The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview
<p>The number of deaths and their primary causes in 2019.</p> "> Figure 2
<p>Classification of the 72 studies included in this review, which were found in PubMed, ScienceDirect, Google Scholar, and additional databases from 2018 to 2023. The colored bars represent the number of studies conducted in different geographic regions around the world.</p> "> Figure 3
<p>World map showing the countries with studies on ESBL-<span class="html-italic">E. coli</span> in livestock.</p> "> Figure 4
<p>Prevalence of ESBL-<span class="html-italic">E. coli</span> isolates according to their sample source: (<b>a</b>) cattle, (<b>b</b>) pig, (<b>c</b>) sheep, and (<b>d</b>) chicken. Contrasting prevalence of ESBL-<span class="html-italic">E. coli</span> by phenotypic and genotypic methods in 72 studies worldwide during the period from 2018 to 2023.</p> "> Figure 4 Cont.
<p>Prevalence of ESBL-<span class="html-italic">E. coli</span> isolates according to their sample source: (<b>a</b>) cattle, (<b>b</b>) pig, (<b>c</b>) sheep, and (<b>d</b>) chicken. Contrasting prevalence of ESBL-<span class="html-italic">E. coli</span> by phenotypic and genotypic methods in 72 studies worldwide during the period from 2018 to 2023.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Extended-Spectrum β-Lactamase-Producing E. coli
3. Publications Analyzed
4. Antibiotic Resistance in Livestock
5. Prevalence of ESBL-E. coli in Livestock
6. Distribution of Genetically Variant ESBLs
7. Circulation of Non-β-Lactam Resistance Genes
8. Virulence Factors
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- Lima, L.M.; Silva, B.N.M.D.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Gāliņa, D.; Balins, A.; Valdovska, A. The Prevalence and Characterization of Fecal Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Pigs on Farms of Different Sizes in Latvia. Antibiotics 2021, 10, 1099. [Google Scholar] [CrossRef]
- Nossair, M.A.; Abd El Baqy, F.A.; Rizk, M.S.Y.; Elaadli, H.; Mansour, A.M.; El-Aziz, A.H.A.; Alkhedaide, A.; Soliman, M.M.; Ramadan, H.; Shukry, M. Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Bergšpica, I.; Kaprou, G.; Alexa, E.A.; Prieto, M.; Alvarez-Ordóñez, A. Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics 2020, 9, 678. [Google Scholar] [CrossRef]
- Majdinasab, M.; Kumar-Mishra, R.; Tang, X.; Louis-Maty, J. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC 2020, 127, 115883. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 1 February 2024).
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Ogunkola, I.O. The global antimicrobial resistance response effort must not exclude marginalised populations. Trop. Med. Health 2023, 51, 33. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, 6459. [Google Scholar] [CrossRef] [PubMed]
- Haulisah, N.A.; Hassan, L.; Bejo, S.K.; Jajere, S.M.; Ahmad, N.I. High Levels of Antibiotic Resistance in Isolates from Diseased Livestock. Front. Vet. Sci. 2021, 8, 652351. [Google Scholar] [CrossRef] [PubMed]
- Cuong, N.V.; Padungtod, P.; Thwaites, G.; Carrique-Mas, J.J. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics 2018, 7, 75. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.; Jeong, K.C. Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- Bennani, H.; Mateus, A.; Mays, N.; Eastmure, E.; Stärk, K.D.C.; Häsler, B. Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain. Antibiotics 2020, 9, 49. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf (accessed on 3 February 2024).
- Abraham, S.; Kirkwood, R.N.; Laird, T.; Saputra, S.; Mitchell, T.; Singh, M.; Linn, B.; Abraham, R.J.; Pang, S.; Gordon, D.M.; et al. Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-blaCTXM-1 plasmid among Escherichia coli in pigs. ISME J. 2018, 12, 2352–2362. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Giufrè, M.; Mazzolini, E.; Cerquetti, M.; Brusaferro, S.; CCM2015 One-Health ESBL-producing Escherichia coli Study Group. Extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in humans and from food-producing animals in Italy: A ‘One Health’ study. Int. J. Antimicrob. Agents 2021, 58, 106433. [Google Scholar] [CrossRef]
- Ibekwe, A.; Durso, L.; Ducey, T.F.; Oladeinde, A.; Jackson, C.R.; Frye, J.G.; Dungan, R.; Moorman, T.; Brooks, J.P.; Obayiuwana, A.; et al. Diversity of Plasmids and Genes Encoding Resistance to Extended-Spectrum β-Lactamase in Escherichia coli from Different Animal Sources. Microorganisms 2021, 9, 1057. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Huang, F.Y.; Gan, L.L.; Yu, X.; Cai, D.J.; Fang, J.; Zhong, Z.J.; Guo, H.R.; Xie, Y.; Yi, J.; et al. High prevalence of blaCTX-M and blaSHV among ESBL producing E. coli isolates from beef cattle in China’s Sichuan-Chongqing Circle. Sci. Rep. 2021, 11, 13725. [Google Scholar] [CrossRef] [PubMed]
- Badr, H.; Reda, R.M.; Hagag, N.M.; Kamel, E.; Elnomrosy, S.M.; Mansour, A.I.; Shahein, M.A.; Ali, S.F.; Ali, H.R. Multidrug-Resistant and Genetic Characterization of Extended-Spectrum Beta-Lactamase-Producing E. coli Recovered from Chickens and Humans in Egypt. Animals 2022, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Katz, D.E.; Marchaim, D. The Continuing Plague of Extended-Spectrum β-Lactamase Producing Enterbacterales Infections: An Update. Infect. Dis. Clin. N. Am. 2020, 34, 677–708. [Google Scholar] [CrossRef] [PubMed]
- Alsamawi, M.; Joudeh, A.I.; Eldeeb, Y.; Al-Dahshan, A.; Khan, F.; Ghadban, W.; Almaslamani, M.; Alkhal, A. Epidemiology of extended-spectrum beta-lactamase producing Enterobacteriaceae in Qatar: A 3-year hospital-based study. Front. Antibiot. 2022, 1, 980686. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Tang, S.S.; Apisarnthanarak, A.; Hsu, L.Y. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv. Drug Deliv. Rev. 2014, 78, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef]
- Atlaw, N.A.; Keelara, S.; Correa, M.; Foster, D.; Gebreyes, W.; Aidara-Kane, A.; Harden, L.; Thakur, S.; Cray, P.J.F. Identification of CTX-M Type ESBL E. coli from Sheep and Their Abattoir Environment Using Whole-Genome Sequencing. Pathogens 2021, 10, 1480. [Google Scholar] [CrossRef]
- Chai, M.H.; Sukimana, M.Z.; Jasmya, N.; Zulkiflya, N.A.; Mohd-Yusofa, N.A.S.; Mohamadb, N.M.; Ariffinc, S.M.Z.; Ghazali, M.F. Molecular Detection and Antibiogram of ESBL-Producing and Carbapenem-Resistant Escherichia coli from Rabbit, Swine, and Poultry in Malaysia. Trop. Anim. Sci. J. 2022, 45, 16. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; Romero-Alvarez, D.; Valdez-Vélez, V.; Morales, R.D.; Montalvo-Hernández, A.; Gomes-Dias, C.; Calvopiña, M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect. Drug Resist. 2022, 15, 5759–5779. [Google Scholar] [CrossRef] [PubMed]
- Briñas, L.; Moreno, M.A.; Zarazaga, M.; Porrero, C.; Sáenz, Y.; García, M.; Dominguez, L.; Torres, C. Detection of CMY-2, CTX-M-14, and SHV-12 beta-lactamases in Escherichia coli fecal-sample isolates from healthy chickens. Antimicrob. Agents Chemother. 2003, 47, 2056–2058. [Google Scholar] [CrossRef]
- Tello, M.; Ocejo, M.; Oporto, B.; Hurtado, A. Prevalence of Cefotaxime-Resistant Escherichia coli Isolates from Healthy Cattle and Sheep in Northern Spain: Phenotypic and Genome-Based Characterization of Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2020, 86, e00742-20. [Google Scholar] [CrossRef] [PubMed]
- Alegría, Á.; Arias-Temprano, M.; Fernández-Natal, I.; Rodríguez-Calleja, J.M.; García-López, M.L.; Santos, J.A. Molecular Diversity of ESBL-Producing Escherichia coli from Foods of Animal Origin and Human Patients. Int. J. Environ. Res. Public Health 2020, 17, 1312. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, X.; Ma, L.; Cao, X.; Hu, W.; Zhao, L.; Jing, W.; Lan, X.; Li, Y.; et al. Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J. Glob. Antimicrob. Resist. 2020, 22, 726–732. [Google Scholar] [CrossRef]
- Song, J.; Oh, S.S.; Kim, J.; Park, S.; Shin, J. Clinically Relevant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates From Food Animals in South Korea. Front. Microbiol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Chah, K.F.; Ugwu, I.C.; Okpala, A.; Adamu, K.Y.; Alonso, C.A.; Ceballos, S.; Nwanta, J.N.; Torres, C. Detection and molecular characterisation of extended-spectrum β-lactamase-producing enteric bacteria from pigs and chickens in Nsukka, Nigeria. J. Glob. Antimicrob. Resist. 2018, 15, 36–40. [Google Scholar] [CrossRef]
- Adeluwoye-Ajayi, O.A.; Thomas, F.M.; Awoniyi, R.R. Detection of Extended Spectrum Beta-Lactamase Production in Escherichia coli Isolated from Cattle Faeces in Owo Metropolis. Int. J. Pat. Res. 2021, 8, 32–39. [Google Scholar] [CrossRef]
- Martínez-Vázquez, A.V.; Vázquez-Villanueva, J.; Leyva-Zapata, L.M.; Barrios-García, H.; Rivera, G.; Bocanegra-García, V. Multidrug Resistance of Escherichia coli Strains Isolated From Bovine Feces and Carcasses in Northeast Mexico. Front. Vet. Sci. 2021, 8, 643802. [Google Scholar] [CrossRef]
- Martínez-Vázquez, A.V.; Mandujano, A.; Cruz-Gonzalez, E.; Guerrero, A.; Vazquez, J.; Cruz-Pulido, W.L.; Rivera, G.; Bocanegra-García, V. Evaluation of Retail Meat as a Source of ESBL Escherichia coli in Tamaulipas, Mexico. Antibiotics 2022, 11, 1795. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Joji, R.M.; Shahid, M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front. Cell. Infect. Microbiol. 2023, 12, 1065796. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Tekiner, İ.H.; Özpınar, H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz. J. Microbiol. 2016, 47, 444–451. [Google Scholar] [CrossRef]
- Abraham, E.P.; Chain, E. An enzyme from bacteria able to destroy penicillin. 1940. Rev. Infect. Dis. 1988, 10, 677–678. [Google Scholar]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Sghaier, S.; Abbassi, M.S.; Pascual, A.; Serrano, L.; Díaz-De-Alba, P.; Said, M.B.; Hassen, B.; Ibrahim, C.; Hassen, A.; López-Cerero, L. Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: First detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J. Glob. Antimicrob. Resist. 2019, 17, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Adefioye, O.J.; Weinreich, J.; Rödiger, S.; Schierack, P.; Olowe, O.A. Phylogenetic Characterization and Multilocus Sequence Typing of Extended-Spectrum Beta Lactamase-Producing Escherichia coli from Food-Producing Animals, Beef, and Humans in Southwest Nigeria. Microb. Drug Resist. 2021, 27, 111–120. [Google Scholar]
- Salem, G.A.; Abdelaziz, E.A.; Kamel, M.A.; Rhouma, N.R.; Ali, R.I. Prevalence of multidrug-resistant and extended-spectrum β-lactamase-producing Escherichia coli from chicken farms in Egypt. Vet. World 2023, 16, 1001–1007. [Google Scholar] [CrossRef]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef]
- Widodo, A.; Effendi, M.H.; Khairullah, A.R. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys. Rev. Pharm. 2020, 11, 382–392. [Google Scholar]
- Lalruatdiki, A.; Dutta, T.K.; Roychoudhury, P.; Subudhi, P.K. Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. Vet. World 2018, 11, 868–873. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Wang, L.; Peng, Q.; Li, Y.; Zhou, H.; Li, Q. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Multidrug Resistant Escherichia coli From Swine in Northwest China. Front. Microbiol. 2018, 9, 1756. [Google Scholar] [CrossRef]
- Nuangmek, A.; Rojanasthien, S.; Chotinun, S.; Yamsakul, P.; Tadee, P.; Thamlikitkul, V.; Tansakul, N.; Patchanee, P. Antimicrobial Resistance in ESBL-Producing Escherichia coli Isolated from Layer and Pig Farms in Thailand. Acta Sci. Vet. 2018, 46, 8. [Google Scholar] [CrossRef]
- Seenama, C.; Thamlikitkul, V.; Ratthawongjirakul, P. Multilocus sequence typing and blaESBL characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolated from healthy humans and swine in Northern Thailand. Infect. Drug Resist. 2019, 12, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Mohsin, M.; Ali, Q.; Qamar, M.U.; Raza, S.; Ali, A.; Guenther, S.; Schierack, P. Prevalence and Genetic Relatedness of Extended Spectrum-β-Lactamase-Producing Escherichia coli Among Humans, Cattle, and Poultry in Pakistan. Microb. Drug Resist. 2019, 25, 1374–1381. [Google Scholar] [CrossRef]
- Tansawai, U.; Walsh, T.R.; Niumsup, P.R. Extended spectrum ß-lactamase-producing Escherichia coli among backyard poultry farms, farmers, and environments in Thailand. Poult. Sci. 2019, 98, 2622–2631. [Google Scholar] [CrossRef]
- Kamaruzzaman, E.A.; Abdul Aziz, S.; Bitrus, A.A.; Zakaria, Z.; Hassan, L. Occurrence and Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Dairy Cattle, Milk, and Farm Environments in Peninsular Malaysia. Pathogens 2020, 9, 1007. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Liu, L.; Feng, X.; Shao, Z.; Han, Z.; Li, Y. Prevalence and characteristics of extended-spectrum β-lactamases-producing Escherichia coli from broiler chickens at different day-age. Poult. Sci. 2020, 99, 3688–3696. [Google Scholar] [CrossRef] [PubMed]
- Mandakini, R.; Roychoudhury, P.; Subudhi, P.K.; Kylla, H.; Samanta, I.; Bandyopadhayay, S.; Dutta, T.K. Higher prevalence of multidrug-resistant extended-spectrum β-lactamases producing Escherichia coli in unorganized pig farms compared to organized pig farms in Mizoram, India. Vet. World 2020, 13, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Dey, S.; Batabyal, K.; Banerjee, A.; Joardar, S.N.; Samanta, I.; Isore, D.P. Prevalence and Characterization of Extended Spectrum Beta Lactamase Producing Escherichia coli from Broilers. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 594–602. [Google Scholar] [CrossRef]
- Tamta, S.; Kumar, O.R.V.; Singh, S.V.; Pruthvishree, B.S.; Karthikeyan, R.; Rupner, R.; Sinha, D.K.; Singh, B.R. Antimicrobial resistance pattern of extended-spectrum β-lactamase-producing Escherichia coli isolated from fecal samples of piglets and pig farm workers of selected organized farms of India. Vet. World 2020, 13, 360–363. [Google Scholar] [CrossRef]
- Wibisono, F.J.; Sumiarto, B.; Untari, T.; Effendi, M.H.; Permatasari, D.A.; Witaningrum, A.M. CTX gene of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli on Broilers in Blitar, Indonesia. Sys. Rev. Pharm. 2020, 11, 396–403. [Google Scholar]
- Athanasakopoulou, Z.; Reinicke, M.; Diezel, C.; Sofia, M.; Chatzopoulos, D.C.; Braun, S.D.; Reissig, A.; Spyrou, V.; Monecke, S.; Ehricht, R.; et al. Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece. Antibiotics 2021, 10, 389. [Google Scholar] [CrossRef]
- Balázs, B.; Nagy, J.B.; Tóth, Z.; Nagy, F.; Károlyi, S.; Turcsányi, I.; Bistyák, A.; Kálmán, A.; Sárközi, R.; Kardos, G. Occurrence of Escherichia coli producing extended spectrum β-lactamases in food-producing animals. Acta Vet. Hung. 2021, 69, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Dantas Palmeira, J.; Haenni, M.; Madec, J.Y.; Ferreira, H.M.N. First Global Report of Plasmid-Mediated mcr-1 and Extended-Spectrum Beta-Lactamase-Producing Escherichia coli from Sheep in Portugal. Antibiotics 2021, 10, 1403. [Google Scholar] [CrossRef]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S.K.; Semmler, T. Genomic Diversity and Virulence Potential of ESBL- and AmpC-β-Lactamase-Producing Escherichia coli Strains From Healthy Food Animals Across Europe. Front. Microbiol. 2021, 12, 626774. [Google Scholar] [CrossRef]
- Fetahagić, M.; Ibrahimagić, A.; Uzunović, S.; Beader, N.; Elveđi-Gašparović, V.; Luxner, J.; Gladan, M.; Bedenić, B. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC β-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina. Arh. Hig. Rada Toksikol. 2021, 72, 305–314. [Google Scholar] [CrossRef]
- Gruel, G.; Sellin, A.; Riveiro, H.; Pot, M.; Breurec, S.; Guyomard-Rabenirina, S.; Talarmin, A.; Ferdinand, S. Antimicrobial use and resistance in Escherichia coli from healthy food-producing animals in Guadeloupe. BMC Vet. Res. 2021, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Effendi, M.H.; Hartadi, E.B.; Witaningrum, A.M.; Permatasari, D.A.; Ugbo, E.N. Molecular identification of blaTEM gene of extended-spectrum beta-lactamase-producing Escherichia coli from healthy pigs in Malang district, East Java, Indonesia. J. Adv. Vet. Anim. Res. 2022, 9, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, K.; Zhang, Y.; Xia, L.; Zhao, L.; Guo, C.; Liu, X.; Qin, L.; Hao, Z. High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Front. Cell. Infect. Microbiol. 2022, 11, 755545. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.A.; Pandey, A.; Patel, A.C.; Patel, S.S.; Chauhan, H.C.; Shrimali, M.D.; Patel, P.A.; Mohapatra, S.K.; Chandel, B.S. Whole genome sequencing and characteristics of extended-spectrum beta-lactamase producing Escherichia coli isolated from poultry farms in Banaskantha, India. Front. Microbiol. 2022, 13, 996214. [Google Scholar] [CrossRef]
- Shafiq, M.; Rahman, S.U.; Bilal, H.; Ullah, A.; Noman, S.M.; Zeng, M.; Yuan, Y.; Xie, Q.; Li, X.; Jiao, X. Incidence and molecular characterization of ESBL-producing and colistin-resistant Escherichia coli isolates recovered from healthy food-producing animals in Pakistan. J. Appl. Microbiol. 2022, 133, 1169–1182. [Google Scholar] [CrossRef]
- D Trongjit, S.; Assavacheep, P.; Samngamnim, S.; My, T.H.; An, V.T.T.; Simjee, S.; Chuanchuen, R. Plasmid-mediated colistin resistance and ESBL production in Escherichia coli from clinically healthy and sick pigs. Sci. Rep. 2022, 12, 2466. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Zhou, Z.; Miao, Y.; Li, R.; Yang, B.; Cao, C.; Xiao, S.; Wang, X.; Liu, H.; et al. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates That Cause Diarrhea in Sheep in Northwest China. Microbiol. Spectr. 2022, 10, e0159522. [Google Scholar] [CrossRef]
- Benlabidi, S.; Raddaoui, A.; Lengliz, S.; Cheriet, S.; Hynds, P.; Achour, W.; Ghrairi, T.; Abbassi, M.S. Occurrence of High-Risk Clonal Lineages ST58, ST69, ST224, and ST410 among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Free-Range Chickens (Gallus gallus domesticus) in a Rural Region in Tunisia. Genes 2023, 14, 875. [Google Scholar] [CrossRef]
- Muleme, J.; Kankya, C.; Munyeme, M.; Musoke, D.; Ssempebwa, J.C.; Isunju, J.B.; Wambi, R.; Balugaba, B.E.; Sekulima, T.; Mugambe, R.K.; et al. Phenotypic Characterization and Antibiograms of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated at the Human-Animal-Environment Interface Using a One Health Approach Among Households in Wakiso District, Uganda. Infect. Drug Resist. 2023, 16, 2203–2216. [Google Scholar] [CrossRef]
- Yao, R.K.; Coulibaly, J.K.; Tiekoura, B.K.; Yapi, F.H.; Djaman, J.A. Molecular Characterisation of Extended-Spectrum Beta-lactamase Producing Escherichia coli Isolated from Cattle Faeces in Abidjan District, Ivory Coast. Microbiol. Res. J. Int. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Aworh, M.K.; Ekeng, E.; Nilsson, P.; Egyir, B.; Owusu-Nyantakyi, C.; Hendriksen, R.S. Extended-Spectrum ß-Lactamase-Producing Escherichia coli Among Humans, Beef Cattle, and Abattoir Environments in Nigeria. Front. Cell. Infect. Microbiol. 2022, 12, 869314. [Google Scholar] [CrossRef]
- Olorunleke, S.O.; Kirchner, M.; Duggett, N.; AbuOun, M.; Okorie-Kanu, O.J.; Stevens, K.; Card, R.M.; Chah, K.F.; Nwanta, J.A.; Brunton, L.A.; et al. Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria. Front. Microbiol. 2022, 13, 937968. [Google Scholar] [CrossRef] [PubMed]
- Kimera, Z.I.; Mgaya, F.X.; Misinzo, G.; Mshana, S.E.; Moremi, N.; Matee, M.I.N. Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics 2021, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Mandujano, A.; Cortés-Espinosa, D.V.; Vásquez-Villanueva, J.; Guel, P.; Rivera, G.; Juárez-Rendón, K.; Cruz-Pulido, W.L.; Aguilera-Arreola, G.; Guerrero, A.; Bocanegra-García, V.; et al. Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Food-Producing Animals in Tamaulipas, Mexico. Antibiotics 2023, 12, 1010. [Google Scholar] [CrossRef]
- Ilyas, S.; Rasool, M.H.; Arshed, M.J.; Qamar, M.U.; Aslam, B.; Almatroudi, A.; Khurshid, M. The Escherichia coli Sequence Type 131 Harboring Extended-Spectrum Beta-Lactamases and Carbapenemases Genes from Poultry Birds. Infect. Drug Resist. 2021, 14, 805–813. [Google Scholar] [CrossRef]
- Lemlem, M.; Aklilu, E.; Mohammed, M.; Kamaruzzaman, F.; Zakaria, Z.; Harun, A.; Devan, S.S. Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. PLoS ONE 2023, 18, e0285743. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Baez, M.; Espinosa, I.; Collaud, A.; Miranda, I.; Montano, D.L.N.; Feria, A.L.; Hernández-Fillor, R.E.; Obregón, D.; Alfonso, P.; Perreten, V. Genetic Features of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Poultry in Mayabeque Province, Cuba. Antibiotics 2021, 10, 107. [Google Scholar] [CrossRef]
- Patricio, T.C.D.C.; Farias, B.O.; Santiago, G.S.; Souza, V.R.S.; Pimenta, R.L.; de Oliveira, C.C.; Coelho, I.S.; de Souza, M.M.S.; Coelho, S.M.O. Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. Braz. J. Vet. Med. 2022, 44, e001722. [Google Scholar] [CrossRef]
- Carey, A.M.; Capik, S.F.; Giebel, S.; Nickodem, C.; Piñeiro, J.M.; Scott, H.M.; Vinasco, J.; Norman, K.N. Prevalence and Profiles of Antibiotic Resistance Genes mph(A) and qnrB in Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Dairy Calf Feces. Microorganisms 2022, 10, 411. [Google Scholar] [CrossRef]
- Kerluku, M.; Jankuloski, D.; Manovska, M.; Prodanov, M.; Dimzoska, B.; Dodovski, A.; Blagoevska, K. β-Lactamase genes (blaCTX-M, blaSHV, blaTEM, blaOXA1 AND blaOXA2) and phylogenetic groups in ESBL producing commensal Escherichia coli isolated from faecal samples from dairy farm in the Municipality of Debar. Mac. Vet. Rev. 2023, 46, 89–97. [Google Scholar] [CrossRef]
- Rizal, S.; Nurhapsari, I.; Fauziah, I.; Masrukhin, M.; Jatmiko, Y.D. Prevalence of multidrug-resistant and extended-spectrum β-lactamase producing Escherichia coli from local and broiler chickens at Cibinong market, West Java, Indonesia. Vet. World 2024, 17, 179–184. [Google Scholar] [CrossRef]
- Tseng, C.H.; Liu, C.W.; Liu, P.Y. Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Antibiotics 2023, 12, 661. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Shin, S.W.; Jung, M.; Won, H.G.; Belaynehe, K.M.; Yoon, I.J.; Yoo, H.S. Characteristics of Transmissible CTX-M- and CMY-Type β-Lactamase-Producing Escherichia coli Isolates Collected from Pig and Chicken Farms in South Korea. J. Microbiol. Biotechnol. 2017, 27, 1716–1723. [Google Scholar] [CrossRef]
- Fashae, K.; Engelmann, I.; Monecke, S.; Braun, S.D.; Ehricht, R. Molecular characterisation of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria. BMC Vet. Res. 2021, 17, 33. [Google Scholar] [CrossRef]
- Day, M.J.; Hopkins, K.L.; Wareham, D.W.; Toleman, M.A.; Elviss, N.; Randall, L.; Teale, C.; Cleary, P.; Wiuff, C.; Doumith, M.; et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study. Lancet Infect. Dis. 2019, 19, 1325–1335. [Google Scholar] [CrossRef]
- Lay, K.K.; Jeamsripong, S.; Sunn, K.P.; Angkititrakul, S.; Prathan, R.; Srisanga, S.; Chuanchuen, R. Colistin Resistance and ESBL Production in Salmonella and Escherichia coli from Pigs and Pork in the Thailand, Cambodia, Lao PDR, and Myanmar Border Area. Antibiotics 2021, 10, 657. [Google Scholar] [CrossRef]
- Truong, D.T.Q.; Hounmanou, Y.M.G.; Dang, S.T.T.; Olsen, J.E.; Truong, G.T.H.; Tran, N.T.; Scheutz, F.; Dalsgaard, A. Genetic Comparison of ESBL-Producing Escherichia coli from Workers and Pigs at Vietnamese Pig Farms. Antibiotics 2021, 10, 1165. [Google Scholar] [CrossRef]
- Hammerum, A.M.; Larsen, J.; Andersen, V.D.; Lester, C.H.; Skovgaard Skytte, T.S.; Hansen, F.; Olsen, S.S.; Mordhorst, H.; Skov, R.L.; Aarestrup, F.M.; et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J. Antimicrob. Chemother. 2014, 69, 2650–2657. [Google Scholar] [CrossRef]
- Tsekouras, N.; Athanasakopoulou, Z.; Diezel, C.; Kostoulas, P.; Braun, S.D.; Sofia, M.; Monecke, S.; Ehricht, R.; Chatzopoulos, D.C.; Gary, D.; et al. Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. Animals 2022, 12, 1560. [Google Scholar] [CrossRef]
- von Salviati, C.; Laube, H.; Guerra, B.; Roesler, U.; Friese, A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet. Microbiol. 2015, 175, 77–84. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, J.; Gu, J.; Liu, Z.; Hu, J.; Li, X.; Chen, X.; Sun, Z.; Li, J. Prevalence and antimicrobial susceptibility of CTX-M-type-producing Escherichia coli from a wildlife zoo in China. Vet. Med. Sci. 2022, 8, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Imirzalioglu, C.; Oppong, K.; Akenten, C.W.; Hogan, B.; Krumkamp, R.; Poppert, S.; Levermann, V.; Schwengers, O.; Sarpong, N.; et al. Detection and Characterization of ESBL-Producing Escherichia coli From Humans and Poultry in Ghana. Front. Microbiol. 2019, 9, 3358. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Lebert, L.A.; McEwen, S.A.; Reid-Smith, R.J.; Deckert, A.E.; Agunos, A.; Reid, M.A.; Rubin, J.E. Extended-Spectrum β-Lactamase and AmpC β-Lactamase-Producing Escherichia coli Isolates from Chickens Raised in Small Flocks in Ontario, Canada. Microb. Drug Resist. 2019, 25, 1250–1256. [Google Scholar] [CrossRef]
- Cardozo, M.V.; Liakopoulos, A.; Brouwer, M.; Kant, A.; Pizauro, L.J.L.; Borzi, M.M.; Mevius, D.; de Ávila, F.A. Occurrence and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Enterobacterales Recovered From Chicken, Chicken Meat, and Human Infections in Sao Paulo State, Brazil. Front. Microbiol. 2021, 12, 628738. [Google Scholar] [CrossRef]
- Moawad, A.A.; Hotzel, H.; Neubauer, H.; Ehricht, R.; Monecke, S.; Tomaso, H.; Hafez, H.M.; Roesler, U.; El-Adawy, H. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: Emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut. Pathog. 2018, 10, 39. [Google Scholar] [CrossRef]
- Belmahdi, M.; Chenouf, N.S.; Ait Belkacem, A.; Martinez-Alvarez, S.; Pino-Hurtado, M.S.; Benkhechiba, Z.; Lahrech, S.; Hakem, A.; Torres, C. Extended Spectrum β-Lactamase-Producing Escherichia coli from Poultry and Wild Birds (Sparrow) in Djelfa (Algeria), with Frequent Detection of CTX-M-14 in Sparrow. Antibiotics 2022, 11, 1814. [Google Scholar] [CrossRef]
- Kanokudom, S.; Assawakongkarat, T.; Akeda, Y.; Ratthawongjirakul, P.; Chuanchuen, R.; Chaichanawongsaroj, N. Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE 2021, 16, e0248536. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.A.; Seo, Y.H.; Lee, H.; Lee, K. Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea. Antibiotics 2021, 10, 1050. [Google Scholar] [CrossRef]
- Seo, K.W.; Lee, Y.J. The occurrence of CTX-M-producing E. coli in the broiler parent stock in Korea. Poult. Sci. 2021, 100, 1008–1015. [Google Scholar] [CrossRef]
- Hussain, H.I.; Aqib, A.I.; Seleem, M.N.; Shabbir, M.A.; Hao, H.; Iqbal, Z.; Kulyar, M.F.; Zaheer, T.; Li, K. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb. Pathog. 2021, 158, 105040. [Google Scholar] [CrossRef]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef]
- Jensen, L.B.; Birk, T.; Borck Høg, B.; Stehr, L.; Aabo, S.; Korsgaard, H. Cross and co resistance among Danish porcine E. coli isolates. Res. Vet. Sci. 2018, 119, 247–249. [Google Scholar] [CrossRef]
- Özgen, E.K.; Yanmaz, B.; Bağatir, P.Ş. Investigation of virulence factors, phylogenetic grouping, multiple-locus variable number tandem repeat analysis, and antimicrobial susceptibility of E. coli isolated from aborted bovine fetal tissue. Lett. Appl. Microbiol. 2023, 76, ovad100. [Google Scholar] [CrossRef]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef]
- Nunes, P.H.S.; Valiatti, T.B.; Santos, A.C.M.; Nascimento, J.A.D.S.; Santos-Neto, J.F.; Rocchetti, T.T.; Yu, M.C.Z.; Hofling-Lima, A.L.; Gomes, T.A.T. Evaluation of the Pathogenic Potential of Escherichia coli Strains Isolated from Eye Infections. Microorganisms 2022, 10, 1084. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Fan, R.; Fu, S.; Zhang, J.; Matussek, A.; Xiong, Y.; Bai, X. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci. Rep. 2020, 10, 3275. [Google Scholar] [CrossRef]
Ambler Scheme (Molecular Class) | Bush–Jacoby Group (Functional) | Characteristics | Substrate | Inhibited by | Enzyme Examples | |
---|---|---|---|---|---|---|
Clavulanic Acid | EDTA | |||||
A | 2a | Penicillinases | Penicillins | + | - | PC1 |
2b | Broad-spectrum enzymes | Penicillins, early cephalosporins | + | - | TEM-1, TEM-2, TEM-13, SHV-1, SHV-11 | |
2be | Extended broad-spectrum enzymes | Penicillins, oxyimino-cephalosporins, monobactams | + | - | TEM-3, TEM-10, SHV-2, CTX-M, PER-1, VEB-1 | |
2br | Broad-spectrum enzymes | Penicillins | - | - | TEM-30, TEM-31, SHV-10 | |
2ber | Extended-spectrum enzymes | Penicillins, extended-spectrum cephalosporins, monobactams | - | - | TEM-50, TEM-158 | |
2c | Carbenicillin-hydrolyzing enzymes | Penicillins, carbenicillin | + | - | PSE-1, CARB-3 | |
2ce | Extended-spectrum carbenicillinase | Carbenicillin, cefepime | + | - | CARB-10 | |
2e | Cephalosporinases | Extended-spectrum cephalosporins | + | - | CepA | |
2f | Carbapenem-hydrolyzing nonmetallo-β-lactamases | Carbapenems | + | - | GES, KPC-2, SME-1, IMI-1 | |
B | 3 | Metallo-β-lactamases | Carbapenems | - | + | IMP, VIM, IND |
C | 1 | Cephalosporinases | Narrow- and extended-spectrum cephalosporins | - | - | MIR-1, ACT-1, FOX-1, CMY-47 |
D | 2d | Cloxacillin-hydrolyzing enzymes | Cloxacilina, oxacilina | + | - | OXA-1, OXA-10 |
2de | Cloxacillin, oxacillin, oxyimino-cephalosporins, monobactams | + | - | OXA-11, OXA-15 | ||
2df | Carbapenems | + | - | OXA-23, OXA-51, OXA-58 |
Continent | Country | Source | Detection Test | ESBL Genes | Other Antibiotic Resistance Genes | Virulence Genes | Reference |
---|---|---|---|---|---|---|---|
Africa | Nigeria | Poultry | PCR | CTX-M-1, CTX-M-55, TEM | tetA, tetB, aac(3)-II | - | [40] |
Pig | PCR | CTX-M-15 | - | - | |||
Egypt | Poultry | PCR, microarrays | TEM, SHV, OXA-1, CTX-M-1, CTX-M-15 | aadA1, sul2, floR, qnrS, qnrB, dfrA, sul3, tetA, tetB, tetC | lpfA, hemL, ireA, iroN, iss, tir | [109] | |
Ivory Coast | Cattle | PCR | CTX-M, TEM, SHV | - | - | [82] | |
Ghana | Poultry | WGS | CTX-M-15, SHV-12 | - | - | [106] | |
Tunisia | Poultry | PCR | CTX-M-1 | - | - | [50] | |
Cow | CTX-M-15 | ||||||
Sheep | CTX-M-1, CTX-M-15, TEM-1 | ||||||
Nigeria | Pig, sheep, cow, poultry | PCR | TEM, CTX-M-15, SHV | aac(6’)-lb | - | [51] | |
Nigeria | Poultry | WGS | CTX-M, CTX-M-15, TEM | tetA, sul2, mdfA, aph(3)-Ib, aph(6)-Id, dfrA14 | - | [89] | |
Nigeria | Cow | Microarrays | CTX-M-15, CTX-M-9, TEM | strB, sul2 | hemL, iss, lpfA | [98] | |
Tanzania | Poultry | PCR | CTX-M, TEM, SHV | aac(6)-Ib-cr, qnrB, qepA | - | [85] | |
Pig | |||||||
Nigeria | Cow | WGS | CTX-M-14, CTX-M-15, CTX-M-55 | qnrS1, aph(6)-Id, aph(3)-Ib, aadA2, aadA5, aph(3)-Id, sul2, dfrA14, dfrA17, mdfA, tetA | - | [83] | |
Egypt | Poultry | PCR | CTX-M-9, TEM, OXA-2 | - | - | [24] | |
Algeria | Poultry | PCR | CTX-M-1 | tetA, sul1 | - | [110] | |
Egypt | Poultry | PCR | CTX-M, SHV, TEM | - | - | [5] | |
Cow | |||||||
Nigeria | Cow, poultry, pig, sheep | qPCR, WGS | CTX-M-15, CTX-M-55, CTX-M-64, CTX-M-65, TEM-1 | strA, strB, aac3-IId, aadA5, sul2, sul1, dfrA14, dfrA17, mphA | - | [84] | |
Tunisia | Poultry | PCR | CTX-M-15, CTX-M-55, TEM, SHV-12 | aac(6’)-Ib-cr, sul1, tetB | fimH, fyuA, iutA, papGIII | [80] | |
Egypt | Poultry | PCR | TEM, SHV | - | - | [52] | |
America | Canada | Poultry | PCR | CTX-M-1 | - | - | [107] |
Cuba | Poultry | PCR, microarrays | CTX-M-1, CTX-M-15 | tetA, tetB, mphA, sul2, dfrA17, strA, strB | - | [90] | |
USA | Cow, pig, poultry | PCR, WGS | CTX-M-1, CTX-M-9, TEM | tetA, tetB, aph(6)-Id, sul1, sul2, sul3, strA, strB, aadA2, aph(3’)-Ia | - | [22] | |
USA | Cow | PCR | CTX-M-1, CTX-M-9 | mphA, qnrB | - | [92] | |
WGS | CTX-M-1, CTX-M-32, CTX-M-15, CTX-M-27, CTX-M-65 | aph(3’’)-Ib, aph(6)-Id, sul1, sul2, mphA, mdfA, tetA, floR | |||||
Mexico | Cow, poultry, pig, sheep | PCR | CTX-M, TEM | tetA, tetB, aadA1, strA, strB, sul1,2,3, qnrB | hlyA | [86] | |
Chile | Cow, poultry, pig, sheep | PCR | CTX-M, CTX-M-1, CTX-M-2, TEM, SHV | - | - | [20] | |
Brazil | Poultry | Microarrays | CTX-M-1, CTX-M-2 | - | - | [108] | |
WGS | CTX-M-2, CTX-M-15 | ||||||
Brazil | Poultry | PCR | CTX-M, SHV | - | - | [91] | |
Asia | China | Pig | PCR, WGS | CTX-M, TEM- SHV, OXA-48, NDM | qnrS, qnrA, aac(6’)-Ib-cr, qnrB, oqxAB, qnrD, qepA | - | [57] |
Philippines | Poultry | PCR | CTX-M-1, CTX-M-15, CTX-M-25, CTX-M-2, CTX-M-8, CTX-M-9, TEM, SHV | - | - | [31] | |
Thailand | Pig | PCR | CTX-M, TEM | - | - | [59] | |
WGS | CTX-M-55, CTX-M-14, TEM-1B | sul1, sul2, sul3, qnrS1, tetA, tetD, aadA2, aph(3’)-Ia | |||||
Pakistan | Cow | PCR | CTX-M-15, TEM | - | - | [60] | |
Poultry | CTX-M-15, CTX-M-55, TEM | ||||||
Thailand | Poultry | PCR, WGS | CTX-M-15, CTX-M-55, CTX-M-14, CTX-M-27, CTX-M-65 | - | - | [61]. | |
Malaysia | Cow | PCR | CTX-M, TEM | - | - | [62] | |
China | Poultry | PCR | CTX-M-14, CTX-M-9, CTX-M-55, CTX-M-15, CTX.M-1, CTX-M-65, CTX-M-74, CTX-M-25, TEM, SHV | qnrS, aac(6’)-Ib-cr, qnrB, qnrA | papC, iucD, iroN, iucD, iss, iutA, tsh, irp-2 | [63] | |
India | Pig | PCR | TEM, CTX-M, CMY | tetA, tetB, sul1, sul2, aadA, dfrIa | - | [65] | |
South Korea | Poultry | PCR | TEM-1, CTX-M-15, CTX-M-55, CTX-M-14, CTX-M-65 | - | - | [39] | |
Pig | TEM-1, CTX-M-3, CTX-M-15, CTX-M-55, CTX-M-14, CTX-M-65 | ||||||
Cow | CTX-M-15, CTX-M-55, CTX-M-65 | ||||||
India | Poultry | PCR | CTX-M, TEM, SHV | - | - | [65] | |
India | Pig | PCR | CTX-M | - | - | [66] | |
China | Poultry | PCR | TEM | - | - | [38] | |
Pig | CTX-M, TEM | ||||||
Indonesia | Poultry | PCR | CTX-M | - | - | [67] | |
Pakistan | Poultry | PCR | CTX-M-1, CTX-M-9, TEM | - | - | [87] | |
Thailand | Pig | PCR | CTX-M-55, CTX-M-14, CTX-M-15, CTX-M-9, OXA-140, SHV-12 | - | - | [111] | |
Korea | Pollo | PCR, WGS | CTX-M-55, CTX-M-14, CTX-M-65, CTX-M-1, CTX-M-27 | sul1, sul2, strA, strB, fosA, aac(3)-IId, mphA | - | [112] | |
Thailand | Pig | PCR | CTX-M-55, CTX-M-14, TEM | mcr-1 | - | [100] | |
Korea | Poultry | PCR | CTX-M-1, CTX-M-14, CTX-M-15, CTX-M-65, TEM-1 | dfrA1, aadA1 | - | [113] | |
Vietnam | Pig | WGS | CTX-M-55, CTX-M-14, CTX-M-27, CTX-M-15, CTX-M-65, OXA-10 | mcr-1, mcr-3, qnrS1, qnrB19, aadA1, aph(3’)-Ia, aph(6)-Id, aac(3)-IId, aadA2, dfrA12, dfrA14, tetA, tetM, cmlA1, floR, mdfA, mefA, mefB, mphA, fosA3, aar2, aar3, sul1, sul2, chrA, merC, merE, merT | traT, ompT, sitA, lpfA, iss, terC, traT, chuA, fyuA | [101] | |
China | Cow | PCR | CTX-M, TEM- SHV | - | - | [23] | |
Malaysia | Pig, poultry | PCR | CTX-M | - | - | [33] | |
Indonesia | Pig | PCR | TEM | - | - | [74] | |
China | Poultry | PCR | TEM, CTX-M, OXA, SHV | - | - | [75] | |
Cow | TEM, OXA, SHV | ||||||
Pig | TEM, OXA, CTX-M, SHV | ||||||
India | Poultry | PCR, WGS | TEM, SHV, OXA, CTX-M-1, CTX-M-2, CTX-M-9 | qnrS1, dfrA14, sul2, aph(3”)-Ib, aph(3’)-Ia, aph(6)-ld | cib, terC, traT | [76] | |
Pakistan | Cow, poultry, sheep | PCR | CTX-M-1, CTX-M-9, CTX-M-2, TEM, SHV | mcr-1 | - | [77] | |
Thailand | Pig | PCR | CTX-M-55, CTX-M-14, TEM-1 | - | - | [78] | |
China | Sheep | WGS | CTX-M-55, CTX-M-15, CTX-M-14, CTX-M-65, CTX-M-17, TEM-1, TEM-150, TEM-235 | aph(6’)-Id aph(3’)-Ia, aph(3’’)-Ib, aadA1, aadA2, tetA, tetB, sul1, sul2, sul3, dfrA12, dfrA14, dfrA17, oqxA, oqxB, cmlA1, cmlA5, catA1, catA2, catA3, floR, mphA, ermB, fosA, mcr-1 | - | [79] | |
Indonesia | Poultry | PCR | CTX-M, TEM | - | - | [94] | |
Malaysia | Poultry | PCR | CTX-M, TEM | mcr-1 | - | [88] | |
Europe | Spain | Cow, sheep | WGS | CTX-M-14, CTX-M-1, CTX-M-15, CTX-M-32 SHV-12, TEM-1B, TEM-190 OXA-1, OXA-10 | tetA, tetB, aac(3)-IIa, aac(3)-IId, qnrS, cml1, catA1, floR, mphA, sul1, sul2, sul3, fosA7 | - | [36] |
Greek | Cow, pig | Microarrays | CTX-M-15, TEM | aadA1, aphA, strA, strB, qnrS, sul1, sul2, sul3, dfrA7, dfrA1, mph | - | [68] | |
Portugal | Sheep | PCR | CTX-M-15, CTX-M-32, CTX-M-1, CTX-M-14, CTX-M-98, SHV-12 | aac(6’)-Ib-cr, qnrS, aac(3’)-II, tetA, tetB, sul1, sul2, sul3 | - | [70] | |
Denmark, France, Germany, Hungary, Poland, Spain, Netherlands, UK | Poultry | WGS | CTX-M-1, CTX-M-14, SHV-12, TEM-52 | aadA1, aadA2, aadA5, tetA, tetB, dfrA1, dfrA7, sul1, sul2, sul3, catA1, floR, mphA, mphB | entABCDEFS, fimABCDEFGHI, csgABCDEFG | [71] | |
Cow | CTX-M-1, CTX-M-2, SHV-12, TEM-52 | ||||||
Pig | CTX-M-1, CTX-M-15 | ||||||
Bosnia | Poultry | Microarrays | CTX-M-1, CTX-M-15, TEM, SHV | - | - | [72] | |
Latvia | Pig | PCR | CTX-M, TEM, SHV | - | - | [4] | |
France | Cow, pig, poultry | PCR | CTX-M-1, CTX-M-15, TEM-1B, TEM-1C | tetA | - | [73] | |
Italy | Cow | PCR | CTX-M-1, CTX-M-9 | mcr-1, mcr-3 | - | [21] | |
Pig | CTX-M-1, CTX-M-9 | mcr-1, mcr-4 | |||||
Poultry | CTX-M-1, CTX-M-2, CTX-M-9, SHV-12 | mcr-1 | |||||
Greece | Pig | Microarrays | CTX-M-15, CTX-M-9, CTX-M-8, SHV, TEM, OXA-1, OXA-60 | aadA1, aadA2, aadA4, aac(6’)-Ib, qnrS, qnrA, qnrB, sul1, sul2, sul3, dfrA1, dfrA5, dfrA7, dfrA12, mcr-1, mcr-2, mcr-4, mcr-8, mph, oqxA, oqxB | - | [103] | |
Macedonia | Cow | PCR | CTX-M, SHV, TEM, OXA-1 | - | - | [93] | |
Oceania | Australia | Pig | RT-PCR | CTX-M-1, TEM-1B | aadA5, dfrA17, dfrA5, sul2, tetA, strA, strB | eae, ehxA, paa | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandujano-Hernández, A.; Martínez-Vázquez, A.V.; Paz-González, A.D.; Herrera-Mayorga, V.; Sánchez-Sánchez, M.; Lara-Ramírez, E.E.; Vázquez, K.; de Jesús de Luna-Santillana, E.; Bocanegra-García, V.; Rivera, G. The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview. Animals 2024, 14, 2490. https://doi.org/10.3390/ani14172490
Mandujano-Hernández A, Martínez-Vázquez AV, Paz-González AD, Herrera-Mayorga V, Sánchez-Sánchez M, Lara-Ramírez EE, Vázquez K, de Jesús de Luna-Santillana E, Bocanegra-García V, Rivera G. The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview. Animals. 2024; 14(17):2490. https://doi.org/10.3390/ani14172490
Chicago/Turabian StyleMandujano-Hernández, Antonio, Ana Verónica Martínez-Vázquez, Alma D. Paz-González, Verónica Herrera-Mayorga, Mario Sánchez-Sánchez, Edgar E. Lara-Ramírez, Karina Vázquez, Erick de Jesús de Luna-Santillana, Virgilio Bocanegra-García, and Gildardo Rivera. 2024. "The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview" Animals 14, no. 17: 2490. https://doi.org/10.3390/ani14172490
APA StyleMandujano-Hernández, A., Martínez-Vázquez, A. V., Paz-González, A. D., Herrera-Mayorga, V., Sánchez-Sánchez, M., Lara-Ramírez, E. E., Vázquez, K., de Jesús de Luna-Santillana, E., Bocanegra-García, V., & Rivera, G. (2024). The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview. Animals, 14(17), 2490. https://doi.org/10.3390/ani14172490