Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Diets
2.2. Measurement and Sample Collection
2.3. Sample Analyses
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galyean, M. Protein levels in beef cattle finishing diets: Industry application, university research, and systems results. J. Anim. Sci. 1996, 74, 2860–2870. [Google Scholar] [CrossRef]
- Archibeque, S.; Freetly, H.; Cole, N.; Ferrell, C. The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions. J. Anim. Sci. 2007, 85, 1496–1503. [Google Scholar] [CrossRef]
- Jennings, J.S.; Meyer, B.E.; Guiroy, P.J.; Cole, N.A. Energy costs of feeding excess protein from corn-based by-products to finishing cattle. J. Anim. Sci. 2018, 96, 653–669. [Google Scholar] [CrossRef]
- Gleghorn, J.; Elam, N.; Galyean, M.; Duff, G.; Cole, N.; Rivera, J. Effects of crude protein concentration and degradability on performance, carcass characteristics, and serum urea nitrogen concentrations in finishing beef steers. J. Anim. Sci. 2004, 82, 2705–2717. [Google Scholar] [CrossRef]
- Xia, C.; Rahman, M.A.U.; Yang, H.; Shao, T.; Qiu, Q.; Su, H.; Cao, B. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian Australas J. Anim. Sci. 2018, 31, 1643. [Google Scholar] [CrossRef]
- Arndt, C.; Powell, J.; Aguerre, M.J.; Wattiaux, M.A. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. J. Dairy Sci. 2015, 98, 418–430. [Google Scholar] [CrossRef]
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 2016, 99, 8858–8866. [Google Scholar] [CrossRef]
- Jeong, J.; Seong, N.-I.; Hwang, I.-K.; Lee, S.-B.; Yu, M.-S.; Nam, I.-S.; Lee, M.-I. Effects of level of CP and TDN in the concentrate supplement on growth performances and carcass characteristics in Hanwoo steers during final fattening period. J. Anim. Sci. Technol. 2010, 52, 305–312. [Google Scholar] [CrossRef]
- Lee, Y.H.; Ahmadi, F.; Lee, M.; Oh, Y.-K.; Kwak, W.S. Effect of crude protein content and undegraded intake protein level on productivity, blood metabolites, carcass characteristics, and production economics of Hanwoo steers. Asian Australas. J. Anim. Sci. 2020, 33, 1599. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, M.; Seo, J.; Kim, J.-H.; Kam, D.-K.; Seo, S. High-level dietary crude protein decreased backfat thickness and increased carcass yield score in finishing Hanwoo beef cattle (Bos taurus coreanae). J. Anim. Sci. Technol. 2021, 63, 1064. [Google Scholar] [CrossRef]
- Chung, K.Y.; Lee, S.H.; Cho, S.H.; Kwon, E.G.; Lee, J.H. Current situation and future prospects for beef production in South Korea—A review. Asian Australas J. Anim. Sci. 2018, 31, 951. [Google Scholar] [CrossRef]
- KAPE. 2022 Animal Products Grading Statistical Yearbook; Korea Institute for Animal Products Quality Evaluation: Sejong, Republic of Korea, 2023. [Google Scholar]
- Seo, S.; Jeon, S.; Ha, J.K. Guidelines for experimental design and statistical analyses in animal studies submitted for publication in the Asian-Australasian Journal of Animal Sciences. Asian Australas J. Anim. Sci. 2018, 31, 1381. [Google Scholar] [CrossRef]
- NIAS. Korean Feeding Standard for Hanwoo, 3rd ed.; National Institute of Animal Science in Rural Development Administration: Jeonju, Republic of Korea, 2017. [Google Scholar]
- Lee, M.; Jeong, S.; Seo, J.; Seo, S. Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants. Asian Australas J. Anim. Sci. 2019, 32, 92. [Google Scholar] [CrossRef]
- Kang, K.; Cho, H.; Jeong, S.; Jeon, S.; Lee, M.; Lee, S.; Baek, Y.; Oh, J.; Seo, S. Application of a hand-held laser methane detector for measuring enteric methane emissions from cattle in intensive farming. J. Anim. Sci. 2022, 100, skac211. [Google Scholar] [CrossRef]
- Jeon, S.; Sohn, K.-N.; Seo, S. Evaluation of feed value of a by-product of pickled radish for ruminants: Analyses of nutrient composition, storage stability, and in vitro ruminal fermentation. J. Anim. Sci. Technol. 2016, 58, 34. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.; Kang, K.; Lee, M.; Jeon, S.; Kang, H.; Kim, H.; Seo, J.; Oh, J.; Seo, S. Effects of Dietary Fat Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Digestibility, Blood Metabolites, and Methane Emission in Growing Hanwoo Steers. Animals 2023, 14, 139. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Smith, S.B.; Gotoh, T.; Greenwood, P.L. Current situation and future prospects for global beef production: Overview of special issue. Asian Australas J. Anim. Sci. 2018, 31, 927. [Google Scholar] [CrossRef]
- Boonsaen, P.; Soe, N.W.; Maitreejet, W.; Majarune, S.; Reungprim, T.; Sawanon, S. Effects of protein levels and energy sources in total mixed ration on feedlot performance and carcass quality of Kamphaeng Saen steers. Agric. Nat. Resour. 2017, 51, 57–61. [Google Scholar] [CrossRef]
- Jeon, S.; Cho, H.; Kang, H.; Kang, K.; Lee, M.; Park, E.; Hong, S.; Seo, S. Effects of the crude protein concentration on the growth performance and blood parameters in growing Hanwoo steers (Bos taurus coreanae). Korean J. Agric. Sci. 2021, 48, 975–985. [Google Scholar] [CrossRef]
- Bailey, C.; Duff, G.; Sanders, S.; Treichel, J.; Baumgard, L.; Marchello, J.; Schafer, D.; McMurphy, C. Effects of increasing crude protein concentrations on performance and carcass characteristics of growing and finishing steers and heifers. Anim. Feed Sci. Technol. 2008, 142, 111–120. [Google Scholar] [CrossRef]
- Giallongo, F.; Harper, M.; Oh, J.; Lopes, J.; Lapierre, H.; Patton, R.; Parys, C.; Shinzato, I.; Hristov, A. Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows. J. Dairy Sci. 2016, 99, 4437–4452. [Google Scholar] [CrossRef]
- Cortese, M.; Segato, S.; Andrighetto, I.; Ughelini, N.; Chinello, M.; Schiavon, E.; Marchesini, G. The effects of decreasing dietary crude protein on the growth performance, feed efficiency and meat quality of finishing charolais bulls. Animals 2019, 9, 906. [Google Scholar] [CrossRef]
- Archibeque, S.; Miller, D.; Freetly, H.; Berry, E.; Ferrell, C. The influence of oscillating dietary protein concentrations on finishing cattle. I. Feedlot performance and odorous compound production. J. Anim. Sci. 2007, 85, 1487–1495. [Google Scholar] [CrossRef]
- Oh, Y.-K.; Kim, J.-H.; Kim, K.-H.; Choi, C.-W.; Kang, S.-W.; Nam, I.-S.; Kim, D.-H.; Song, M.-K.; Kim, C.-W.; Park, K.-K. Effects of level and degradability of dietary protein on ruminal fermentation and concentrations of soluble non-ammonia nitrogen in ruminal and omasal digesta of Hanwoo steers. Asian Australas J. Anim. Sci. 2008, 21, 392–403. [Google Scholar] [CrossRef]
- Chen, S.; Paengkoum, P.; Xia, X.; Na-Lumpang, P. Effects of dietary protein on ruminal fermentation, nitrogen utilization and crude protein maintenance in growing Thai-indigenous beef cattle fed rice straw as roughage. J. Anim. Vet. Adv. 2010, 9, 2396–2400. [Google Scholar] [CrossRef]
- Chanthakhoun, V.; Wanapat, M.; Berg, J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 2012, 144, 197–204. [Google Scholar] [CrossRef]
- Norrapoke, T.; Wanapat, M.; Wanapat, S. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian Australas J. Anim. Sci. 2012, 25, 971. [Google Scholar] [CrossRef]
- Brandao, V.L.; Faciola, A.P. Unveiling the relationships between diet composition and fermentation parameters response in dual-flow continuous culture system: A meta-analytical approach. Transl. Anim. Sci. 2019, 3, 1064–1075. [Google Scholar] [CrossRef]
- Mrazek, J.; Tepšič, K.; Avguštin, G.; Kopečný, J. Diet-dependent shifts in ruminal butyrate-producing bacteria. Folia Microbiol. 2006, 51, 294–298. [Google Scholar] [CrossRef]
- Andries, J.; Buysse, F.; De Brabander, D.; Cottyn, B. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances—A review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Kang, D.H.; Chung, K.Y.; Park, B.H.; Kim, U.H.; Jang, S.S.; Smith, Z.K.; Kim, J. Effects of feeding high-energy diet on growth performance, blood parameters, and carcass traits in Hanwoo steers. Anim. Biosci. 2022, 35, 1545. [Google Scholar] [CrossRef] [PubMed]
- Bharanidharan, R.; Thirugnanasambantham, K.; Ibidhi, R.; Bang, G.; Jang, S.S.; Baek, Y.C.; Kim, K.H.; Moon, Y.H. Effects of dietary protein concentration on lipid metabolism gene expression and fatty acid composition in 18–23-month-old Hanwoo steers. Animals 2021, 11, 3378. [Google Scholar] [CrossRef] [PubMed]
- Park, C. Influence of dietary protein on blood cholesterol and related metabolites of growing calves. J. Anim. Sci. 1985, 61, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Kidane, A.; Øverland, M.; Mydland, L.T.; Prestløkken, E. Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows. J. Anim. Sci. 2018, 96, 3967–3982. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Mayne, C. Mitigation strategies to reduce methane emission from dairy cows. In High Value Grassland: Providing Biodiversity, a Clean Environment and Premium Products, Proceedings of the BGS/BES/BSAS Conference, Staffordshire, UK, 17–19 April 2007; British Grassland Society (BGS): Penkridge, UK, 2007; pp. 345–348. [Google Scholar]
- Hünerberg, M.; Little, S.M.; Beauchemin, K.A.; McGinn, S.M.; O’Connor, D.; Okine, E.K.; Harstad, O.M.; Kröbel, R.; McAllister, T.A. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agric. Syst. 2014, 127, 19–27. [Google Scholar] [CrossRef]
- McGinn, S.; Chung, Y.-H.; Beauchemin, K.; Iwaasa, A.; Grainger, C. Use of corn distillers’ dried grains to reduce enteric methane loss from beef cattle. Can. J. Anim. Sci. 2009, 89, 409–413. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.; Julien, C.; Petit, H.; Massé, D. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 2413–2427. [Google Scholar] [CrossRef]
- Liu, K. Chemical composition of distillers grains, a review. J. Agric. Food Chem. 2011, 59, 1508–1526. [Google Scholar] [CrossRef]
Items 1 | Treatment 2 | |||
---|---|---|---|---|
LCP | MLCP | MHCP | HCP | |
Ingredients (g/kg DM) | ||||
Corn, flaked | 192 | 192 | 192 | 192 |
Corn, ground | 57 | 31 | 18 | 5 |
Wheat, ground | 140 | 157 | 165 | 173 |
Hydrogenated fat 3 | 23 | 12 | 6 | 0 |
Palm oil | 11 | 10 | 9 | 9 |
Corn gluten feed | 159 | 159 | 159 | 159 |
Soybean hull | 98 | 49 | 25 | 0 |
Wheat bran | 63 | 32 | 16 | 0 |
Molasses | 44 | 31 | 24 | 18 |
DDGS | 50 | 172 | 233 | 294 |
Palm kernel meal | 103 | 101 | 100 | 100 |
CMS | 13 | 13 | 13 | 13 |
Urea | 0 | 3 | 5 | 6 |
Ammonium chloride | 2 | 2 | 2 | 2 |
Limestone | 32 | 25 | 22 | 19 |
Salt | 2 | 2 | 2 | 2 |
Vitamin and mineral mix * | 8 | 8 | 8 | 8 |
Items 1 | Treatment 2 | Tall Fescue | |||
---|---|---|---|---|---|
LCP | MLCP | MHCP | HCP | ||
DM, g/kg as fed | 886 | 886 | 886 | 886 | 888 |
OM | 911 | 916 | 918 | 920 | 941 |
CP | 147 | 178 | 193 | 208 | 69 |
SOLP | 58 | 67 | 72 | 77 | 30 |
NDICP | 26 | 27 | 27 | 27 | 13 |
ADICP | 12 | 13 | 14 | 15 | 9 |
aNDF | 271 | 286 | 293 | 301 | 640 |
ADF | 134 | 131 | 129 | 128 | 404 |
ADL | 38 | 37 | 36 | 36 | 62 |
Ether extract | 69 | 62 | 59 | 56 | 13 |
Ash | 89 | 84 | 82 | 80 | 59 |
Ca | 15 | 13 | 12 | 10 | 3 |
P | 6 | 6 | 7 | 7 | 1 |
K | 10 | 11 | 11 | 12 | 18 |
Na | 2 | 2 | 3 | 3 | 1 |
Cl | 5 | 5 | 5 | 5 | 5 |
S | 4 | 4 | 5 | 5 | 1 |
Mg | 3 | 4 | 4 | 4 | 1 |
TDNs | 747 | 740 | 736 | 733 | 557 |
NEm, MJ/kg DM | 8.1 | 8.0 | 7.9 | 7.8 | 5.0 |
NEg, MJ/kg DM | 5.4 | 5.3 | 5.2 | 5.2 | 2.7 |
Total carbohydrates | 695 | 676 | 666 | 656 | 859 |
NFC | 450 | 417 | 400 | 383 | 232 |
Carbohydrate fraction, g/kg carbohydrate | |||||
CA | 84 | 88 | 91 | 93 | 127 |
CB1 | 554 | 506 | 481 | 457 | 2 |
CB2 | 9 | 21 | 27 | 34 | 141 |
CB3 | 221 | 253 | 269 | 285 | 556 |
CC | 132 | 131 | 131 | 131 | 174 |
Protein fraction, g/kg CP | |||||
PA+B1 | 391 | 381 | 376 | 371 | 435 |
PB2 | 431 | 463 | 480 | 496 | 374 |
PB3 | 98 | 80 | 70 | 61 | 64 |
PC | 79 | 76 | 74 | 72 | 128 |
Items 1 | Treatment 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LCP | MLCP | MHCP | HCP | Mean | Linear | Quadratic | ||
Initial BW, kg | 501 | 500 | 504 | 507 | 5.7 | 0.819 | 0.483 | 0.540 |
Final BW, kg | 564 | 569 | 570 | 579 | 6.7 | 0.426 | 0.140 | 0.564 |
ADG, g/day | 617 | 675 | 647 | 708 | 31.8 | 0.182 | 0.066 | 0.897 |
DMI, kg/day | ||||||||
Concentrate | 6.14 | 6.55 | 6.41 | 6.35 | 0.170 | 0.364 | 0.310 | 0.165 |
Forage | 2.43 | 2.34 | 2.61 | 2.56 | 0.167 | 0.628 | 0.406 | 0.664 |
Total | 8.57 | 8.89 | 9.02 | 8.90 | 0.214 | 0.409 | 0.154 | 0.433 |
Forage/concentrate | 0.40 | 0.36 | 0.41 | 0.40 | 0.029 | 0.603 | 0.701 | 0.453 |
CP intake, kg/day | 1.07 c | 1.34 b | 1.42 ab | 1.50 a | 0.038 | <0.001 | <0.001 | 0.246 |
NEg intake, Mcal/day | 9.49 | 9.90 | 9.65 | 9.54 | 0.272 | 0.682 | 0.880 | 0.264 |
FCR | 13.92 | 13.24 | 14.07 | 12.69 | 0.477 | 0.130 | 0.162 | 0.505 |
Items 1 | Treatment 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LCP | MLCP | MHCP | HCP | Mean | Linear | Quadratic | ||
pH | 6.71 | 6.61 | 6.72 | 6.73 | 0.115 | 0.871 | 0.813 | 0.503 |
NH3-N, mg/dL | 3.58 c | 5.57 bc | 6.59 ab | 8.33 a | 0.679 | <0.001 | <0.001 | 0.479 |
Total VFA, mM | 54.3 | 56.5 | 58.0 | 59.1 | 3.50 | 0.734 | 0.263 | 0.963 |
Molar proportions, mmol/mol | ||||||||
Acetate | 600 | 603 | 620 | 603 | 6.5 | 0.080 | 0.270 | 0.323 |
Propionate | 235 a | 222 ab | 210 b | 215 ab | 6.3 | 0.018 | 0.004 | 0.387 |
Isobutyrate | 21 | 22 | 20 | 21 | 2.0 | 0.940 | 0.970 | 0.925 |
Butyrate | 106 b | 115 ab | 118 ab | 122 a | 4.1 | 0.029 | 0.003 | 0.909 |
Isovalerate | 24 | 23 | 19 | 21 | 2.1 | 0.305 | 0.160 | 0.824 |
Valerate | 13 b | 15 ab | 13 b | 17 a | 0.6 | <0.001 | 0.001 | 0.186 |
Acetate/propionate | 2.6 | 2.8 | 3.0 | 2.8 | 0.1 | 0.058 | 0.030 | 0.091 |
Items 1 | Treatment 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LCP | MLCP | MHCP | HCP | Mean | Linear | Quadratic | ||
Total protein, g/dL | 6.3 | 6.2 | 6.1 | 6.1 | 0.11 | 0.330 | 0.080 | 0.924 |
Urea, mg/dL | 13.3 b | 16.3 ab | 19.6 a | 20.5 a | 1.21 | 0.001 | <0.001 | 0.917 |
Glucose, mg/dL | 78.8 | 77.8 | 77.0 | 77.5 | 1.81 | 0.892 | 0.507 | 0.770 |
NEFA, mEq/L | 0.47 a | 0.37 b | 0.34 b | 0.36 b | 0.024 | 0.002 | <0.001 | 0.078 |
Albumin, mg/dL | 3.4 | 3.5 | 3.5 | 3.5 | 0.06 | 0.871 | 0.425 | 0.856 |
Creatinine, mg/dL | 1.4 | 1.3 | 1.2 | 1.2 | 0.08 | 0.457 | 0.126 | 0.884 |
Triglyceride, mg/dL | 14.8 | 21.0 | 17.3 | 15.8 | 2.18 | 0.205 | 0.688 | 0.054 |
GOT, U/L | 57.9 | 54.4 | 54.4 | 55.8 | 3.41 | 0.843 | 0.562 | 0.505 |
GPT, U/L | 19.3 | 17.8 | 19.4 | 20.7 | 1.09 | 0.318 | 0.366 | 0.113 |
Cholesterol, mg/dL | 323.6 a | 277.6 ab | 275.2 ab | 235.9 b | 19.30 | 0.020 | 0.003 | 0.803 |
Calcium, mg/dL | 9.0 | 8.9 | 8.6 | 8.8 | 0.11 | 0.156 | 0.085 | 0.840 |
Phosphorus, mg/dL | 6.4 | 7.0 | 6.7 | 6.7 | 0.18 | 0.135 | 0.239 | 0.056 |
Items 1 | Treatment 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LCP | MLCP | MHCP | HCP | Mean | Linear | Quadratic | ||
CH4 from eructation | ||||||||
CH4 ppm | 161.8 ab | 170.8 a | 155.0 ab | 126.3 b | 13.10 | 0.043 | 0.063 | 0.045 |
CH4 ppm/kg of DMI | 18.3 | 18.0 | 16.1 | 13.5 | 1.41 | 0.030 | 0.014 | 0.144 |
CH4 ppm/kg of FNDFI | 104.9 a | 104.9 a | 82.5 ab | 72.5 b | 8.94 | 0.010 | 0.005 | 0.158 |
CH4 ppm/kg of NDFI | 49.2 a | 47.1 a | 40.3 ab | 33.7 b | 3.72 | 0.007 | 0.002 | 0.163 |
CH4 ppm/kg of ADG | 271.1 a | 254.7 a | 240.6 ab | 179.3 b | 21.53 | 0.015 | 0.008 | 0.111 |
CH4 from respiration | ||||||||
CH4 ppm | 27.9 | 30.9 | 31.6 | 25.9 | 2.40 | 0.167 | 0.831 | 0.049 |
CH4 ppm/kg of DMI | 3.2 | 3.3 | 3.3 | 2.7 | 0.25 | 0.213 | 0.324 | 0.124 |
CH4 ppm/kg of FNDFI | 18.0 | 18.9 | 16.8 | 14.6 | 1.44 | 0.097 | 0.086 | 0.100 |
CH4 ppm/kg of NDFI | 8.5 | 8.5 | 8.2 | 6.8 | 0.63 | 0.097 | 0.081 | 0.123 |
CH4 ppm/kg of ADG | 46.7 ab | 46.1 ab | 48.9 a | 36.6 b | 3.48 | 0.035 | 0.118 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Cho, H.; Jeong, S.; Kang, K.; Lee, M.; Jeon, S.; Kang, H.; Seo, S. Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers. Animals 2024, 14, 469. https://doi.org/10.3390/ani14030469
Oh J, Cho H, Jeong S, Kang K, Lee M, Jeon S, Kang H, Seo S. Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers. Animals. 2024; 14(3):469. https://doi.org/10.3390/ani14030469
Chicago/Turabian StyleOh, Joonpyo, Hyunjin Cho, Sinyong Jeong, Kyewon Kang, Mingyung Lee, Seoyoung Jeon, Hamin Kang, and Seongwon Seo. 2024. "Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers" Animals 14, no. 3: 469. https://doi.org/10.3390/ani14030469
APA StyleOh, J., Cho, H., Jeong, S., Kang, K., Lee, M., Jeon, S., Kang, H., & Seo, S. (2024). Effects of Dietary Crude Protein Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Blood Metabolites, and Methane Emissions in Fattening Hanwoo Steers. Animals, 14(3), 469. https://doi.org/10.3390/ani14030469