the need for automated, reliable training data generation and consistent
symbology within datasets. Notably, no studies have yet automated the extraction of all
symbols from scanned geologic maps.

Our study can be framed as one-shot image-conditioned object detection [23], where
the input prompts (exemplar images) are paired with their respective masks. Template
matching is the most commonly used method for open-set symbol detection, with various
approaches accounting for rotation and scale variations, such as grayscale, 2D affine trans-
formations, and dense deformation fields [24,25]. However, these methods face limitations:
(1) template matching is computationally intensive and struggles with large images (over
5000 × 5000 pixels); (2) they are highly susceptible to noise, particularly in distorted or
faded historical maps; and (3) most methods are map-specific, developed and tested on a
limited set of maps, and lack flexibility and generalizability. Deep learning techniques have
been explored for more accurate and generalizable symbol extraction, offering advantages
over template matching, which is limited by scale and rotation variations. Guo used a
graph convolutional neural network with L2 distance to detect compound symbols on
geologic maps [26]. Methods like YOLO [27] and RCNN [28] have been applied to detect
logos, seals, and road intersections in historical documents. However, these approaches
require labeled data with bounding box coordinates, which are time-consuming to annotate
and often scarce, as most annotated data typically provide only single-point coordinates.
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3. Dataset and Methods
3.1. Dataset Description

In this study, we used historical geologic maps sourced from the USGS ScienceBase
data repository [2], which holds approximately 100,000 maps, most of which are in raster
format and are not vectorized. These maps usually are the only sources that provide detailed
information on geological features like rock formations, fault lines, and mineral deposits.
A small subset of these maps has been human-annotated, with annotations provided by
DARPA and USGS for the AI4CMA DARPA Challenge (https://criticalminerals.darpa.mil/
The-Competition, accessed on 1 November 2024) [29]. This annotated dataset contains
169 maps for training, 82 maps for validation, and 32 maps for testing. These maps contain
a wide variety of mining and prospecting features, including pits, strip mines, disturbed
surfaces, mine dumps, quarries, and tailings, which are represented using point symbols,
areal/thematic symbols, and text. For each mineral map, in addition to the map image (as
shown in Figure 1) and its corresponding raster files for every map unit in the legend, there
is also a JSON file documenting all map units types and names, as well as the map unit box
coordinates. The coordinates are useful to crop the map unit symbol from the map image.
The raster files contain a binary array of 1s and 0s, where 1s indicate the presence of the
symbols. The number of raster files per map matches the number of map units in the map
legend, which also corresponds to the number of coordinate point sets in the JSON file.

Figure 1. Example of data visualization: This figure illustrates a sample dataset embedded within a
comprehensive map. It includes the following components: 1. Main Map Content: Displays the area
containing key features of interest. 2. Corner Coordinate: Typically located at the corner of the map
content for georeferencing purposes. 3. Text Information: Provides metadata such as map location
and geological age. 4. Map Legend Area: Contains a list of map units along with their descriptive
text. 5. Segmentation Map: Shows an example of extracted polygon features using the map unit “Qal”
as the query key.

3.2. Data Engineering—Spatial Indexing and Grid Construction

The memory capacity of graphics processing units (GPUs) limits the processing of
high-resolution images in their original resolution. Our dataset includes images with
resolutions ranging from 3000 × 3000 to 14,000 × 14,000, which exceed the training
capabilities of conventional deep learning models like U-Net. Typically, these models are
trained on downsampled or patchified images sized 256 × 256, 128 × 128, etc. To address
this challenge, we partitioned the images into smaller tiles, conducted predictions on
these tiles, and then stitched them back together to form the complete prediction for the
entire image.

https://criticalminerals.darpa.mil/The-Competition
https://criticalminerals.darpa.mil/The-Competition
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To prepare the maps for training algorithms, we first pre-processed all images by
loading the 169 maps into an HDF5 file [30]. Each image was converted into an array and
indexed within the file. Given that many of the patched images were only labeled with
a few map units, they were largely “empty patches” for other units, which could slow
down training and introduce data imbalance. To address this, we processed each layer,
including legends, and recorded their locations on the maps. This approach allowed
us to query specific patches containing actual data, which is advantageous for model
training. The HDF5 format, with its ability to quickly access data subsets, was ideal for
extracting patches and storing all layers along with necessary metadata in one file. We
created patches of various sizes (1024, 512, 256, 128, and 64 pixels) with different overlaps
(128, 15, 10, 5, and 3 pixels). This pre-processing, which did not require a GPU, resulted
in datasets that were easy to store and share among modelers, enhancing collaboration.

3.3. Map Unit Extraction

Detecting map units from geologic maps is essential for identifying target geological
features and using these units as references for both polygon segmentation and point object
detection, which facilitates the creation of digital geologic maps. More importantly, the accu-
rate detection of geological units is vital for effective resource exploration and management,
as map units and their associated text descriptions can help understand the distribution,
composition, and structure of geological formations. For assessing critical minerals, such
as tungsten in the Great Basin region of western Nevada [31], it is crucial to have tools that
can locate and display relevant maps from the entire NGMDB. For example, a researcher
might use keywords like “tactite” and “skarn” to query a search system. This system would
then identify maps containing these keywords in their text descriptions, allowing the
researcher to gather and analyze these maps in conjunction with other geophysical survey
data [32].

We first developed an object detection algorithm to extract the map unit from the
scanned map. The YOLO model used is based on YOLOv8 and has been fine-tuned on a
subset of the StepUp dataset consisting of 143 maps. This subset contains approximately
1200 individual map units, with a significant skew towards polygon classes due to the
limited training data.

3.4. Polygon Feature Extraction

In traditional semantic segmentation, it is crucial to pre-define all possible classes to
achieve effective results, as most existing methods rely on this “closed-set” assumption.
However, these approaches often fail when encountering new, unseen classes during the
test phase, as they are unable to identify these unfamiliar classes. Consequently, they are
not well suited for open-set scenarios, which are prevalent in real-world computer vision
and remote sensing applications.

Similar to the Segment Anything Models (SAMs) [9], which take a handcrafted
prompt—such as spatial prompts (e.g., points/bounding boxes) or semantic prompts
(e.g., text)—and return the corresponding segmentation mask, we aim to enhance the
capability of an open-set segmentor. Our approach allows it to use an unseen map unit as
an exemplar image. The learning objective is framed as a binary segmentation problem,
where the input prompt (the exemplar images) are paired with their corresponding masks.
This enables the model to learn meaningful correspondences that can generalize to new
map units during testing.

The overall workflow is illustrated in Figure 2. We have benchmarked a range of
open-set segmentation models, and their performance will be discussed in the next section.
For our implementation of the U-Net based model, the map image and prompt image were
concatenated into a 6-channel array as model input. Despite the sophisticated designs
proposed in some recent fusion strategies, we find that straightforward channel concatena-
tion emerges as a simple yet highly effective fusion method, delivering superior efficiency
and performance. The model adhered to the standard U-Net architecture, featuring five
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downsampling blocks in the encoder and four upsampling blocks in the decoder. Each
downsampling block included two convolutional layers, while the upsampling blocks
contained three convolutional layers.

Figure 2. (a) A geologic map sample with the map content area and legend area highlighted in red.
The original map is overlaid with polygonal features to emphasize the discontinuity and the varying
shapes and sizes of these features. (b) An illustration of the patch-wise segmentation model using
map unit as the prompt. (c) Congregated results after the patch-wise segmentation model inference
and restitching.

3.5. Point Feature Extraction

Figure 3a illustrates point features in maps with legends marked in red boxes. Notably,
the symbols are widely dispersed and represented amidst noisy backgrounds. Figure 3b
show the inconsistent symbology of legend items among maps in the training, validation,
and testing dataset. While there are consistent symbols across all maps, (first row, “1_pt” to
“5_pt”), the same feature type in different scanned documents can be depicted with different
symbols or patterns. The cartographic design of the map symbols may change significantly
over time, and thus, these symbols appear very differently across maps. To illustrate,
symbols like “dome” exhibit significant variations in appearance across different maps in
the training dataset. The same holds true for other symbols such as “joint” and “foliate”,
where the labels with the same name share some resemblance in the pattern but are largely
dissimilar. We began by compiling a collection of the most common point features from
our training maps, which contained 48 different legends, including gravel pits, mine shafts,
and others.

A straightforward approach to detecting novel classes would involve collecting addi-
tional training images for these new classes and incorporating them into the original dataset
before retraining or fine-tuning the model. However, this method is inefficient due to the
significant costs associated with adequate data collection and model training. To address
this, the detection literature has explored generalization from base to novel classes through
zero-shot detection, where techniques like prompt-based models [11] were employed to
enable the model to recognize new classes without additional training data. Our approach
aims to extend the capability of an open-set detector by allowing it to detect the bounding
box based on user inputs in the form of an exemplar image. The learning objective is
framed as a binary matching problem between input queries (the exemplar images) and the
corresponding objects, enabling the model to learn useful correspondences that generalize
to unseen queries during testing. A modified YOLO [33] model was adopted for this task.
Different from the standard multi-class detection, our input contained the map image and
the target point legend image. Specifically, we changed the input channel of YOLOv8
to 6 channels and used the concatenated image of the map and legend as input. For the
output, a binary head was applied to predict the target point bounding boxes. Since our
task mainly focused on the point position, only the center information of the bounding
boxes was maintained for the output raster.
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Figure 3. (a) The uppermost plot depicts a geologic map featuring a legend with six symbol items,
which are displayed as a red box in the upper-middle region; these symbols are almost indistinguish-
able when lumped together. The accompanying JSON file on the right-hand side documents the
names and coordinates of each legend item. The bottom section showcases two additional maps with
legends marked in red boxes. (b) The inconsistent symbology of legend items among maps in the
training, validation, and testing dataset.

3.6. Evaluation Metrics

The polygon segmentation performance was assessed using widely recognized metrics,
including the F1 score, precision, recall, and intersection over union (IoU); the reported
mean and median were defined as legend-wise values. The only variation in the evaluation
criteria involved weighting the pixels differently. Pixels correctly identified by the color-
matching baseline model were labeled as “easy” and the rest as “hard”. In this study,
“hard” pixels were weighted at 0.7, while “easy” pixels carried a weight of 0.3. For point
detection performance evaluation, instead of merely counting overlapping pixels between
the predicted and true maps, we calculated the distance of each pixel in the predicted map
to its closest counterpart in the true map, applying a cutoff distance beyond which pixels
were not considered valid pairs. Additionally, measures were taken to ensure that each
pixel was only counted once. The distances were normalized by the diagonal length of the
map, with a value of 0 indicating perfectly overlapping pixels and a value of 1 representing
pixels at opposite corners of the map. In this study, we used a cutoff distance of 0.01 to
determine valid pairs, and we subsequently calculated the recall, precision, and the F1
score, similar to the approach used for polygon segmentation.

3.7. Workflow Design

The flowchart in Figure 4 illustrates the entire steps of the processing flow, including
data preparation, model inference, and postprocessing for the entire map evaluation.
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Figure 4. Flowchart illustrates the entire steps of the processing flow.

4. Results and Discussion
4.1. Map Unit Extraction

Overall, YOLO represents a robust solution for map unit extraction task. Figure 5a
presents visualizations of the extracted map units from patch images, where the training
patches are 1024 pixels in size, with a 32-pixel overlap. Figure 5b displays the Precision–
Recall (PR) curve across various threshold levels, illustrating the trade-offs between these
two metrics. The curve demonstrates that the model excelled in accurately identifying
polygon map units while maintaining a low false positive rate. The confusion matrix shown
in Table 1 indicates that the YOLO model effectively detected polygon map units, achieving
a normalized true positive rate of 0.91. However, despite its strengths, YOLO exhibite some
limitations in detecting point and line map units, which are evident in the lower precision
scores for these categories. This poor performance on line and point units can largely
be attributed to deficiencies in the training data used, such as the distribution of classes,
and poor labeling for the true point and line units. To improve the model performance
further, efforts are being currently focused on expanding the size of dataset from 150 maps
to 3000 maps and making sure maps are fully labeled properly, which aim to achieve a
more balanced class distribution and accurate point and line labels for all symbols.

Figure 5. Model performance on legend map unit extraction. (a) Visualization of the extracted map
unit on patch images. (b) Precision–Recall curve to illustrate the trade-off between precision and
recall for different thresholds.

Table 1. Normalized confusion matrix of the YOLO model on extracting point, line, and polygon
map unit in the legend.

Pred_Point Pred_Line Pred_Polygon Pred_Background

True_Point 0.36 0.03 0 0.61
True_Line 0 0.73 0 0.27

True_Polygon 0 0 0.91 0.09
True_Background 0.12 0.15 0.74 0



Geosciences 2024, 14, 305 10 of 17

4.2. Polygon Feature Segmentation
4.2.1. Patch and Overlap Size Optimization

We conducted experiments to find the optimal patch and overlap size for the Vanilla
U-Net [34] model, as patch size is a crucial hyperparameter that can significantly influence
the performance of our model: it affects the context available for learning and can impact
both accuracy and computational efficiency. Both the training and validation F1 scores were
evaluated, with a focus on validation scores to gauge generalization. To address pixel-level
data imbalance, we included only those training patches that contained at least one pixel
with a value of 1 (representing polygon features) in the ground truth. As illustrated in
Table 2, a patch size of 256 with an overlap of 32 yielded the highest validation score
of 85.72%, alongside a strong training score of 94.02%. This combination resulted in
a modest difference of 8.30% between the training and validation scores, indicating a
healthy balance between model fitting and generalization. Notably, increasing the patch
size from 128 to 256 consistently improved the validation F1 score, particularly with
larger overlaps, suggesting that larger patches help the model capture better contextual
information. However, increasing the patch size beyond 256 led to a decline in performance,
as seen with patch sizes of 512 and 1024, likely due to the model’s difficulty in handling
large patches with insufficient context. These results confirm that a patch size of 256 with
an overlap of 32 offers the best balance between model complexity and generalization. This
configuration served as the baseline for further comparing different model architectures.

Interestingly, for patch size 128, the best validation F1 score was achieved with an
overlap of 15, yielding a score of 82.18%. This suggests that larger overlaps tend to improve
results for smaller patch sizes. However, for patch sizes of 512 and 1024, the model
consistently underperformed across all overlap values, underscoring the limitations of
using larger patches for this specific task.

Table 2. Results of experiments with different patch sizes and overlap sizes using the Vanilla U-Net
model. All metrics reported here are for “patch-wise” measurement. The parameters with the best
performance is in bold.

Model Patch Size Overlap Best Train F1
Score (%)

Best
Validation F1

Score (%)
Difference (%)

Vanilla_Unet

128

3 95.29 80.72 14.57
5 95.89 80.59 15.30

10 95.49 81.26 14.23
15 96.05 82.18 13.87

256

3 90.58 81.65 8.93
5 91.24 82.26 8.98

10 92.18 84.23 7.95
15 93.54 84.39 9.15
32 94.02 85.72 8.30

512

3 78.84 75.43 3.41
5 70.46 69.86 0.60

10 74.38 72.21 2.17
15 78.16 72.76 5.40

1024

3 23.44 20.02 3.42
5 16.88 15.04 1.84

10 24.59 26.76 −2.17
15 24.66 23.53 1.13

4.2.2. Model Search and Hyperparameter Tuning

We evaluated three different model architectures—Vanilla U-Net [34], Attention U-
Net [35], and MultiRes U-Net [36]—using the optimal patch and overlap configuration
from the previous experiments. As shown in Table 3, the Vanilla U-Net consistently outper-
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formed the others in terms of both its training and validation F1 scores. This suggests that
the Vanilla U-Net is better suited for generalization on unseen data. Despite the Attention
U-Net’s use of attention mechanisms, it did not surpass the Vanilla U-Net, indicating the
added complexity may be unnecessary. The MultiRes U-Net, designed for multi-scale
features, underperformed in both its training (58.93%) and validation (56.87%) scores,
likely due to overfitting or challenges with our geologic map dataset. Thus, the Vanilla
U-Net’s simplicity and strong performance made it the best choice for further experiments
and refinements.

Table 3. Comparison of model architectures using the best patch and overlap size. All metrics
reported here are for “patch-wise” measurement. The best one is in bold.

Model Best Train F1 Best Validation F1

Attention_Unet [35] 92.34% 82.49%
Vanilla_Unet [34] 94.02% 85.72%
MultiRes_Unet [36] 58.93% 56.87%

Figure 6 displays three challenging scenarios of the model’s segmentation performance
across different maps and legends. In each case, the model demonstrated outstanding
performance. All three patches showed irregular and discontinuous geometries against
noisy backgrounds, with the first one involving both color and pattern matching.

Figure 6. (a–c) Model performance on example patched image. This visualization includes patch
image, legend, predicted segmentation mask, and ground truth (GT) segmentation mask.

4.2.3. Whole Map Evaluation

We explored various data augmentation techniques to enhance model performance.
Since many legends in our dataset rely on color matching, we applied “color jitter” to
help the model generalize across different colors. Additionally, we used “random rotation”
and “random horizontal and vertical flips” to further improve the generalizability. Data
purification was also performed during training: map units with similar colors were
combined into a single category to refine the model’s color matching capability. For
postprocessing, a mutually exclusive step was used to consolidate multi-class results.
For each pixel, the model generated soft logits between 0 and 1 for each legend on the map.
In line with standard multi-class segmentation practices, we first selected the highest soft
logits value among all classes, and then a threshold was applied to classify predictions as
either positive or negative.
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We present the overall performance of our proposed methods in terms of the median
weighted F1 score on both the validation and testing dataset, as shown in Table 4. Our
approach achieved an F1 score of 91.52%, surpassing the state-of-the-art method by 13.12%.
The ablation study included two parts: (1) cleaning the dataset by merging similar map
units into a single category to emphasize color matching and (2) applying robust data
augmentation techniques, such as color jitter and random horizontal and vertical flips. Both
methods significantly improved model performance.

Table 4. The polygon segmentation performance of prompted U-Net on whole map evaluation. Here,
‘P’ indicates Data Purification, and ‘A’ indicates Strong Data Augmentation.

Methods
Validation Test

F1 Precision Recall IoU F1 Precision Recall IoU

LOAM [19] - - - - 80.90 89.10 91.50 -
Prompted U-Net 79.41 84.27 88.40 65.86 90.03 92.76 93.15 82.35
U-Net + P 83.62 87.18 89.77 71.85 90.90 94.21 93.27 83.31
U-Net + P + A 83.71 87.97 89.54 71.98 91.52 94.85 93.01 84.36

Figure 7 illustrates the model’s performance in polygon feature extraction after ag-
gregating all polygon features across the entire map. Figure 7a displays the raw map
visualization, while Figure 7b shows the delineated boundaries of all extracted polygon fea-
tures, highlighting the model’s capability to accurately identify and represent these features.

This prompt-based segmentation model has several notable limitations. First, the model’s
performance is highly dependent on the quality of the prompt image. Issues such as color
mismatches, overlapping legends, and noisy backgrounds from scanned, wrinkled maps
can significantly impact its effectiveness. Future research should focus on developing
techniques to automatically extract high-quality legends from maps. Second, the model
struggles to differentiate between legends that are very close to each other. Enhancing
localized contrast and improving edge definition in these models could be beneficial.

Figure 7. Model performance on polygon feature extraction after aggregating all polygon and point
features across the entire map. (a) Visualization of the raw map; (b) visualization of the extracted
features; (c,d) zoom-in plot for better visualization. Different colors represents different point features.
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4.3. Model Performance for Point Detection

Experiments were performed to assess the efficacy of the proposed point detection
methods. A set of sample patches is presented here to visually evaluate the model’s
performance. Figure 8 demonstrates that the model can accurately detect various types of
symbols. Each plot includes the following: (1) a patch image that is cropped from the map,
(2) a resized point symbol image from the map unit, (3) a patch image with its predicted
result, and (4) a patch image with ground truth annotation. The performance of the model
was evaluated by comparing the true label (3) with the predicted label (4), and the majority
of these labeled points had very close distances, indicating that the model is capable of
accurately extracting symbols. The model performed particularly well in detecting symbols
with distinct features, such as prominent edges or contrasting colors. Table 5 presents
a quantitative evaluation of the proposed point detection models for both common and
rare legend symbols. The threshold for classifying symbols as common or rare was set at
1000 occurrences in the training dataset. For comparison, the baseline benchmark model,
which utilized template matching [34], achieved an F1 score of 0.35 for all point symbols.
The performance discrepancy between the validation and testing datasets in Table 5 arose
because the testing dataset includes a significantly higher number of unseen point symbols.
While the model performed relatively well with sufficient training data, it struggled to
generalize to these unfamiliar symbols.

Figure 8. (a,b) The model’s performance in validation data for various types of legend items.
The columns from left to right are (1) patchified image, (2) resized legend item, (3) model predicted
annotation (red circle) (4) ground truth annotation (blue circle).

Table 5. Quantitative evaluation of the proposed point detection models for both the common and
rare legend symbols. The threshold for distinguishing between common and rare legend symbols
was set at 1000 (the occurrence count of such point symbols in the training dataset).

Methods
Common Legends Rare Legends

F1 Precision Recall F1 Precision Recall

Prompted YOLO (Validation) 72.59 82.12 70.59 39.21 32.58 69.46

Prompted YOLO (Testing) 48.10 53.84 80.16 0 0 0

Figure 9 shows the model performance of predicting symbol ‘3_pt’ in a entire map.
Compared to the labor-intensive task of manually extracting all point symbols in such
a map, the segmentation process for a single type of point symbol using the model for
inference was completed within a minute. The model exhibited satisfactory performance in
providing a statistical description of the symbols’ distribution, even for maps with lumped
symbols that are in close proximity to each other and have a noisy background.
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Figure 9. Model performance on an entire map; red circle represents the model prediction, and blue
circle represents the ground truth. (a) Model performance for predicting symbol ’3_pt’, (b) zoom-in
plot for better visualization.

For common point symbols, the model excelled at detecting symbols with distinct
characteristics, such as clear boundaries or contrasting colors. The model has been designed
with generalizability and robustness in mind, yet we identified situations where the model’s
performance was suboptimal. One issue arises when there is a color mismatch between
symbols on the map and those in the legend. This misalignment often occurs due to
scanning problems such as blurring, aliasing, bleaching, and distortion. Additionally, RGB
misalignment, where the red, green, and blue color planes are not properly aligned, can lead
to color inconsistencies within the same geographic element. Addressing this challenge
requires additional measures. Another issue is the frequent overlap of symbols with linear
elements like roads, contour lines, and text. This overlapping can significantly hinder map
interpretation, even for human readers, and it is particularly problematic in text recognition
within maps with dense and intricate contour lines. To mitigate such issues, sophisticated
background removal techniques have been developed. For example, Cao et al. proposed
methods for removing solid graphical components and line features, as well as size filtering
to separate text from noise [37].

For rare point symbols, the point detection model is constrained by the limited amount
of training data. The U-Net model, being a supervised learning model, requires a large
amount of labeled data for effective training. However, symbols in scanned documents may
appear infrequently in some maps, leading to insufficient data representation. To tackle
this issue, one strategy is to explore alternative models that require less data, such as
non-learning-based methods like template matching [38] and class-agnostic learning using
foundation models as a prior [39,40]. Additionally, it is essential to develop tools that
effectively integrate human and machine intelligence at scale [41]. These tools should
allow users to quickly (1) review outputs; (2) adjust legend annotations for accurate feature
extraction; and (3) correct any imperfections in the extraction process. This approach would
enable crowdsourced annotation by non-geoscientists, thereby expanding the dataset for
future training. Furthermore, a human-in-the-loop system is under development that
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allows users to correct the model’s outputs, reducing the annotation time from one week to
just a few hours.

5. Conclusions

In this study, we investigated innovative approaches to automatically extract poly-
gon/point features on scanned geologic maps. A modified multi-channel U-Net model,
which concatenates map images with an exemplar images from map unit as input, was
proposed to enable prompt-based segmentation and detection. The proposed approach was
evaluated using various map scenarios, and the experimental results demonstrate its ability
to successfully detect various types of symbols while being robust against variations in
symbology and map properties. The findings of this study may have practical implications
for designing automated models for the faster analysis of geological maps.

This research suggests that current segmentation methods are both applicable and
generalizable, though with some trade-offs in performance. Incorporating a “human-in-
the-loop” process could further enhance the system, allowing annotators to refine the
segmentation and thereby offering room for further improvement. This self-correction
process is particularly crucial for edge cases where data are limited, such as with rare
point symbols.

For future work, inspired by the recent successes of foundation models, exploring
the integration of foundation models like SAM [9] into the current framework could be
a promising direction. The advancements of foundation models present the potential to
combine pretrained model priors with existing data priors, which could enhance both
performance and generalizability. In a human-in-the-loop pipeline, generalizability is
critical, as the model needs to produce reliable segmentation results to expedite annotators’
correction tasks. Therefore, the combination of foundation models and human feedback
could significantly improve both the speed and accuracy of the segmentation process,
leading to more efficient geologic map analysis.
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