Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi
"> Figure 1
<p>Model of the Tet-on mechanism to control the expression of <span class="html-italic">mluc</span>. Plasmid pVG3.1 contains the gene for the tetracycline-dependent transactivator <span class="html-italic">rtTA2<sup>S</sup>-M2</span> under control of the constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene from <span class="html-italic">Aspergillus nidulans</span> (P<span class="html-italic">gpdA).</span> In the presence of Dox, rtTA2<sup>S</sup>-M2 binds to the operator sequence <span class="html-italic">tetO7</span>, activates the fungal minimal promoter of P<span class="html-italic">gpdA</span> (Pmin), and consequently induces <span class="html-italic">mluc</span> gene expression. This gene encodes the enzyme luciferase that converts luciferin into oxyluciferin and emits light.</p> "> Figure 2
<p>Luminescence emission of TET<span class="html-italic">luc</span> transformants induced with doxycycline (Dox) and compared to the wild strain: (<b>A</b>) The TETluc transformants (SG253 and SG255) and the wild strain (WT) were grown in DGpep medium for 16 h in 96-well plates; then, 0.2 mM luciferin and 20 μg/mL of Dox were added to the wells and incubated in the dark at 30 °C for the time indicated. Data are average and standard deviation for two independent experiments. As a negative control, strains were grown without Dox. (<b>B</b>) Luminescence emitted by the TET<span class="html-italic">luc</span> transformant SG255 in DGpep medium in 96-well plates. Dox was added at desired final concentrations (0, 2.5, 5, 10, and 20 μg/mL) to mycelia previously grown for 18 h. (<b>C</b>) Growth of SG255 in the 96-well plates described in panel B, measured by their absorbance at 600 nm. Data are average and standard deviations for three independent experiments.</p> "> Figure 3
<p>Control of expression of the <span class="html-italic">carS</span> gene using the Tet-on system in <span class="html-italic">F. fujikuroi</span>: (<b>A</b>) Phenotypic characterization of TET<span class="html-italic">carS</span> transformant (SG260 and SG262) and parental strains, wild type (WT) and SG39 (<span class="html-italic">carS</span> mutant), grown in DG agar medium (control) and in DG with 20 μg/mL Dox (20 Dox) at 30 °C for five days in the dark. (<b>B</b>) Transcripts levels of the <span class="html-italic">carS</span> gene in the strains grown in minimal DG medium for 18 h and induced with 20 μg/mL of Dox (20 Dox) or grown without Dox (control) and then incubated for up to three days in darkness. Values in the left graph refer to those of WT without Dox, and values in the right graph refer to those of SG39 without Dox. The qRT-PCR data are the average of two independent experiments and bars represent the standard deviation. *-indicates <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Repression of the carotenoid biosynthesis pathway by <span class="html-italic">carS</span> overexpression in the <span class="html-italic">carS</span> mutant: (<b>A</b>) Transcripts levels for the <span class="html-italic">carB</span> and <span class="html-italic">carRA</span> genes in the TET<span class="html-italic">carS</span> transformant (SG262) and the <span class="html-italic">carS</span> mutant (SG39). Cultures of SG39 and SG262 grown for 18 h were induced with 20 μg/mL of Dox and then incubated for up to three days in darkness. The noninduced controls were grown for three days without Dox. Quantitative RT-PCR values represent average and standard deviations of two independent experiments. (<b>B</b>) Carotenoid content from the same strains grown on DG agar medium with 20 μg/mL of Dox, and without Dox as control, for seven days in darkness. Mycelial samples were taken from three independent experiments. ** <span class="html-italic">p</span> < 0.01; **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Growth and pigmentation of strains induced with a range of Dox concentrations. TET<span class="html-italic">carS</span> transformants (SG260 and SG262), the wild strain (WT) and <span class="html-italic">carS</span> mutant (SG39) were grown on minimal DG agar medium with different Dox concentrations (0, 2.5, 5, 10, and 20 μg/mL) at 30 °C, for five days under light.</p> "> Figure 6
<p>Effect of optimized Dox concentration on gene expression: (<b>A</b>) Transcripts levels for the <span class="html-italic">carS</span> gene in the wild strain (WT), <span class="html-italic">carS</span> mutant (SG39), and TET<span class="html-italic">carS</span> transformant (SG262). (<b>B</b>) Transcript levels for the <span class="html-italic">mluc</span> gene in TET<span class="html-italic">luc</span> transformants SG253 and SG255. Values were normalized to those of SG253 in the absence of Dox. (<b>C</b>) Transcript levels for the <span class="html-italic">carRA</span> gene in WT, SG39, and SG262. (<b>D</b>) Transcript levels for the <span class="html-italic">carB</span> gene in WT, SG39 and SG262. The strains were grown for two days in DG medium in darkness, then induced with 10 μg/mL Dox (10 Dox) for 24 h; noninduced cultures (control) were incubated for the same time. Data of qRT-PCR are the average and standard deviation of three independent experiments. Values were normalized to those of the noninduced wild strain, except for the <span class="html-italic">mlu</span>c gene. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>Effect of constitutive expression of the <span class="html-italic">carS</span> gene in <span class="html-italic">F. fujikuroi:</span> (<b>A</b>) Phenotypes of two OE<span class="html-italic">carS</span> transformants (SG263 and SG264) and the wild strain (WT) grown on DG agar medium for five days at 30 °C in the dark or under light. (<b>B</b>) Carotenoid content in mycelia of WT and OE<span class="html-italic">carS</span> transformants grown for seven days in darkness or under light. Data are the average and standard deviation from three independent experiments. (<b>C</b>–<b>E</b>) Transcript levels of <span class="html-italic">carS</span>, <span class="html-italic">carRA</span>, and <span class="html-italic">carB</span> in WT and OE<span class="html-italic">carS</span> transformants; RNA was isolated from strains grown in darkness for three days and exposed to light for one hour or kept for this time in the dark. Data of qRT-PCR are the average and mean error of five independent experiments. Values were normalized to the WT samples in the dark. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. DNA Isolation and PCR Assays
2.3. Generation of TETluc and TETcarS Transformants
2.4. Construction of pJM2 Plasmid and Generation of carS Constitutive Overexpression Transformants
2.5. Southern Blot Analyses
2.6. Luminescence Assay
2.7. Expression Analyses
2.8. Carotenoid Measurements
2.9. Statistical Analysis
3. Results
3.1. Improvement of the Gene Expression Control by the Tet-on System in F. fujikuroi using a Reporter Gene
3.2. Use of the Tet-on System to Control carS Expression
3.3. Effect of Control of carS Expression on Carotenogenesis in the carS Mutant
3.4. Effect of Constitutive carS Overexpression on the Carotenoid Biosynthesis Pathway
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Concepción, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limón, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos, J.; Nordzieke, S.; Parra, O.; Pardo-Medina, J.; Limon, M.C. Carotenoid production by filamentous fungi and yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 225–279. ISBN 9783319588292. [Google Scholar]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Parra-Rivero, O.; Paes de Barros, M.; Prado, M.D.M.; Gil, J.-V.; Hornero-Méndez, D.; Zacarías, L.; Rodrigo, M.J.; Limón, M.C.; Avalos, J. Neurosporaxanthin overproduction by Fusarium fujikuroi and evaluation of its antioxidant properties. Antioxidants 2020, 9, 528. [Google Scholar] [CrossRef] [PubMed]
- Avalos, J.; Carmen Limón, M. Biological roles of fungal carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Aasen, A.J.; Jensen, S.L. Fungal carotenoids. II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem. Scand. 1965, 19, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.; Hornero-Méndez, D.; Limón, M.C. Carotenoid biosynthesis in Fusarium. J. Fungi 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Avalos, J.; Cerdà-Olmedo, E. Carotenoid mutants of Gibberella fujikuroi. Curr. Genet. 1987, 11, 505–511. [Google Scholar] [CrossRef]
- Rodríguez-Ortiz, R.; Limón, M.C.; Avalos, J. Functional analysis of the carS gene of Fusarium fujikuroi. Mol. Genet. Genom. 2013, 288, 157–173. [Google Scholar] [CrossRef]
- Rodríguez-Ortiz, R.; Michielse, C.; Rep, M.; Limón, M.C.; Avalos, J. Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet. Biol. 2012, 49, 684–696. [Google Scholar] [CrossRef] [Green Version]
- Navarro, E.; Lorca-Pascual, J.; Quiles-Rosillo, M.; Nicolás, F.; Garre, V.; Torres-Martínez, S.; Ruiz-Vázquez, R. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol. Genet. Genom. 2001, 266, 463–470. [Google Scholar] [CrossRef]
- Tagua, V.G.; Navarro, E.; Gutiérrez, G.; Garre, V.; Corrochano, L.M. Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides. Fungal Biol. 2020, 124, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Elías-Arnanz, M.; Padmanabhan, S.; Murillo, F.J. Light-dependent gene regulation in nonphototrophic bacteria. Curr. Opin. Microbiol. 2011, 14, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Mise, K.; Hagiwara, K.; Hirata, N.; Watanabe, S.; Toriyabe, M.; Shiratori-Takano, H.; Ueda, K. Role and function of LitR, an adenosyl B12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in regulation of carotenoid production. J. Bacteriol. 2015, 197, 2301–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumi, S.; Suzuki, Y.; Matsuki, T.; Yamamoto, T.; Tsuruta, Y.; Mise, K.; Kawamura, T.; Ito, Y.; Shimada, Y.; Watanabe, E.; et al. Light-inducible carotenoid production controlled by a MarR-type regulator in Corynebacterium glutamicum. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henke, N.A.; Heider, S.A.E.; Hannibal, S.; Wendisch, V.F.; Peters-Wendisch, P. Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Henke, N.A.; Austermeier, S.; Grothaus, I.L.; Götker, S.; Persicke, M.; Peters-Wendisch, P.; Wendisch, V.F. Corynebacterium glutamicum CrtR and its orthologs in Actinobacteria: Conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate. Int. J. Mol. Sci. 2020, 21, 5482. [Google Scholar] [CrossRef]
- Ruger-Herreros, M.; Parra-Rivero, O.; Pardo-Medina, J.; Romero-Campero, F.J.; Limón, M.C.; Avalos, J. Comparative transcriptomic analysis unveils interactions between the regulatory CarS protein and light response in Fusarium. BMC Genomics 2019, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Vogt, K.; Bhabhra, R.; Rhodes, J.C.; Askew, D.S. Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol. 2005, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Wanka, F.; van Gent, J.; Arentshorst, M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J. Fungal gene expression on demand: An inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl. Environ. Microbiol. 2011, 77, 2975–2983. [Google Scholar] [CrossRef] [Green Version]
- Kluge, J.; Terfehr, D.; Kück, U. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl. Microbiol. Biotechnol. 2018, 102, 6357–6372. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.W.; Guo, C.J.; Wang, C.C.C. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus. Fungal Genet. Biol. 2016, 89, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geib, E.; Brock, M. ATNT: An enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger. Fungal Biol. Biotechnol. 2017, 4, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janevska, S.; Arndt, B.; Baumann, L.; Apken, L.H.; Marques, L.M.M.; Humpf, H.U.; Tudzynski, B. Establishment of the inducible Tet-on system for the activation of the silent trichosetin gene cluster in Fusarium fujikuroi. Toxins 2017, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Avalos, J.; Casadesus, J.; Cerda-Olmedo, E. Gibberella fujikuroi mutants obtained with UV radiation and N-methyl-N’-nitro-N-nitrosoguanidine. Appl. Environ. Microbiol. 1985, 49, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Punt, P.J.; Oliver, R.P.; Dingemanse, M.A.; Pouwels, P.H.; van den Hondel, C.A.M.J.J. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 1987, 56, 117–124. [Google Scholar] [CrossRef]
- Marente, J.; Ortega, P.; Pardo-Medina, J.; Avalos, J.; Limón, M.C. Modulation of activity of a carotenoid pathway through the use of the TeT-on regulatory system: Application in the fungus Fusarium fujikuroi. In Plant and Food Carotenoids. Methods in Molecular Biology; Rodriguez-Concepcion, M., Welsch, R., Eds.; Humana: New York, NY, USA, 2020; Volume 2083, pp. 343–360. [Google Scholar]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; Volume 1, pp. 133–143. [Google Scholar]
- Avalos, J.; Prado-Cabrero, A.; Estrada, A.F. Neurosporaxanthin production by Neurospora and Fusarium. In Microbial Carotenoids from Fungi. Methods in Molecular Biology (Methods and Protocols); Barredo, J.L., Ed.; Humana: Totowa, NJ, USA, 2012; Volume 898, pp. 263–274. [Google Scholar]
- Macheleidt, J.; Scherlach, K.; Neuwirth, T.; Schmidt-Heck, W.; Straßburger, M.; Spraker, J.; Baccile, J.A.; Schroeder, F.C.; Keller, N.P.; Hertweck, C.; et al. Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol. Microbiol. 2015, 96, 148–162. [Google Scholar] [CrossRef]
- Bijlani, S.; Nahar, A.S.; Ganesan, K. Improved Tet-On and Tet-Off systems for tetracycline-regulated expression of genes in Candida. Curr. Genet. 2018, 64, 303–316. [Google Scholar] [CrossRef]
- Fiedler, M.R.M.; Barthel, L.; Kubisch, C.; Nai, C.; Meyer, V. Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb. Cell Fact. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Mojzita, D.; Rantasalo, A.; Jäntti, J. Gene expression engineering in fungi. Curr. Opin. Biotechnol. 2019, 59, 141–149. [Google Scholar] [CrossRef]
- Moullan, N.; Mouchiroud, L.; Wang, X.; Ryu, D.; Williams, E.G.; Mottis, A.; Jovaisaite, V.; Frochaux, M.V.; Quiros, P.M.; Deplancke, B.; et al. Tetracyclines disturb mitochondrial function across eukaryotic models: A call for caution in biomedical research. Cell Rep. 2015, 10, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Schuetze, T.; Meyer, V. Polycistronic gene expression in Aspergillus niger. Microb. Cell Fact. 2017, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Suzuki, Y.; Nagasaki, S.C.; Okuno, H.; Imayoshi, I. Light control of the Tet gene expression system in mammalian cells. Cell Rep. 2018, 25, 487–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, A.F.; Avalos, J. The white collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 2008, 45, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Parra-Rivero, O.; Pardo-Medina, J.; Gutiérrez, G.; Limón, M.C.; Avalos, J. A novel lncRNA as a positive regulator of carotenoid biosynthesis in Fusarium. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Corrochano, L.M. Light in the fungal world: From photoreception to gene transcription and beyond. Annu. Rev. Genet. 2019, 53, 149–170. [Google Scholar] [CrossRef] [PubMed]
Strain | Genotype | Code |
---|---|---|
IMI58289 | Wild type | WT |
SG39 | carS- | carS- |
SG253 | tetO7::Pmin::mluc hph+ | TETluc |
SG255 | tetO7::Pmin::mluc hph+ | TETluc |
SG260 | tetO7::Pmin::carS hph+ | TETcarS |
SG262 | tetO7::Pmin::carS carS- hph+ | TETcarS carS- |
SG263 | PgpdA::carS amdS+ | OEcarS |
SG264 | PgpdA::carS amdS+ | OEcarS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marente, J.; Avalos, J.; Limón, M.C. Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi. Microorganisms 2021, 9, 71. https://doi.org/10.3390/microorganisms9010071
Marente J, Avalos J, Limón MC. Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi. Microorganisms. 2021; 9(1):71. https://doi.org/10.3390/microorganisms9010071
Chicago/Turabian StyleMarente, Julia, Javier Avalos, and M. Carmen Limón. 2021. "Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi" Microorganisms 9, no. 1: 71. https://doi.org/10.3390/microorganisms9010071
APA StyleMarente, J., Avalos, J., & Limón, M. C. (2021). Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi. Microorganisms, 9(1), 71. https://doi.org/10.3390/microorganisms9010071