A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs
Abstract
:1. Introduction
2. Virulence and Antimicrobial Resistance Mechanisms
2.1. Capsule
2.2. Siderophore Systems for Iron Acquisition
2.3. Biofilms
2.4. Secretion Systems
3. Genomic Study of K. pneumoniae in ICUs and CR-hvKP
4. Patient Vulnerabilities and Risk Factors for CRKP Infections in ICUs
4.1. Colonization and Prior Exposure to Antibiotics
4.2. Comorbidities and Immune Suppression
5. Hospital Transmission Dynamics and Infection Control Challenges
5.1. Nosocomial Transmission and Outbreaks
5.2. Emergence of Hypervirulent Strains
6. Therapeutic Challenges and Treatment Strategies for CRKP Infections
6.1. Limited Treatment Options and Combination Therapy
6.2. Polymicrobial Infections and Resistance Mechanisms
7. Challenges of CRKP Infections in ICU
8. Urgent Need for Vaccine Development
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dangor, Z.; Benson, N.; Berkley, J.A.; Bielicki, J.; Bijsma, M.W.; Broad, J.; Buurman, E.T.; Cross, A.; Duffy, E.M.; Holt, K.E.; et al. Vaccine value profile for Klebsiella pneumoniae. Vaccine 2024, 42, S125–S141. [Google Scholar] [CrossRef] [PubMed]
- Ljubović, A.D.; Granov, Ð.; Husić, E.; Gačanović, D.; Halković, J.; Lab Ing, A.; Kotorić Keser, Š.; Loga Zec, S. Prevalence of extended-spectrum β-lactamase and carbapenem-resistant Klebsiella pneumoniae in clinical samples. Saudi Med. J. 2023, 44, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, H.; Huang, X.; Cui, Y.; Peng, W.; Zhu, F.; Ma, S.; Rao, M.; Zhang, P.; Yang, H.; et al. Risk factors and mortality of carbapenem-resistant Klebsiella pneumoniae bloodstream infection in a tertiary-care hospital in China: An eight-year retrospective study. Antimicrob. Resist. Infect. Control 2022, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Itani, R.; Khojah, H.M.J.; Kibrit, R.; Raychouni, H.; Shuhaiber, P.; Dib, C.; Hassan, M.; Mukattash, T.L.; El-Lakany, A. Risk factors associated with multidrug-resistant Klebsiella pneumoniae infections: A multicenter observational study in Lebanese hospitals. BMC Public Health 2024, 24, 2958. [Google Scholar] [CrossRef]
- Shao, C.; Wang, W.; Liu, S.; Zhang, Z.; Jiang, M.; Zhang, F. Molecular Epidemiology and Drug Resistant Mechanism of Carbapenem-Resistant Klebsiella pneumoniae in Elderly Patients with Lower Respiratory Tract Infection. Front. Public Health 2021, 9, 669173. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Z.; Cao, H.; Mo, L.; Jin, J.; Yu, B.; Chu, K.; Hu, J. Genomic study substantiates the intensive care unit as a reservoir for carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Microb. Genom. 2024, 10, 001299. [Google Scholar] [CrossRef]
- Arslan, F.; Akbulut, E.; Senbayrak, S.; Özgültekin, A.; Aksaray, S.; Dal, H.C.; Emir, H.O.; Ankarali, H.; Mert, A.; Vahaboglu, H. Risk factors for carbapenem-resistant Klebsiella pneumoniae infections in Intensive Care Units: A multicentre case-control study with a competing-risks analysis. J. Prev. Med. Hyg. 2023, 64, E405–E410. [Google Scholar] [CrossRef]
- Yao, Y.; Zha, Z.; Li, L.; Tan, H.; Pi, J.; You, C.; Liu, B. Healthcare-associated carbapenem-resistant Klebsiella pneumoniae infections are associated with higher mortality compared to carbapenem-susceptible K. pneumoniae infections in the intensive care unit: A retrospective cohort study. J. Hosp. Infect. 2024, 148, 30–38. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, L.; Hong, D.; Zhao, Y.; Hu, X.; Shi, S.; Chen, F. Epidemiology of resistance of carbapenemase-producing Klebsiella pneumoniae to ceftazidime-avibactam in a Chinese hospital. J. Appl. Microbiol. 2022, 132, 237–243. [Google Scholar] [CrossRef]
- Ding, X.; Liang, H.; Qi, X.; Sun, G.; Cheng, M.; Feng, M.; Sun, T. Changes of Klebsiella pneumoniae infection and carbapenem resistance in ICU elderly infected patients before and after the COVID-19 pandemic in Zhengzhou, China. J. Infect. 2023, 86, 256–308. [Google Scholar] [CrossRef]
- Unlu, O.; Ersoz, B.R.; Istanbullu Tosun, A.; Demirci, M. Epidemic Klebsiella pneumoniae ST258 incidence in ICU patients admitted to a university hospital in Istanbul. J. Infect. Dev. Ctries. 2021, 15, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, H.; Liao, X. Hypervirulent Klebsiella pneumoniae. Infect. Drug Resist. 2023, 16, 5243–5249. [Google Scholar] [CrossRef]
- Yoshida, K.; Matsumoto, T.; Tateda, K.; Uchida, K.; Tsujimoto, S.; Yamaguchi, K. Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae. J. Med. Microbiol. 2000, 49, 1003–1010. [Google Scholar] [CrossRef]
- Lawlor, M.S.; Hsu, J.; Rick, P.D.; Miller, V.L. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol. Microbiol. 2005, 58, 1054–1073. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Lin, T.H.; Wu, C.C.; Kuo, J.T.; Chu, H.F.; Lee, D.Y.; Lin, C.T. FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in Klebsiella pneumoniae. Front. Microbiol. 2019, 10, 2436. [Google Scholar] [CrossRef]
- Ou, Q.; Fan, J.; Duan, D.; Xu, L.; Wang, J.; Zhou, D.; Yang, H.; Li, B. Involvement of cAMP receptor protein in biofilm formation, fimbria production, capsular polysaccharide biosynthesis and lethality in mouse of Klebsiella pneumoniae serotype K1 causing pyogenic liver abscess. J. Med. Microbiol. 2017, 66, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, R.A.; Bamert, R.S.; Belousoff, M.J.; Short, F.L.; Barlow, C.K.; Pickard, D.J.; Wilksch, J.J.; Schittenhelm, R.B.; Strugnell, R.A.; Dougan, G.; et al. Mechanistic Insights into the Capsule-Targeting Depolymerase from a Klebsiella pneumoniae Bacteriophage. Microbiol. Spectr. 2021, 9, e0102321. [Google Scholar] [CrossRef]
- Matono, T.; Morita, M.; Nakao, N.; Teshima, Y.; Ohnishi, M. Genomic insights into virulence factors affecting tissue-invasive Klebsiella pneumoniae infection. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 2. [Google Scholar] [CrossRef]
- Chu, W.H.W.; Tan, Y.H.; Tan, S.Y.; Chen, Y.; Yong, M.; Lye, D.C.; Kalimuddin, S.; Archuleta, S.; Gan, Y.H. Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio 2023, 14, e0129723. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chakravorty, S.; Yang, T.; Russo, T.A.; Newton, S.M.; Klebba, P.E. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J. Bacteriol. 2024, 206, e0002424. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.E.S.; Destro, G.; Vieira, B.; Lima, A.S.; Ferraz, L.F.C.; Hakansson, A.P.; Darrieux, M.; Converso, T.R. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front. Cell Infect. Microbiol. 2022, 12, 877995. [Google Scholar] [CrossRef] [PubMed]
- Dan, B.; Dai, H.; Zhou, D.; Tong, H.; Zhu, M. Relationship Between Drug Resistance Characteristics and Biofilm Formation in Klebsiella pneumoniae Strains. Infect. Drug Resist. 2023, 16, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.R.; Mashburn-Warren, L.; Federle, M.J.; Hakansson, A.P. Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. J. Infect. Dis. 2014, 210, 25–34. [Google Scholar] [CrossRef]
- Joshi, R.V.; Gunawan, C.; Mann, R. We Are One: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies. Front. Microbiol. 2021, 12, 635432. [Google Scholar] [CrossRef]
- Booth, S.C.; Rice, S.A. Influence of interspecies interactions on the spatial organization of dual species bacterial communities. Biofilm 2020, 2, 100035. [Google Scholar] [CrossRef]
- Santiago, A.J.; Burgos-Garay, M.L.; Kartforosh, L.; Mazher, M.; Donlan, R.M. Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: A potential biocontrol strategy for healthcare facilities. AIMS Microbiol. 2020, 6, 43–63. [Google Scholar] [CrossRef]
- Ponde, N.O.; Lortal, L.; Ramage, G.; Naglik, J.R.; Richardson, J.P. Candida albicans biofilms and polymicrobial interactions. Crit. Rev. Microbiol. 2021, 47, 91–111. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Cao, S.; Ishaq, H.M.; Zhao, H.; Yang, F.; Liu, L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect. Drug Resist. 2023, 16, 6911–6922. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Bao, Y.; Zhang, Y.; Liu, B.; Gan, L.; Tao, W.; Tuo, J.; Gong, H. Comprehensive Genomic Analysis Reveals Extensive Diversity of Type I and Type IV Secretion Systems in Klebsiella pneumoniae. Curr. Microbiol. 2023, 80, 270. [Google Scholar] [CrossRef] [PubMed]
- Pukatzki, S.; Ma, A.T.; Sturtevant, D.; Krastins, B.; Sarracino, D.; Nelson, W.C.; Heidelberg, J.F.; Mekalanos, J.J. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. USA 2006, 103, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Gaur, M.; Sykes, E.M.E.; Prusty, M.; Elangovan, S.; Dixit, S.; Pati, S.; Kumar, A.; Subudhi, E. Unravelling the Evolutionary Dynamics of High-Risk Klebsiella pneumoniae ST147 Clones: Insights from Comparative Pangenome Analysis. Genes 2023, 14, 1037. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Yang, C.; Zhang, J.; Hu, K.; Zou, J.; Li, J.; Wang, J.; Huang, W.; Yin, L.; Zhang, X. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Chongqing, China. Front. Cell Infect. Microbiol. 2021, 11, 656070. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Front. Cell Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef]
- Goodman, K.E.; Simner, P.J.; Tamma, P.D.; Milstone, A.M. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE). Expert. Rev. Anti Infect. Ther. 2016, 14, 95–108. [Google Scholar] [CrossRef]
- Feil, E.J. Enterobacteriaceae: Joining the dots with pan-European epidemiology. Lancet Infect. Dis. 2017, 17, 118–119. [Google Scholar] [CrossRef]
- Perez, F.; Villegas, M.V. The role of surveillance systems in confronting the global crisis of antibiotic-resistant bacteria. Curr. Opin. Infect. Dis. 2015, 28, 375–383. [Google Scholar] [CrossRef]
- Zhou, K.; Xue, C.X.; Xu, T.; Shen, P.; Wei, S.; Wyres, K.L.; Lam, M.M.C.; Liu, J.; Lin, H.; Chen, Y.; et al. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat. Commun. 2023, 14, 2464. [Google Scholar] [CrossRef]
- Gu, D.; Dong, N.; Zheng, Z.; Lin, D.; Huang, M.; Wang, L.; Chan, E.W.; Shu, L.; Yu, J.; Zhang, R.; et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: A molecular epidemiological study. Lancet Infect. Dis. 2018, 18, 37–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, L.; Ouyang, P.; Wang, Q.; Wang, R.; Wang, J.; Gao, H.; Wang, X.; Wang, H. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: A multicentre, molecular epidemiological analysis. J. Antimicrob. Chemother. 2020, 75, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, Y.; Yao, S.; Hu, J.; Zhao, Y.; Fu, S.; Song, Y.; Wang, C.; Zhang, G.; Wei, D.; et al. Epidemicity and clonal replacement of hypervirulent carbapenem-resistant Klebsiella pneumoniae with diverse pathotypes and resistance profiles in a hospital. J. Glob. Antimicrob. Resist. 2023, 32, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, S.; Wei, X.; Lu, Z.; Qin, X.; Li, M. Infection with Carbapenem-resistant Hypervirulent Klebsiella pneumoniae: Clinical, virulence and molecular epidemiological characteristics. Antimicrob. Resist. Infect. Control 2023, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Wu, T.; Lee, M.; Patel, S.; Butler, D.; Wenzler, E. Searching for the Optimal Treatment for Metallo- and Serine-β-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L. Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Euro Surveill 2015, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Shi, X.; Lv, J.; Niu, S.; Cheng, S.; Du, H.; Yu, F.; Tang, Y.W.; Kreiswirth, B.N.; Zhang, H.; et al. In vitro Activity of Apramycin Against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates. Front. Microbiol. 2020, 11, 425. [Google Scholar] [CrossRef]
- Giannella, M.; Trecarichi, E.M.; De Rosa, F.G.; Del Bono, V.; Bassetti, M.; Lewis, R.E.; Losito, A.R.; Corcione, S.; Saffioti, C.; Bartoletti, M.; et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study. Clin. Microbiol. Infect. 2014, 20, 1357–1362. [Google Scholar] [CrossRef]
- Mouloudi, E.; Massa, E.; Papadopoulos, S.; Iosifidis, E.; Roilides, I.; Theodoridou, T.; Piperidou, M.; Orphanou, A.; Passakiotou, M.; Imvrios, G.; et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae among intensive care unit patients after orthotopic liver transplantation: Risk factors for infection and impact of resistance on outcomes. Transplant. Proc. 2014, 46, 3216–3218. [Google Scholar] [CrossRef]
- Mouloudi, E.; Massa, E.; Piperidou, M.; Papadopoulos, S.; Iosifidis, E.; Roilides, I.; Theodoridou, T.; Kydona, C.; Fouzas, I.; Imvrios, G.; et al. Tigecycline for treatment of carbapenem-resistant Klebsiella pneumoniae infections after liver transplantation in the intensive care unit: A 3-year study. Transplant. Proc. 2014, 46, 3219–3221. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Spiliopoulou, I.; Christofidou, M.; Logothetis, D.; Manolopoulou, P.; Dodou, V.; Fligou, F.; Marangos, M.; Anastassiou, E.D. Co-colonization by multidrug-resistant bacteria in two Greek intensive care units. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1947–1955. [Google Scholar] [CrossRef]
- Thuy, D.B.; Campbell, J.; Thuy, C.T.; Hoang, N.V.M.; Voong Vinh, P.; Nguyen, T.N.T.; Nguyen Ngoc Minh, C.; Pham, D.T.; Rabaa, M.A.; Lan, N.P.H.; et al. Colonization with Staphylococcus aureus and Klebsiella pneumoniae causes infections in a Vietnamese intensive care unit. Microb. Genom. 2021, 7, 000514. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wu, S.; Hao, M.; Zhu, J.; Ding, B.; Yang, Y.; Xu, X.; Wang, M.; Yang, F.; Hu, F. The Colonization of Carbapenem-Resistant Klebsiella pneumoniae: Epidemiology, Resistance Mechanisms, and Risk Factors in Patients Admitted to Intensive Care Units in China. J. Infect. Dis. 2020, 221, S206–S214. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulou, K.; Iosifidis, E.; Antoniadou, E.; Tasioudis, P.; Petinaki, E.; Malli, E.; Metallidis, S.; Vatopoulos, A.; Malisiovas, N. The clinical significance of carbapenem-resistant Klebsiella pneumoniae rectal colonization in critically ill patients: From colonization to bloodstream infection. J. Med. Microbiol. 2019, 68, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Iacovelli, A.; Restuccia, G.; Ceccarelli, G.; Giordano, A.; Farcomeni, A.; Morelli, A.; Venditti, M. Predictors of outcome in ICU patients with septic shock caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin. Microbiol. Infect. 2016, 22, 444–450. [Google Scholar] [CrossRef]
- Rossi Gonçalves, I.; Ferreira, M.L.; Araujo, B.F.; Campos, P.A.; Royer, S.; Batistão, D.W.; Souza, L.P.; Brito, C.S.; Urzedo, J.E.; Gontijo-Filho, P.P.; et al. Outbreaks of colistin-resistant and colistin-susceptible KPC-producing Klebsiella pneumoniae in a Brazilian intensive care unit. J. Hosp. Infect. 2016, 94, 322–329. [Google Scholar] [CrossRef]
- Ridolfo, A.L.; Rimoldi, S.G.; Pagani, C.; Marino, A.F.; Piol, A.; Rimoldi, M.; Olivieri, P.; Galli, M.; Dolcetti, L.; Gismondo, M.R. Diffusion and transmission of carbapenem-resistant Klebsiella pneumoniae in the medical and surgical wards of a university hospital in Milan, Italy. J. Infect. Public Health 2016, 9, 24–33. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Yu, S.L.; Zhou, Y.; Yang, S.Y.; Jin, J.L.; Chen, S.; Cui, P.; Wu, J.; Jiang, N.; et al. Tracking Carbapenem-Producing Klebsiella pneumoniae Outbreak in an Intensive Care Unit by Whole Genome Sequencing. Front. Cell Infect. Microbiol. 2019, 9, 281. [Google Scholar] [CrossRef]
- Protonotariou, E.; Poulou, A.; Politi, L.; Sgouropoulos, I.; Metallidis, S.; Kachrimanidou, M.; Pournaras, S.; Tsakris, A.; Skoura, L. Hospital outbreak due to a Klebsiella pneumoniae ST147 clonal strain co-producing KPC-2 and VIM-1 carbapenemases in a tertiary teaching hospital in Northern Greece. Int. J. Antimicrob. Agents 2018, 52, 331–337. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Wang, J.; Tan, R.; Sun, J.; Li, L.; Huang, J.; Wu, J.; Gu, Q.; Zhao, Y.; et al. Infection-prevention and control interventions to reduce colonisation and infection of intensive care unit-acquired carbapenem-resistant Klebsiella pneumoniae: A 4-year quasi-experimental before-and-after study. Antimicrob. Resist. Infect. Control 2019, 8, 8. [Google Scholar] [CrossRef]
- Viaggi, B.; Sbrana, F.; Malacarne, P.; Tascini, C. Ventilator-associated pneumonia caused by colistin-resistant KPC-producing Klebsiella pneumoniae: A case report and literature review. Respir. Investig. 2015, 53, 124–128. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Matthaiou, D.K.; Falagas, M.E.; Antypa, E.; Koteli, A.; Antoniadou, E. Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. J. Infect. 2015, 70, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Zhang, K.; Huang, J.; Qian, Z.; Zhou, H.; Cai, J.; Zheng, C.; Zhou, F.; Cui, W.; Zhang, G. Clinical Characteristics, Risk Factors, and Outcomes of Patients with Polymicrobial Klebsiella pneumoniae Bloodstream Infections. BioMed Res. Int. 2021, 2021, 6619911. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Lambropoulou, A.; Solomou, A.; Tsiata, E.; Anastassiou, E.D.; Fligou, F.; Marangos, M.; Spiliopoulou, I.; Christofidou, M. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J. Antimicrob. Chemother. 2019, 74, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, A.R. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Sharrow, D.; Hug, L.; You, D.; Alkema, L.; Black, R.; Cousens, S.; Croft, T.; Gaigbe-Togbe, V.; Gerland, P.; Guillot, M.; et al. Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: A systematic analysis by the UN Inter-agency Group for Child Mortality Estimation. Lancet Glob. Health 2022, 10, e195–e206. [Google Scholar] [CrossRef]
- Silvester, R.; Madhavan, A.; Kokkat, A.; Parolla, A.; Adarsh, B.M.; Harikrishnan, M.; Abdulla, M.H. Global surveillance of antimicrobial resistance and hypervirulence in Klebsiella pneumoniae from LMICs: An in-silico approach. Sci. Total Environ. 2022, 802, 149859. [Google Scholar] [CrossRef]
Virulence | Genes | Characteristics | References |
---|---|---|---|
Capsule | wzi, wza, wzb, wzc, wzx, wzy, rmpA, rmpA2, rcsB, kvrA, kvrB | Protective outer layer that evades immune response; enhances virulence and persistence in the host. | [1,13,14,17] |
Siderophore Systems | ent, ybt, iuc, iro, iroP | Iron acquisition systems using siderophores for bacterial metabolism and survival in low-iron environments. | [20,21] |
Biofilms | entB, kfu | Structured bacterial communities that provide resistance to antimicrobials and immune responses; play a key role in persistent infections. | [25] |
Secretion System | hcp, vgrG, phoQ, ompR | Transport of effector proteins for bacterial survival, competition, and immune evasion, including the Type VI Secretion System (T6SS). | [12,13,30] |
Carbapenem Resistance | blaKPC-2, blaTEM-1B, blaCTX-M-65, blaOXA-232 | Resistance mechanisms against carbapenems, including carbapenemase production (e.g., KPC, NDM, OXA-48-like enzymes), affecting the treatment of severe infections. | [6,34,35,44] |
Region | Sequence Type | Characteristics | References |
Global (particularly in Europe and Middle East) | ST258 | High resistance to antibiotics (e.g., third-generation cephalosporins), partial susceptibility to colistin. | [11] |
China | ST11 | Hypervirulent, linked to high mortality in VAP, carries virulence plasmids. | [40] |
Vietnam | ST17 | Increased virulence due to siderophores and HMV genes. | [51] |
ST23 | |||
ST25 | |||
ST86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-A.; Chuang, Y.-T.; Lin, C.-H. A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs. Microorganisms 2024, 12, 2548. https://doi.org/10.3390/microorganisms12122548
Chen T-A, Chuang Y-T, Lin C-H. A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs. Microorganisms. 2024; 12(12):2548. https://doi.org/10.3390/microorganisms12122548
Chicago/Turabian StyleChen, Tao-An, Ya-Ting Chuang, and Chieh-Hui Lin. 2024. "A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs" Microorganisms 12, no. 12: 2548. https://doi.org/10.3390/microorganisms12122548
APA StyleChen, T. -A., Chuang, Y. -T., & Lin, C. -H. (2024). A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs. Microorganisms, 12(12), 2548. https://doi.org/10.3390/microorganisms12122548