Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens
<p>Effect of dietary leaf power mixture (LPM) supplementation on laying hens’ villus height and crypt depth. Data show the mean with error bars representing ± SD and Student’s <span class="html-italic">t</span>-test results. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Density of goblet cells (GCs) expressed as the number of cells per 100 µm of villus length in duodenum and ileum of control (Con) and leaf power mixture (LPM) supplemented laying hens stained with PAS and HID/AB 2.5 procedure to reveal both neutral and acidic mucins. Data show the mean with error bars representing ± SD and Student’s t-test results. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Representative pictures showing the different staining intensity with PAS (<b>A</b>,<b>B</b>) and HID/Alcian Blue pH 2.5 (AB2.5) (<b>C</b>,<b>D</b>) staining procedures in the duodenum and ileum villi of laying hens. (<b>A</b>,<b>B</b>) PAS-positive goblet cells exhibit magenta staining; the nuclei are stained with Mayer’s hemalum. (<b>C</b>,<b>D</b>) Goblet cells show HID positivity (brown) in the duodenum and both HID and AB 2.5 positivity (blue) in the ileum; the nuclei are stained with fast red. lp, lamina propria; asterisk, goblet cells. Scale bar: (<b>A</b>–<b>D</b>), 25 µm.</p> "> Figure 4
<p>Percentage of the intestinal goblet cells of Control and LPM hens producing neutral mucins (PAS, magenta), acidic sulphated glycans (HID, brown), and both non-sulphated and sulphated acidic glycans (HID/AB 2.5, green).</p> ">
1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.2. In Vitro Antioxidant Capacity Evaluation
2.2.1. Chemicals
2.2.2. TPC Determination
2.2.3. ORAC Assay
2.2.4. FRAP Assay
2.2.5. TEAC-ABTS Assay
2.2.6. Combination Index (CI) Analysis
2.3. In Vivo Study
2.3.1. Animal Management and Diets
2.3.2. Blood Sampling and Laboratory Analyses
2.3.3. Intestinal Tissue Sampling and Analyses
2.4. Statistical Analysis
3. Results
3.1. In Vitro Assays
Chemical-Based Antioxidant and Interaction Activity of the Leafs Mixture
3.2. In Vivo Study
3.2.1. Biochemical Parameters
3.2.2. Histological Morphometry and Histochemistry Analyses
4. Discussion
4.1. In Vitro Study
4.2. In Vivo Study
4.3. Intestinal Morpho-Histochemical Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martemucci, G.; Portincasa, P.; Centonze, V.; Mariano, M.; Khalil, M.; D’Alessandro, A.G. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med. Chem. 2023, 19, 509–537. [Google Scholar] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Y.; Purswell, J.L.; Magee, C. Effects of feeder space on broiler feeding behaviors. Poult. Sci. 2021, 100, 101016. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.M.E.; Shehata, A.M.; Alzahrani, S.O.; Shafi, M.E.; Mesalam, N.M.; Taha, A.E.; Swelum, A.A.; Arif, M.; Fayyaz, M.; Abd El-Hack, M.E. The role of polyphenols in poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1851–1866. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Jha, R. Oxidative Stress in the Poultry Gut: Potential Challenges and Interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Zhang, H.Y.; Deng, J.S.; Wu, S.X.; Cui, Y.; Yang, M. Chemical Constituents and Pharmacological Activities of Rosmarini Officinalis Herba. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 211–218. [Google Scholar]
- Oviedo-Rondón, E.O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.; Selim, S.; Hussein, E. Effect of supplementing layer hen diet with phytogenic feed additives on laying performance, egg quality, egg lipid peroxidation and blood biochemical constituents. Anim. Nutr. 2018, 4, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Dueñas, M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chem. 2014, 156, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Cayan, H.; Erener, G. Effect of Olive Leaf (Olea europaea) Powder on Laying Hens Performance, Egg Quality and Egg Yolk Cholesterol Levels. Asian-Australasian J. Anim. Sci. 2015, 28, 538. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Lioliopoulou, S.; Nenadis, N.; Panitsidis, I.; Pyrka, I.; Kalogeropoulou, A.G.; Symeon, G.K.; Skaltsounis, A.L.; Stathopoulos, P.; Stylianaki, I.; et al. Effects of Enriched-in-Oleuropein Olive Leaf Extract Dietary Supplementation on Egg Quality and Antioxidant Parameters in Laying Hens. Foods 2023, 12, 4119. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S.; Alruhaili, M.H.; Gattan, H.S.; Alharbi, M.T.; Nagshabandi, M.K.; Almehayawi, M.S.; Jaouni, S.K.A.; Selim, S.; Alqahtani, F.S.; El-Saadony, M.T.; et al. Evaluation of antimicrobial effect of olive leaves powder and its role in improving the broiler productivity, carcass traits, blood metabolites, and caecal microbiota. Poult. Sci. 2023, 102, 103054. [Google Scholar] [CrossRef] [PubMed]
- Erener, G.; Yesiltepe, P.; Gungor, E.; Ozlu, S.; Altop, A. The effects of infused olive leaf offered with drinking water on growth performance, ileum histomorphologic characteristics, and some cecal microorganism counts of broiler chickens. Trop. Anim. Health Prod. 2023, 55, 366. [Google Scholar] [CrossRef] [PubMed]
- Taban, A.; Saharkhiz, M.J.; Niakousari, M. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm. 2018, 9, 12–18. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef]
- De Oliveira, J.R.; Camargo, S.E.A.; De Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C. Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review. Eur. J. Lipid Sci. Technol. 2015, 117, 1853–1866. [Google Scholar] [CrossRef]
- Guo, F.C.; Kwakkel, R.P.; Soede, J.; Williams, B.A.; Verstegen, M.W.A. Effect of a Chinese herb medicine formulation, as an alternative for antibiotics, on performance of broilers. Br. Poult. Sci. 2004, 45, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Cirico, T.L.; Omaye, S.T. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem. Toxicol. 2006, 44, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Enko, J.; Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, R.J. Quantitative methods for assessing drug synergism. Genes Cancer 2011, 2, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Verhagen, H.; Aruoma, O.I.; Van Delft, J.H.M.; Dragsted, L.O.; Ferguson, L.R.; Knasmüller, S.; Pool-Zobel, B.L.; Poulsen, H.E.; Williamson, G.; Yannai, S. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo. Food Chem. Toxicol. 2003, 41, 603–610. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [PubMed]
- Zhang, N.; Fu, J.N.; Chou, T.C. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am. J. Cancer Res. 2015, 6, 97. [Google Scholar] [PubMed]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Jimenez-Alvarez, D.; Giuffrida, F.; Vanrobaeys, F.; Golay, P.A.; Cotting, C.; Lardeau, A.; Keely, B.J. High-Throughput Methods to Assess Lipophilic and Hydrophilic Antioxidant Capacity of Food Extracts in Vitro. J. Agric. Food Chem. 2008, 56, 3470–3477. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef]
- Motiwala, M.N.; Rangari, V.D. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: Evidence of a synergistic interaction. Synergy 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Knierim, U. Animal welfare aspects of outdoor runs for laying hens: A review. NJAS Wagening. J. Life Sci. 2006, 54, 133–145. [Google Scholar] [CrossRef]
- Sokołowicz, Z.; Dykiel, M.; Topczewska, J.; Krawczyk, J.; Augustyńska-Prejsnar, A. The Effect of the Type of Non-Caged Housing System, Genotype and Age on the Behaviour of Laying Hens. Animals 2020, 10, 2450. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Cesarone, M.R.; Belcaro, G.; Carratelli, M.; Cornelli, U.; De Sanctis, M.T.; Incandela, L.; Barsotti, A.; Terranova, R.; Nicolaides, A. A simple test to monitor oxidative stress. Int. Angiol. 1999, 18, 127–130. [Google Scholar] [PubMed]
- Esterbauer, H.; Zollern, H. Methods for determination of aldehydic lipid peroxidation products. Free Radic. Biol. Med. 1989, 7, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Tham, S.-Y.; Lu, J.; Lai, M.H.; Lee, L.K.H.; Moochhala, S.M. Simultaneous determination of vitamins C, E and beta-carotene in human plasma by high-performance liquid chromatography with photodiode-array detection. J. Pharm. Pharm. Sci. 2004, 7, 200–204. [Google Scholar]
- Mcmanus, J.F.A. Histological and Histochemical Uses of Periodic Acid. Stain Technol. 1948, 23, 99–108. [Google Scholar] [CrossRef]
- Spicer, S.S. Diamine methods for differentialing muco substances histochemically. J. Histochem. Cytochem. 1965, 13, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Galosi, L.; Desantis, S.; Roncarati, A.; Robino, P.; Bellato, A.; Nebbia, P.; Ferrocino, I.; Santamaria, N.; Biagini, L.; Filoni, L.; et al. Positive Influence of a Probiotic Mixture on the Intestinal Morphology and Microbiota of Farmed Guinea Fowls (Numida meleagris). Front. Vet. Sci. 2021, 8, 743899. [Google Scholar] [CrossRef] [PubMed]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Falade, A.O.; Adewole, K.E.; Adekola, A.R.O.; Ikokoh, H.A.; Okaiyeto, K.; Oguntibeju, O.O. Aqueous extract of bay leaf (Laurus nobilis) ameliorates testicular toxicity induced by aluminum chloride in rats. Vet. World 2022, 15, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar Nedamani, E.; Sadeghi Mahoonak, A.; Ghorbani, M.; Kashaninejad, M. Evaluation of antioxidant interactions in combined extracts of green tea (Camellia sinensis), rosemary (Rosmarinus officinalis) and oak fruit (Quercus branti). J. Food Sci. Technol. 2014, 52, 4565. [Google Scholar] [CrossRef]
- Błauz, A.; Pilaszek, T.; Grzelak, A.; Dragan, A.; Bartosz, G. Interaction between antioxidants in assays of total antioxidant capacity. Food Chem. Toxicol. 2008, 46, 2365–2368. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Arnao, M.B. ABTS/TEAC (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-Equivalent Antioxidant Capacity) radical scavenging mixed-mode assay. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 117–139. [Google Scholar]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Motsinger-Reif, A. Current Methods for Quantifying Drug Synergism. Proteomics Bioinforma. Curr. Res. 2019, 1, 43–48. [Google Scholar]
- Mitra, S.; Tareq, A.M.; Das, R.; Bin Emran, T.; Nainu, F.; Chakraborty, A.J.; Ahmad, I.; Tallei, T.E.; Idris, A.M.; Simal-Gandara, J. Polyphenols: A first evidence in the synergism and bioactivities. Food Rev. Int. 2023, 39, 4419–4441. [Google Scholar] [CrossRef]
- Yadav, B.; Wennerberg, K.; Aittokallio, T.; Tang, J. Searching for Drug Synergy in Complex Dose–Response Landscapes Using an Interaction Potency Model. Comput. Struct. Biotechnol. J. 2015, 13, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2022, 62, 5658–5677. [Google Scholar] [CrossRef]
- Nouri, Z.; Fakhri, S.; Nouri, K.; Wallace, C.E.; Farzaei, M.H.; Bishayee, A. Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers 2020, 12, 2276. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Sazhina, N.N. Determination of Antioxidant Activity of Various Bioantioxidants and Their Mixtures by the Amperometric Method. Russ. J. Bioorg. Chem. 2017, 43, 771–775. [Google Scholar] [CrossRef]
- Aftab, N.; Vieira, A. Antioxidant activities of curcumin and combinations of this curcuminoid with other phytochemicals. Phytother. Res. 2010, 24, 500–502. [Google Scholar] [CrossRef]
- Peyrat-Maillard, M.N.; Cuvelier, M.E.; Berset, C. Antioxidant Activity of Phenolic Compounds in 2,2′-Azobis (2-amidinopropane) Dihydrochloride (AAPH)-Induced Oxidation: Synergistic and Antagonistic Effects. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 1007–1012. [Google Scholar] [CrossRef]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Sarica, S.; Toptas, S. Effects of dietary oleuropein supplementation on growth performance, serum lipid concentrations and lipid oxidation of Japanese quails. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1176–1186. [Google Scholar] [CrossRef]
- Erener, G.; Ocak, N.; Ozturk, E.; Cankaya, S.; Ozkanca, R.; Altop, A. Evaluation of olive leaf extract as a growth promoter on the performance, blood biochemical parameters, and caecal microflora of broiler chickens. Rev. Bras. Zootec. 2020, 49, e20180300. [Google Scholar] [CrossRef]
- Rezar, V.; Levart, A.; Salobir, J. The effect of olive by products and their extracts on antioxidative status of laying hens and oxidative stability of eggs enriched with n-3 fatty acids. Poljoprivreda 2015, 21, 216–219. [Google Scholar] [CrossRef]
- Torki, M.; Sedgh-Gooya, S.; Mohammadi, H. Effects of adding essential oils of rosemary, dill and chicory extract to diets on performance, egg quality and some blood parameters of laying hens subjected to heat stress. J. Appl. Anim. Res. 2018, 46, 1118–1126. [Google Scholar] [CrossRef]
- Ali, N.A.L.; Al-Shuhaib, M.B.S. Highly effective dietary inclusion of laurel (Laurus nobilis) leaves on productive traits of broiler chickens. Acta Sci. Anim. Sci. 2021, 43, e52198. [Google Scholar] [CrossRef]
- Fruchart, J.C.; Duriez, P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today 2006, 42, 39–64. [Google Scholar] [CrossRef]
- Chahal, K.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A review on chemistry and biological activities of Laurus nobilis L. essential oil. J. Pharmacogn. Phytochem. 2017, 6, 1153–1161. [Google Scholar]
- Singletary, K. Bay leaf: Potential health benefits. Nutr. Today 2021, 56, 202–208. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act Through Different Mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- Kamiloğlu, N.; Beytut, E.; Aksakal, M. Alteration in antioxidant status and lipid peroxidation of sheep previously treated with vitamin A and beta-carotene during breeding and periparturient period. Bull. Vet. Inst. Pulawy 2006, 50, 171–177. [Google Scholar]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Majewska-Wierzbicka, M.; Czeczot, H. Flavonoids in the prevention and treatment of cardiovascular diseases. Pol. Merkur. Lekarski 2012, 32, 50–54. [Google Scholar]
- Paszkiewicz, M.; Budzyńska, A.; Rózalska, B.; Sadowska, B. The immunomodulatory role of plant polyphenols. Postepy Hig. Med. Dosw. 2012, 66, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Sarıca, S.; Aydın, H.; Ciftci, G. Effects of Dietary Supplementation of Some Antioxidants on Liver Antioxidant Status and Plasma Biochemistry Parameters of Heat-Stressed Quail. Turkish J. Agric. Food Sci. Technol. 2017, 5, 773–779. [Google Scholar] [CrossRef]
- Adedayo, B.C.; Oyeleye, S.I.; Okeke, B.M.; Oboh, G. Anti-cholinesterase and antioxidant properties of alkaloid and phenolic-rich extracts from pawpaw (Carica papaya) leaf: A comparative study. Flavour Fragr. J. 2021, 36, 47–54. [Google Scholar] [CrossRef]
- Khayyal, A.A.; El-Badawy, M.M.; Ashmawy, T.A.M. Effect of rosemary or laurel leaves as feed additives on performance of growing lambs. Egypt. J. Nutr. Feed. 2021, 24, 343–356. [Google Scholar] [CrossRef]
- Elazab, M.A.; Khalifah, A.M.; Elokil, A.A.; Elkomy, A.E.; Rabie, M.M.; Mansour, A.T.; Morshedy, S.A. Effect of Dietary Rosemary and Ginger Essential Oils on the Growth Performance, Feed Utilization, Meat Nutritive Value, Blood Biochemicals, and Redox Status of Growing NZW Rabbits. Animals 2022, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Luo, Z.; Jia, C.; Wang, D.; Li, D. Synergistic Effects of Potentilla fruticosa L. Leaves Combined with Green Tea Polyphenols in a Variety of Oxidation Systems. J. Food Sci. 2016, 81, C1091–C1101. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xiong, X.; Wu, X.; Ye, Y.; Jian, Z.; Zhi, Z.; Gu, L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front. Mol. Neurosci. 2020, 13, 28. [Google Scholar] [CrossRef]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.H.; Froment, P.; Dupont, J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef]
- Barbe, A.; Mellouk, N.; Ramé, C.; Grandhaye, J.; Staub, C.; Venturi, E.; Cirot, M.; Petit, A.; Anger, K.; Chahnamian, M.; et al. A grape seed extract maternal dietary supplementation in reproductive hens reduces oxidative stress associated to modulation of plasma and tissue adipokines expression and improves viability of offsprings. PLoS ONE 2020, 15, e0231131. [Google Scholar] [CrossRef] [PubMed]
- Miliaraki, M.; Briassoulis, P.; Ilia, S.; Michalakakou, K.; Karakonstantakis, T.; Polonifi, A.; Bastaki, K.; Briassouli, E.; Vardas, K.; Pistiki, A.; et al. Oxidant/Antioxidant Status Is Impaired in Sepsis and Is Related to Anti-Apoptotic, Inflammatory, and Innate Immunity Alterations. Antioxidants 2022, 11, 231. [Google Scholar] [CrossRef]
- Vezza, T.; Algieri, F.; Rodríguez-Nogales, A.; Garrido-Mesa, J.; Utrilla, M.P.; Talhaoui, N.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Rodríguez-Cabezas, M.E.; Monteleone, G.; et al. Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol. Nutr. Food Res. 2017, 61, 1601066. [Google Scholar] [CrossRef]
- Kaneko, Y.; Sano, M.; Seno, K.; Oogaki, Y.; Takahashi, H.; Ohkuchi, A.; Yokozawa, M.; Yamauchi, K.; Iwata, H.; Kuwayama, T.; et al. Olive Leaf Extract (OleaVita) Suppresses Inflammatory Cytokine Production and NLRP3 Inflammasomes in Human Placenta. Nutrients 2019, 11, 970. [Google Scholar] [CrossRef]
- De Cicco, P.; Maisto, M.; Tenore, G.C.; Ianaro, A. Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization. Nutrients 2020, 12, 3663. [Google Scholar] [CrossRef]
- Lee, E.H.; Shin, J.H.; Kim, S.S.; Lee, H.; Yang, S.R.; Seo, S.R. Laurus nobilis leaf extract controls inflammation by suppressing NLRP3 inflammasome activation. J. Cell. Physiol. 2019, 234, 6854–6864. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.M.; Abdel-Rahman, H.G.; Abdallah, O.A.; EL-Behidy, N.G. Comparative immunomodulatory efficacy of rosemary and fenugreek against Escherichia coli infection via suppression of inflammation and oxidative stress in broilers. Environ. Sci. Pollut. Res. 2022, 29, 40053–40067. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Roldán, L.P.; Cortés, A. Intoxication of Crotalaria pallida seeds to growing broiler chicks. Vet. Hum. Toxicol. 2003, 45, 187–189. [Google Scholar] [PubMed]
- Valchev, I.; Kanakov, D.; Hristov, T.; Lazarov, L.; Binev, R.; Grozeva, N.; Nikolov, Y. Investigations on the liver function of broiler chickens with experimental aflatoxicosis. Bulg. J. Vet. Med. 2014, 17, 302–313. [Google Scholar]
- Mohamed, S.H.; Attia, A.I.; Reda, F.M.; Abd El-Hack, M.E.; Ismail, I.E. Impacts of dietary supplementation of Boswellia serrata on growth, nutrients digestibility, immunity, antioxidant status, carcase traits and caecum microbiota of broilers. Ital. J. Anim. Sci. 2021, 20, 205–214. [Google Scholar] [CrossRef]
- Al-Attar, A.M.; Shawush, N.A. Influence of olive and rosemary leaves extracts on chemically induced liver cirrhosis in male rats. Saudi J. Biol. Sci. 2015, 22, 157–163. [Google Scholar] [CrossRef]
- Abdel-Azeem, A.S.; Fayed, A.M.A.; Azoz, A.A. Physiological response, semen quality and blood biochemical parameters of rabbit bucks supplemented with phytogenic components during summer season of Egypt. Egypt J. Nutr. Feed. 2018, 21, 711–724. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, N.; Solà-Oriol, D.; Pérez, J.F. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals 2021, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Kou, X.; Wang, Y.; Yu, Y.; Zhen, N.; Jiang, J.; Zhaxi, P.; Xue, Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022, 11, 2774. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarpour, H.R.; Chamani, M.; Rahimi, G.; Sadeghi, A.A.; Qujeq, D. The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers. Asian Australas. J. Anim. Sci. 2012, 25, 1285–1293. [Google Scholar] [CrossRef]
- Forte, C.; Manuali, E.; Abbate, Y.; Papa, P.; Vieceli, L.; Tentellini, M.; Trabalza-Marinucci, M.; Moscati, L. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poult. Sci. 2018, 97, 930–936. [Google Scholar] [CrossRef]
- Rezaei, M.; Karimi Torshizi, M.A.; Wall, H.; Ivarsson, E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br. Poult. Sci. 2018, 59, 422–429. [Google Scholar] [CrossRef]
- Meimandipour, A.; Hair-Bejo, M.; Shuhaimi, M.; Azhar, K.; Soleimani, A.F.; Rasti, B.; Yazid, A.M. Gastrointestinal tract morphological alteration by unpleasant physical treatment and modulating role of Lactobacillus in broilers. Br. Poult. Sci. 2010, 51, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hampson, D.J. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 1986, 40, 32–40. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Ferrocino, I.; Grego, E.; Dabbou, S.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Gut Microbiota and Mucin Composition in Female Broiler Chickens Fed Diets including Yellow Mealworm (Tenebrio molitor, L.). Animals 2019, 9, 213. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Biasibetti, E.; Grego, E.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; Cocolin, L.; et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- Forder, R.E.A.; Howarth, G.S.; Tivey, D.R.; Hughes, R.J. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult. Sci. 2007, 86, 2396–2403. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Zaneb, H.; Yousaf, M.S.; Ijaz, A.; Sohail, M.U.; Muti, S.; Usman, M.M.; Ijaz, S.; Rehman, H. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J. Anim. Physiol. Anim. Nutr. 2013, 97 (Suppl. S1), 68–73. [Google Scholar] [CrossRef]
- Desantis, S.; Galosi, L.; Santamaria, N.; Roncarati, A.; Biagini, L.; Rossi, G. Modulation of Morphology and Glycan Composition of Mucins in Farmed Guinea Fowl (Numida meleagris) Intestine by the Multi-Strain Probiotic Slab51®. Animals 2021, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Zaneb, H.; Masood, S.; Khan, R.U.; Ashraf, S.; Sikandar, A.; Rehman, H.F.U.; Rehman, H.U. Effect of Dietary Supplementation of Zinc and Multi-Microbe Probiotic on Growth Traits and Alteration of Intestinal Architecture in Broiler. Probiotics Antimicrob. Proteins 2019, 11, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Georgiades, P.; Pudney, P.D.A.; Thornton, D.J.; Waigh, T.A. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2014, 101, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, N.; Meslin, J.C.; Lory, S.; Andrieux, C. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: Effect of inulin in the diet. Br. J. Nutr. 1996, 75, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Roberton, A.M.; Wright, D.P. Bacterial glycosulphatases and sulphomucin degradation. Can. J. Gastroenterol. 1997, 11, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Struwe, W.B.; Gough, R.; Gallagher, M.E.; Kenny, D.T.; Carrington, S.D.; Karlsson, N.G.; Rudd, P.M. Identification of O-glycan Structures from Chicken Intestinal Mucins Provides Insight into Campylobactor jejuni Pathogenicity. Mol. Cell. Proteom. 2015, 14, 1464–1477. [Google Scholar] [CrossRef]
- Veerman, E.C.I.; Bank, C.M.C.; Namavar, F.; Appelmelk, B.J.; Bolscher, J.G.M.; Nieuw Amerongen, A.V. Sulfated glycans on oral mucin as receptors for Helicobacter pylori. Glycobiology 1997, 7, 737–743. [Google Scholar] [CrossRef]
- Kamisago, S.; Iwamori, M.; Tai, T.; Amura, K.M.; Yazaki, Y.; Sugano, K. Role of sulfatides in adhesion of Helicobacter pylori to gastric cancer cells. Infect. Immun. 1996, 64, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Corfield, A.P.; Wagner, S.A.; Clamp, J.R.; Kriaris, M.S.; Hoskins, L.C. Mucin degradation in the human colon: Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 1992, 60, 3971–3978. [Google Scholar] [CrossRef] [PubMed]
- Vimal, D.B.; Khullar, M.; Gupta, S.; Ganguly, N.K. Intestinal mucins: The binding sites for Salmonella typhimurium. Mol. Cell. Biochem. 2000, 204, 107–117. [Google Scholar] [CrossRef] [PubMed]
Ingredients | % |
---|---|
Corn | 57.60 |
Soyabean meal (46% CP) | 22.00 |
Sunflower flour (36% CP) | 6.00 |
Limestone granular | 6.00 |
Limestone | 3.30 |
Soyabean oil | 2.50 |
Dicalcium phosphate | 1.50 |
Vitamin and mineral premix 1 | 0.50 |
Sodium chloride | 0.20 |
Sodium bicarbonate | 0.15 |
Methionine (MHA) 2 | 0.14 |
Lysine | 0.09 |
Magnesium oxide | 0.02 |
Nutrient levels 3 | |
Metabolizable energy (kcal/kg) | 2700 |
Crude protein | 17.80 |
Crude fat | 4.40 |
Calcium | 4.10 |
Phosphorus (available) | 0.45 |
Methionine | 0.31 |
Lysine | 0.74 |
Arginine | 0.70 |
Threonine | 0.37 |
Leucine | 0.74 |
Isoleucine | 0.43 |
Valine | 0.46 |
Histidine | 0.25 |
Phenylalanine | 0.48 |
Tryptophan | 0.13 |
Sample | TPC (gGAE/kg) 1 | ORAC (TE μM/g) 1 | FRAP (TE μM/g) 1 | TEAC-ABTS (TE μM/g) 1 |
---|---|---|---|---|
x ± SD | x ± SD | x ± SD | x ± SD | |
Significant level | ** | ** | ** | n.s. |
OL | 6.58 ± 0.48 a | 1035.95 ± 21.99 a | 61.82 ± 13.03 a | 47.31 ± 12.45 |
BL | 4.89 ± 0.68 b | 895.12 ± 10.65 b | 114.60 ± 14.10 b | 44.03 ± 10.80 |
RL | 5.10 ± 0.71 b | 938.39 ± 42.93 b | 56.01 ± 4.64 a | 44.16 ± 5.30 |
OL + BL | 5.41 ± 0.37 a | 1016.70 ± 24.41 a | 30.34 ± 7.08 b | 43.84 ± 7.31 |
OL + RL | 6.60 ± 0.22 a | 1041.35 ± 20.33 a | 32.65 ± 6.57 b | 50.28 ± 10.61 |
BL + RL | 4.44 ±0.04 b | 846.29 ± 11.91 b | 58.54 ± 14.97 a | 36.49 ± 5.00 |
OL + BL + RL | 6.62 ± 0.31 a | 1048.71 ± 10.56 a | 64.85 ± 15.51 a | 59.05 ±8.58 |
Leaf Mixture | fa | CI Value→Interpretation |
---|---|---|
OL + BL | 0.50 | 0.926→ADDITIVE |
0.75 | 0.804→Moderate SYNERGISM | |
0.90 | 0.702→Moderate SYNERGISM | |
OL + RL | 0.50 | 1.171→Slight ANTAGONISM |
0.75 | 1.576→Moderate strong ANTAGONISM | |
0.90 | 2.277→Moderate strong ANTAGONISM | |
BL + RL | 0.50 | 1.248→ANTAGONISM |
0.75 | 1.405→ANTAGONISM | |
0.90 | 1.585→Moderate strong ANTAGONISM | |
OL + BL + RL | 0.50 | 0.630→SYNERGISM |
0.75 | 0.616→SYNERGISM | |
0.90 | 0.601→SYNERGISM |
Dietary Treatment | SEM | p Value | ||
---|---|---|---|---|
CON | LPM | |||
Animals, n. | 30 | 30 | ||
Triglycerides, mg/dL | 831.25 | 702.41 | 43.90 | 0.049 |
Total cholesterol, mg/dL | 139.20 | 124.60 | 1.24 | 0.046 |
HDL cholesterol, mmol/L | 20.66 | 28.62 | 0.57 | 0.032 |
LDL cholesterol, mg/dL | 141.44 | 135.15 | 1.28 | 0.037 |
AST, IU/L | 184.23 | 172.21 | 2.71 | 0.048 |
ALT, IU/L | 16.39 | 13.04 | 0.471 | 0.041 |
ALP, IU/L | 282.54 | 264.38 | 15.08 | 0.370 |
TNF-α, pg/mL | 29.35 | 25.70 | 1.12 | 0.650 |
IL-1β, pg/mL | 64.41 | 52.63 | 2.47 | 0.022 |
IL-6, pg/mL | 20.19 | 16.95 | 1.09 | 0.041 |
Dietary Treatment | SEM | p Value | ||
---|---|---|---|---|
CON | LPM | |||
Animals, n. | 30 | 30 | ||
TAS (Trolox Eq/L) | 354.18 | 407.15 | 38.84 | 0.029 |
FRAP (TE μM/g) | 315.19 | 346.67 | 35.16 | 0.046 |
ROMs (UCarr) | 39.70 | 21.18 | 4.81 | 0.049 |
TBARs (μmol/L) | 26.91 | 20.54 | 2.78 | 0.050 |
Vitamin A (μg/mL) | 1.123 | 1.160 | 0.038 | 0.284 |
Vitamin E (μg/mL) | 1.581 | 1.854 | 0.046 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, A.G.; Di Luca, A.; Desantis, S.; Martemucci, G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals 2025, 15, 308. https://doi.org/10.3390/ani15030308
D’Alessandro AG, Di Luca A, Desantis S, Martemucci G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals. 2025; 15(3):308. https://doi.org/10.3390/ani15030308
Chicago/Turabian StyleD’Alessandro, Angela Gabriella, Alessio Di Luca, Salvatore Desantis, and Giovanni Martemucci. 2025. "Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens" Animals 15, no. 3: 308. https://doi.org/10.3390/ani15030308
APA StyleD’Alessandro, A. G., Di Luca, A., Desantis, S., & Martemucci, G. (2025). Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals, 15(3), 308. https://doi.org/10.3390/ani15030308