A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes
<p>(<b>A</b>) Molecular phylogenetic analysis of the <span class="html-italic">HFX_2341</span> gene (left tree) and <span class="html-italic">rpoB1</span> gene (right tree) using maximum likelihood. The evolutionary history was inferred by using the maximum likelihood method based on the Tamura–Nei model [<a href="#B23-microorganisms-12-01772" class="html-bibr">23</a>]. The tree with the highest log likelihood (−18,940.96 for <span class="html-italic">HFX_2341</span> and −18,940.87 for <span class="html-italic">rpoB1</span>) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 47 nucleotide sequences for <span class="html-italic">HFX_2341</span> and 49 for <span class="html-italic">rpoB1</span>. There were a total of 1008 positions for each of the final dataset. Evolutionary analyses were conducted using MEGA X [<a href="#B24-microorganisms-12-01772" class="html-bibr">24</a>]. (<b>B</b>) ConSurf [<a href="#B15-microorganisms-12-01772" class="html-bibr">15</a>] conservation profile for HFX_2341 protein. The residues in the sequence are colored by their conservation grades using the nine-grade color-coding bar [<a href="#B25-microorganisms-12-01772" class="html-bibr">25</a>], indicating that most residues are highly conserved.</p> "> Figure 2
<p>Fraction of white colonies obtained after self-targeting of the <span class="html-italic">crtI</span> chromosomal gene using the CRISPR-interference machinery in <span class="html-italic">H. mediterranei</span> control (WR646) and ΔHFX_2341 strains (N = 3). Each column represents the mean with the denotation of the SEM bars.</p> "> Figure 3
<p>RNA-seq results of the <span class="html-italic">H. mediterranei</span> wild-type vs. the ΔHFX_2341 strain. Significantly changed mRNA levels genes using ANOVA < 0.05, FC > 1.5 (<a href="#app1-microorganisms-12-01772" class="html-app">Supplementary Table S2</a>) are presented. The results presented are the mean of three biological replicates for the wild-type strain and four biological replicates for the ΔHFX_2341 strain. (<b>A</b>) Up-regulated genes organized by functional categories (wild-type/ΔHFX_2341). (<b>B</b>) Down-regulated genes organized by functional categories (wild-type/ΔHFX_2341). (<b>C</b>) Fold change average according to the functional categories of the genes. Means with SEM are presented.</p> "> Figure 4
<p>Quantification of the <span class="html-italic">CRISPR-cas</span> mRNA levels from <span class="html-italic">H. mediterranei</span> in the control (WR646), Δ<span class="html-italic">HFX_2341</span> strain, and HFX_2341 over-expression (N > 4). All levels are normalized to the expression of a housekeeping gene (<span class="html-italic">polB</span>) in the respective strains. Each column represents the mean with the denotation of the SEM bars. * = <span class="html-italic">p</span>-value < 0.05; ** = <span class="html-italic">p</span>-value < 0.01, two-sided Mann–Whitney test compared to wild type. AU—arbitrary units.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Strains and Plasmids
4.2. Culture Conditions
4.3. Transformation of Haloferax Mediterranei
4.4. Gene Knockout of Haloferax Mediterranei
4.5. Phylogenetic and Conservation Analysis of HFX_2341
4.6. Self-Targeting Assay
4.7. RNA Extraction
4.8. RNA Sequencing
4.9. RNA Sequencing Analysis
4.10. Quantitative PCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charpentier, E.; Elsholz, A.; Marchfelder, A. CRISPR-Cas: More than ten years and still full of mysteries. RNA Biol. 2019, 16, 377–379. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Goren, M.G.; Yosef, I.; Auster, O.; Manor, M.; Amitai, G.; Edgar, R.; Qimron, U.; Sorek, R. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 2015, 520, 505–510. [Google Scholar] [CrossRef]
- Modell, J.W.; Jiang, W.; Marraffini, L.A. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 2017, 544, 101–104. [Google Scholar] [CrossRef]
- Maier, L.K.; Stachler, A.E.; Brendel, J.; Stoll, B.; Fischer, S.; Haas, K.A.; Schwarz, T.S.; Alkhnbashi, O.S.; Sharma, K.; Urlaub, H.; et al. The nuts and bolts of the Haloferax CRISPR-Cas system I-B. RNA Biol. 2019, 16, 469–480. [Google Scholar] [CrossRef]
- Turgeman-Grott, I.; Joseph, S.; Marton, S.; Eizenshtein, K.; Naor, A.; Soucy, S.M.; Stachler, A.E.; Shalev, Y.; Zarkor, M.; Reshef, L.; et al. Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation. Nat. Microbiol. 2019, 4, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Stachler, A.E.; Wortz, J.; Alkhnbashi, O.S.; Turgeman-Grott, I.; Smith, R.; Allers, T.; Backofen, R.; Gophna, U.; Marchfelder, A. Adaptation induced by self-targeting in a type I-B CRISPR-Cas system. J. Biol. Chem. 2020, 295, 13502–13515. [Google Scholar] [CrossRef]
- Fischer, S.; Maier, L.K.; Stoll, B.; Brendel, J.; Fischer, E.; Pfeiffer, F.; Dyall-Smith, M.; Marchfelder, A. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J. Biol. Chem. 2012, 287, 33351–33363. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, H.; Han, J.; Liu, J.; Wang, R.; Zhao, D.; Zhou, J.; Xiang, H. Characterization of CRISPR RNA biogenesis and Cas6 cleavage-mediated inhibition of a provirus in the haloarchaeon Haloferax mediterranei. J. Bacteriol. 2013, 195, 867–875. [Google Scholar] [CrossRef]
- Soding, J.; Biegert, A.; Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005, 33, W244–W248. [Google Scholar] [CrossRef]
- Lintner, N.G.; Frankel, K.A.; Tsutakawa, S.E.; Alsbury, D.L.; Copie, V.; Young, M.J.; Tainer, J.A.; Lawrence, C.M. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J. Mol. Biol. 2011, 405, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Rouillon, C.; Athukoralage, J.S.; Graham, S.; Gruschow, S.; White, M.F. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 2018, 7, e36734. [Google Scholar] [CrossRef] [PubMed]
- Athukoralage, J.S.; Rouillon, C.; Graham, S.; Gruschow, S.; White, M.F. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 2018, 562, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.; Bapteste, E.; Kamekura, M.; Doolittle, W.F. Evolution of the RNA polymerase B’ subunit gene (rpoB’) in Halobacteriales: A complementary molecular marker to the SSU rRNA gene. Mol. Biol. Evol. 2004, 21, 2340–2351. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef]
- Artieri, C.G.; Naor, A.; Turgeman-Grott, I.; Zhou, Y.; York, R.; Gophna, U.; Fraser, H.B. Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids. Sci. Rep. 2017, 7, 3986. [Google Scholar] [CrossRef]
- He, F.; Vestergaard, G.; Peng, W.; She, Q.; Peng, X. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Res. 2017, 45, 1902–1913. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Wang, X.; Ye, Q.; Li, H.; Liang, Y.; She, Q.; Peng, N. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res. 2015, 43, 1044–1055. [Google Scholar] [CrossRef]
- Ye, Q.; Zhao, X.; Liu, J.; Zeng, Z.; Zhang, Z.; Liu, T.; Li, Y.; Han, W.; Peng, N. CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus. Front. Microbiol. 2020, 11, 2038. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Ye, Q.; Pan, S.; Wang, X.; Li, Y.; Peng, W.; Liang, Y.; She, Q.; Peng, N. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Res. 2017, 45, 8978–8992. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, M.; Liu, J.; Liu, T.; Ye, Q.; Li, Y.; Peng, N. A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Nucleic Acids Res. 2020, 48, 9681–9693. [Google Scholar] [CrossRef] [PubMed]
- Stachler, A.E.; Turgeman-Grott, I.; Shtifman-Segal, E.; Allers, T.; Marchfelder, A.; Gophna, U. High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon. Nucleic Acids Res. 2017, 45, 5208–5216. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Yariv, B.; Yariv, E.; Kessel, A.; Masrati, G.; Chorin, A.B.; Martz, E.; Mayrose, I.; Pupko, T.; Ben-Tal, N. Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci. A Publ. Protein Soc. 2023, 32, e4582. [Google Scholar] [CrossRef]
- Kazlauskiene, M.; Kostiuk, G.; Venclovas, C.; Tamulaitis, G.; Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 2017, 357, 605–609. [Google Scholar] [CrossRef]
- Niewoehner, O.; Garcia-Doval, C.; Rostol, J.T.; Berk, C.; Schwede, F.; Bigler, L.; Hall, J.; Marraffini, L.A.; Jinek, M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 2017, 548, 543–548. [Google Scholar] [CrossRef]
- Braun, F.; Thomalla, L.; van der Does, C.; Quax, T.E.F.; Allers, T.; Kaever, V.; Albers, S.V. Cyclic nucleotides in archaea: Cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. MicrobiologyOpen 2019, 8, e00829. [Google Scholar] [CrossRef]
- Allers, T.; Ngo, H.P.; Mevarech, M.; Lloyd, R.G. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl. Environ. Microbiol. 2004, 70, 943–953. [Google Scholar] [CrossRef]
- Allers, T.; Barak, S.; Liddell, S.; Wardell, K.; Mevarech, M. Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl. Environ. Microbiol. 2010, 76, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Naor, A.; Lapierre, P.; Mevarech, M.; Papke, R.T.; Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. CB 2012, 22, 1444–1448. [Google Scholar] [CrossRef]
- Bitan-Banin, G.; Ortenberg, R.; Mevarech, M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J. Bacteriol. 2003, 185, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015, 44, D457–D462. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yu, T.; Wu, Y.N.; Roy, M.; Kim, J.; Lee, C. An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res. 2006, 34, 3150–3160. [Google Scholar] [CrossRef]
- Oshlack, A.; Wakefield, M.J. Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct 2009, 4, 14. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales. Life 2015, 5, 818–840. [Google Scholar] [CrossRef] [PubMed]
Plasmids | ||
---|---|---|
Name | Description | Source |
pTA230 | [29] | |
pTA231 | [29] | |
pTA927 | [30] | |
UG479 | pMA-RQ-crRNA#3 [22] with crRNA#3 sequence replaced with (5′ to 3′) ggcgtagtcggcgtcgcttacgacctggtcacagag | This work |
UG742 | HFX_2341 cloned in pTA927 under the ptna promoter | This work |
UG503 | pTA131 with flanking regions spanning HFX_2341 | This work |
Strains | ||
Name | ||
WR646 | [31] | |
ΔHFX_2341 | WR646 ΔHFX_2341 | This work |
HFX_2341 over-expression | WR646 expressing HFX_2341 from UG742 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turgeman-Grott, I.; Shalev, Y.; Shemesh, N.; Levy, R.; Eini, I.; Pasmanik-Chor, M.; Gophna, U. A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes. Microorganisms 2024, 12, 1772. https://doi.org/10.3390/microorganisms12091772
Turgeman-Grott I, Shalev Y, Shemesh N, Levy R, Eini I, Pasmanik-Chor M, Gophna U. A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes. Microorganisms. 2024; 12(9):1772. https://doi.org/10.3390/microorganisms12091772
Chicago/Turabian StyleTurgeman-Grott, Israela, Yarden Shalev, Netta Shemesh, Rachel Levy, Inbar Eini, Metsada Pasmanik-Chor, and Uri Gophna. 2024. "A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes" Microorganisms 12, no. 9: 1772. https://doi.org/10.3390/microorganisms12091772
APA StyleTurgeman-Grott, I., Shalev, Y., Shemesh, N., Levy, R., Eini, I., Pasmanik-Chor, M., & Gophna, U. (2024). A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes. Microorganisms, 12(9), 1772. https://doi.org/10.3390/microorganisms12091772