Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Detection of L. monocytogenes Isolates
2.3. DNA Extraction
2.4. Multilocus Sequence Typing of L. monocytogenes
2.5. Antibiogram Profiling
2.6. Calculation and Interpretation of Multiple/Antibiotic Resistance Indices Multiple/Antibiotic Resistance Index
3. Results
3.1. Multilocus Sequence Typing
3.2. Antimicrobial Susceptibility
3.3. Minimum Inhibitory Concentration
3.4. Multiple Antibiotic Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allerberger, F.; Bagó, Z.; Huhulescu, S.; Pietzka, A.; Pleininger, S. Listeriosis: The Dark Side of Refrigeration and Ensiling. In Zoonoses: Infections Affecting Humans and Animals; Sing, A., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Saldivar, J.C.; Davis, M.L.; Johnson, M.G.; Ricke, S.C. Listeria monocytogenes adaptation and growth at low temperatures: Mechanisms and implications for foodborne disease. In Food and Feed Safety Systems and Analysis; Academic Press: Cambridge, MA, USA, 2018; pp. 227–248. [Google Scholar] [CrossRef]
- Valderrama, W.B.; Cutter, C.N. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. Crit. Rev. Food Sci. Nutr. 2013, 53, 801–817. [Google Scholar] [CrossRef]
- Hilliard, A.; Leong, D.; O’Callaghan, A.; Culligan, E.P.; Morgan, C.A.; DeLappe, N.; Hill, C.; Jordan, K.; Cormican, M.; Gahan, C.G.M. Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland. Genes 2018, 9, 171. [Google Scholar] [CrossRef]
- Mangen, M.J.; Bouwknegt, M.; Friesema, I.H.; Haagsma, J.A.; Kortbeek, L.M.; Tariq, L.; Wilson, M.; van Pelt, W.; Havelaar, A.H. Cost-of-illness and disease burden of food-related pathogens in the Netherlands, 2011. Int. J. Food Microbiol. 2015, 196, 84–93. [Google Scholar] [CrossRef]
- Thomas, M.K.; Vriezen, R.; Farber, J.M.; Currie, A.; Schlech, W.; Fazil, A. Economic Cost of a Listeria monocytogenes Outbreak in Canada, 2008. Foodborne Pathog. Dis. 2015, 12, 966–971. [Google Scholar] [CrossRef]
- EFSA, ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Ward, T.J.; Ducey, T.F.; Usgaard, T.; Dunn, K.A.; Bielawski, J.P. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl. Environ. Microbiol. 2008, 74, 7629–7642. [Google Scholar] [CrossRef]
- Doumith, M.; Jacquet, C.; Gerner-Smidt, P.; Graves, L.M.; Loncarevic, S.; Mathisen, T.; Morvan, A.; Salcedo, C.; Torpdahl, M.; Vazquez, J.A.; et al. Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: Toward an international standard. J. Food Prot. 2005, 68, 2648–2650. [Google Scholar] [CrossRef]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef]
- Vines, A.; Swaminathan, B. Identification and characterization of nucleotide sequence differences in three virulence-associated genes of Listeria monocytogenes strains representing clinically important serotypes. Curr. Microbiol. 1998, 36, 309–318. [Google Scholar] [CrossRef]
- Benjamin, F.; Yann, S.; Federica, P.; Douarre, P.E.; Arnaud, F.; Radomski, N.; Ludovic, M.; Blanchard, Y.; Aurélie, L.; Christophe, S. A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches. Sci. Data 2022, 9, 190. [Google Scholar] [CrossRef]
- Martín, B.; Perich, A.; Gómez, D.; Yangüela, J.; Rodríguez, A.; Garriga, M.; Aymerich, T. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol. 2014, 44, 119–127. [Google Scholar] [CrossRef]
- Ragon, M.; Wirth, T.; Hollandt, F.; Lavenir, R.; Lecuit, M.; Le Monnier, A.; Brisse, S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008, 4, e1000146. [Google Scholar] [CrossRef]
- Chenal-Francisque, V.; Maury, M.M.; Lavina, M.; Touchon, M.; Leclercq, A.; Lecuit, M.; Brisse, S. Clonogrouping, a rapid multiplex PCR method for identification of major clones of Listeria monocytogenes. J. Clin. Microbiol. 2015, 53, 3355–3358. [Google Scholar] [CrossRef]
- Maiden, M.C. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 2006, 60, 561–588. [Google Scholar] [CrossRef]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tar, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef]
- Jashari, B.; Capitaine, K.; Bisha, B.; Stessl, B.; Blagoevska, K.; Cana, A.; Jankuloski, D.; Felix, B. Molecular characterization of Listeria monocytogenes in the food chain of the Republic of Kosovo from 2016 to 2022. Foods 2024, 13, 2883. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Holy, M.A.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Abu Ghoush, M.H.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Compr. Rev. Food Sci. Food Safety 2018, 17, 1277–1292. [Google Scholar] [CrossRef]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef]
- Caruso, M.; Fraccalvieri, R.; Pasquali, F.; Santagada, G.; Latorre, L.M.; Difato, L.M.; Miccolupo, A.; Normanno, G.; Parisi, A. Antimicrobial susceptibility and multilocus sequence typing of Listeria monocytogenes isolated over 11 years from food, humans, and the environment in Italy. Foodborne Pathog. Disease 2020, 17, 284–294. [Google Scholar] [CrossRef]
- Granier, S.A.; Moubareck, C.; Colaneri, C.; Lemire, A.; Roussel, S.; Dao, T.T.; Courvalin, P.; Brisabois, A. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl. Environ. Microbiol. 2011, 77, 2788–2790. [Google Scholar] [CrossRef]
- Scortti, M.; Lacharme-Lora, L.; Wagner, M.; Chico-Calero, I.; Losito, P.; Vázquez-Boland, J.A. Coexpression of virulence and fosfomycin susceptibility in Listeria: Molecular basis of an antimicrobial in vitro-in vivo paradox. Nat. Med. 2006, 12, 515–517. [Google Scholar] [CrossRef]
- Pagliano, P.; Arslan, F.; Ascione, T. Epidemiology and treatment of the commonest form of listeriosis: Meningitis and bacteraemia. Infez. Med. 2017, 25, 210–216. [Google Scholar] [PubMed]
- Thønnings, S.; Knudsen, J.D.; Schønheyder, H.C.; Søgaard, M.; Arpi, M.; Gradel, K.O.; Østergaard, C.; Danish Collaborative Bacteraemia Network (DACOBAN). Antibiotic treatment and mortality in patients with Listeria monocytogenes meningitis or bacteraemia. Clin. Microbiol. Infect. 2016, 22, 725–730. [Google Scholar] [CrossRef]
- Troxler, R.; von Graevenitz, A.; Funke, G.; Wiedemann, B.; Stock, I. Natural antibiotic susceptibility of Listeria species: L. Grayi, L. Innocua, L. Ivanovii, L. Monocytogenes, L. Seeligeri and L. Welshimeri strains. Clin. Microbiol. Infect. 2000, 6, 525–535. [Google Scholar] [CrossRef]
- Zhang, Y.; Yeh, E.; Hall, G.; Cripe, J.; Bhagwat, A.A.; Meng, J. Characterization of Listeria monocytogenes isolated from retail foods. Int. J. Food Microbiol. 2007, 113, 47–53. [Google Scholar] [CrossRef]
- Arslan, S.; Özdemir, F. Prevalence and antimicrobial resistance of Listeria spp. in homemade white cheese. Food Control 2008, 19, 360–363. [Google Scholar] [CrossRef]
- Gómez, D.; Azón, E.; Marco, N.; Carramiñana, J.J.; Rota, C.; Ariño, A.; Yangüela, J. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiol. 2014, 42, 61–65. [Google Scholar] [CrossRef]
- Kevenk, T.O.; Gulel, G.T. Prevalence, antimicrobial resistance and serotype distribution of Listeria monocytogenes isolated from raw milk and dairy products. J. Food Safety. 2016, 36, 11–18. [Google Scholar] [CrossRef]
- EN ISO 11290-1/2017; Microbiology of Food and Feeding Stuffs. Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and Listeria spp.—Part 1. Detection Method. International Association for Standardization: Geneva, Switzerland, 2017; pp. 1–35.
- Salcedo, C.; Arreaza, L.; Alcalá, B.; de la Fuente, L.; Vázquez, J.A. Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J. Clin. Microbiol. 2003, 41, 757–762. [Google Scholar] [CrossRef]
- Lachtara, B.; Wieczorek, K.; Osek, J. Antimicrobial resistance of Listeria monocytogenes serogroups IIa and IVb from food and food-production environments in Poland. J. Vet. Res. 2023, 67, 373–379. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from fresh and smoked fish in Poland. Food Microbiology 2017, 64, 164–171. [Google Scholar] [CrossRef]
- EN ISO 20776-1/2019; Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Suscep-tibility Test Devices. Part 1: Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. International Association for Standardization: Geneva, Switzerland, 2019; Published (Edition 2).
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2024. Available online: http://www.eucast.org (accessed on 1 January 2024).
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, A.; Bisha, B.; Goga, I.; Wang, B.; Robaj, A.; Sylejmani, D.S. A case report of sporadic ovine listerial meningoencephalitis in Kosovo. Vet. Ital. 2020, 56, 205–211. [Google Scholar] [CrossRef]
- Escolar, C.; Gómez, D.; Del Carmen Rota García, M.; Conchello, P.; Herrera, A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef]
- Jørgensen, J.B.; Bland, R.; Waite-Cusic, J.; Kovačević, J. Diversity and antimicrobial resistance of Listeria spp. and L. monocytogenes clones from produce handling and processing facilities in the pacific northwest. Food Control 2021, 123, 107665. [Google Scholar] [CrossRef]
- Kayode, A.J.; Okoh, A.I. Antimicrobial-Resistant Listeria monocytogenes in Ready-to-Eat Foods: Implications for Food Safety and Risk Assessment. Foods 2023, 12, 1346. [Google Scholar] [CrossRef]
- Kayode, A.J.; Okoh, A.I. Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and One Health perspective. PLoS ONE 2022, 17, e0270993. [Google Scholar] [CrossRef]
- Noll, M.; Kleta, S.; Al Dahouk, S. Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. J. Infect. Public Health 2018, 11, 572–577. [Google Scholar] [CrossRef]
- Roedel, A.; Dieckmann, R.; Brendebach, H.; Hammerl, J.A.; Kleta, S.; Noll, M.; Al Dahouk, S.; Vincze, S. Biocide-Tolerant Listeria monocytogenes Isolates from German Food Production Plants Do Not Show Cross-Resistance to Clinically Relevant Antibiotics. Appl. Environ. Microbiol. 2019, 85, e01253-19. [Google Scholar] [CrossRef]
- Şanlıbaba, P.; Tezel, B.U.; Çakmak, G.A. Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey. J. Food Qual. 2018, 2018, 7693782. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial resistance and virulence characterization of Listeria monocytogenes strains isolated from food and food processing environments. Pathogens 2022, 11, 1099. [Google Scholar] [CrossRef]
- Félix, B.; Capitaine, K.; Te, S.; Felten, A.; Gillot, G.; Feurer, C.; van den Bosch, T.; Torresi, M.; Sréterné Lancz, Z.; Delannoy, S.; et al. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol. Spectr. 2023, 11, e0395422. [Google Scholar] [CrossRef]
- Takeuchi-Storm, N.; Hansen, L.T.; Nielsen, N.L.; Andersen, J.K. Presence and Persistence of Listeria monocytogenes in the Danish Ready-to-Eat Food Production Environment. Hygiene 2023, 3, 18–32. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Q.; Liu, Y.; Liu, H.; Zhang, H.; Wang, X. Systematic review of Listeria monocytogenes from food and clinical samples in Chinese mainland from 2010 to 2019. Food Qual. Safety 2022, 6, fyac021. [Google Scholar] [CrossRef]
- Kurpas, M.; Osek, J.; Moura, A.; Leclercq, A.; Lecuit, M.; Wieczorek, K. Genomic Characterization of Listeria monocytogenes Isolated from Ready-to-Eat Meat and Meat Processing Environments in Poland. Front. Microbiol. 2020, 11, 1412. [Google Scholar] [CrossRef]
- Sosnowski, M.; Lachtara, B.; Wieczorek, K.; Osek, J. Antimicrobial resistance and genotypic characteristics of Listeria monocytogenes isolated from food in Poland. Int. J. Food Microbiol. 2019, 289, 1–6. [Google Scholar] [CrossRef]
- Wilson, A.; Gray, J.; Chandry, P.S.; Fox, E.M. Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains. Genes 2018, 9, 80. [Google Scholar] [CrossRef]
- Liu, T.P.; Lin, L.C.; Chang, S.C.; Ou, Y.H.; Lu, J.J. Molecular Characteristics and Virulence Profile of Clinical Listeria monocytogenes Isolates in Northern Taiwan, 2009–2019. Foodborne Pathog Dis. 2024, 21, 386–394. [Google Scholar] [CrossRef]
- Daza Prieto, B.; Pietzka, A.; Martinovic, A.; Ruppitsch, W.; Zuber Bogdanovic, I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014–2022. Front Microbiol. 2024, 15, 1418333. [Google Scholar] [CrossRef] [PubMed]
- Chenal-Francisque, V.; Lopez, J.; Cantinelli, T.; Caro, V.; Tran, C.; Leclercq, A.; Lecuit, M.; Brisse, S. Worldwide distribution of major clones of Listeria monocytogenes. Emerg. Infect. Dis. 2011, 17, 1110–1112. [Google Scholar] [CrossRef]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaptation to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019, 10, 2488. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Møretrø, T. In-Depth Longitudinal Study of Listeria monocytogenes ST9 isolates from the Meat Processing Industry: Resolving Diversity and Transmission Patterns Using Whole-Genome Sequencing. Appl. Environ. Microbiol. 2020, 86, e00579-20. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Okoh, A.I.; Lues, R. Occurrence and Multidrug Resistance in Strains of Listeria monocytogenes Recovered from the Anaerobic Co-Digestion Sludge Contained in a Single Stage Steel Biodigester: Implications for Antimicrobial Stewardship. Microorganisms 2023, 11, 725. [Google Scholar] [CrossRef]
- Şanlibaba, P.; Uymaz Tezel, B.; Çakmak, G.A.; Keskin, R.; Akçelik, M. Occurrence of Listeria spp. and antibiotic resistance profiles of Listeria monocytogenes from raw meat at retail in turkey. Italy J. Food Sci. 2020, 32, 234–250. [Google Scholar] [CrossRef]
Molecular Genotype of Isolates | Strain Origin (No. of Isolates) | |||||||
---|---|---|---|---|---|---|---|---|
Lineage | Serotype Group | Clonal Complex | Sequence Type | MP | MDP | FMP | ES | CFP |
I | IVb | CC1 | ST328 | 3 | ||||
ST710 | 1 | |||||||
IVb | CC2 | ST2 | 1 | 5 | 1 | |||
ST145 | 4 | 1 | ||||||
IIb | CC3 | ST3 | 1 | |||||
IVb | CC4 | ST4 | 1 | 2 | ||||
IVb | CC6 | ST6 | 9 | 1 | ||||
IVb | ST32 | ST32 | 2 | |||||
IIb | CC87 | ST87 | 1 | 1 | ||||
IVb | CC315 | ST520 | 2 | 1 | ||||
II | IIa | CC7 | ST7 | 5 | 1 | |||
ST12 | 1 | |||||||
IIa | CC8 | ST8 | 7 | 2 | 1 | |||
IIc | CC9 | ST9 | 31 | 2 | 1 | |||
ST580 | 4 | |||||||
IIa | CC14 | ST14 | 1 | |||||
ST399 | 3 | |||||||
IIa | CC26 | ST26 | 2 | 1 | ||||
IIa | CC29 | ST29 | 2 | 6 | ||||
IIa | CC37 | ST37 | 5 | 1 | ||||
IIa | CC121 | ST121 | 1 |
Phylogenetic Lineage | Food Category | Resistant | Intrinsic Resistance | Sensitive |
---|---|---|---|---|
Lineage I (n = 37) | MP (n = 22) | GEN (5), STR (1), ERY (4), TET (1), SYN (3), RIF (4), CIP (6), PEN (1), LEVO (6) | AXO (15), OXA+ (4), CLI (22), DAP (22) | VAN, AMP, LZD, GAT, SXT all by (22) |
MMP (n = 11) | PEN (1), LEVO (1) | AXO (4), CLI (11), DAP (11) | VAN, AMP, LZD, GAT, SXT all by (11) | |
FMP (n = 3) | GEN (1), ERY (1), TET (1), SYN (1), RIF (1), PEN (1), LEVO (1) | AXO (2), OXA+ (2), CLI (3), DAP (3) | VAN, AMP, LZD, GAT, SXT all by (3) | |
CFP (n = 1) | - | AXO (1), CLI (1), DAP (1) | VAN, AMP, LZD, GAT, SXT all by (1) | |
Lineage II (n = 77) | MP (n = 58) | GEN (13), ERY (8), SYN (13), RIF (14), CIP (1), PEN (6), LEVO (16) | AXO (18), OXA+ (22), CLI (58), DAP (56) | VAN, AMP, LZD, GAT, SXT all by (58) |
MMP (n = 14) | LEVO (1) | CLI (14), DAP (12) | VAN, AMP, LZD, GAT, SXT all by (14) | |
FMP (n = 1) | - | CLI (1), DAP (1) | VAN, AMP, LZD, GAT, SXT all by (1) | |
ES (n = 1) | LEVO (1) | CLI (1), DAP (1) | VAN, AMP, LZD, GAT, SXT all by (1) | |
CFP (n = 3) | GEN (1), RIF (1) | OXA+ (2), CLI (3), DAP (3) | VAN, AMP, LZD, GAT, SXT all by (3) |
Antimicrobials | MIC (mg/L) | Interpretation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.12 | 0.25 | 0.50 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 1000 | S | R | |
Gentamicin | 2 | 1 | 3 | 16 | ≤2 | >2 | |||||||||
Streptomycin | 1 | <1000 | ≥1000 | ||||||||||||
Erythromycin | 31 | 6 | 3 | 9 | 4 | ≤1 | >1 | ||||||||
Tetracycline | 1 | 0 | 0 | 1 | ≤1 | >1 | |||||||||
Quinupristin/ Dalfopristin | 5 | 36 | 54 | 2 | 0 | 17 | ≤1 | >1 | |||||||
Rifampin | 0 | 0 | 0 | 3 | 2 | 1 | 14 | ≤0.06 | >0.06 | ||||||
Ciprofloxacin | 81 | 24 | 7 | ≤0.001 | >2 | ||||||||||
Penicillin | 7 | 50 | 26 | 2 | 9 | 9 | 0 | 0 | ≤1 | >1 | |||||
Levofloxacin | 0 | 88 | 25 | 0 | 1 | ≤0.001 | >1 | ||||||||
Ceftriaxone | 32 | 24 | 9 | 31 | <32 | ≥32 | |||||||||
Oxacillin + 2% NaCl | 4 | 7 | 33 | 40 | 3 | 27 | <2 | ≥4 | |||||||
Clindamycin | 0 | 11 | 16 | 51 | 36 | <0.25 | ≥0.25 | ||||||||
Daptomycin | 0 | 0 | 4 | 29 | 62 | 19 | ≤1 | >1 | |||||||
Vancomycin | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤2 | >2 | |||||
Ampicillin | 51 | 15 | 8 | 1 | 0 | 0 | 0 | 0 | ≤1 | >1 | |||||
Linezolid | 9 | 62 | 42 | 0 | 0 | ≤4 | >4 | ||||||||
Gatifloxacin | 0 | 0 | 0 | 0 | ≤1 | >1 | |||||||||
Trimethoprim/Sulfamethoxazole | 0 | 0 | 0 | 0 | ≤4/76 | >4/76 |
S/N | Antibiotic Resistance Phenotypes MARPs Patterns | No. of Antibiotics | MARI | Freq |
---|---|---|---|---|
1 | CLI–DAP–AXO | 3 | 0.17 | 19 |
2 | LEVO–CLI–DAP | 3 | 0.17 | 7 |
3 | OXA+–CLI–DAP | 3 | 0.17 | 4 |
4 | GEN–CLI–DAP | 3 | 0.17 | 1 |
5 | CIP–CLI–DAP | 3 | 0.17 | 1 |
6 | OXA+–LEVO–CLI–DAP | 4 | 0.22 | 4 |
7 | LEVO–CIP–CLI–DAP | 4 | 0.22 | 3 |
8 | CIP–CLI–DAP–AXO | 4 | 0.22 | 1 |
9 | ERY–CLI–DAP–AXO | 4 | 0.22 | 1 |
10 | OXA+–CLI–DAP–RIF | 4 | 0.22 | 1 |
11 | OXA+–CIP–CLI–DAP | 4 | 0.22 | 1 |
12 | OXA+–CLI–DAP–AXO | 4 | 0.22 | 1 |
13 | PEN–LEVO–CLI–DAP | 4 | 0.22 | 1 |
14 | OXA+–LEVO–CLI–DAP–RIF | 5 | 0.28 | 1 |
15 | GEN–CLI–SYN–DAP–AXO–RIF | 6 | 0.33 | 1 |
16 | OXA+–GEN–CLI–DAP–AXO–RIF | 6 | 0.33 | 1 |
17 | OXA+–GEN–CLI–SYN–DAP–AXO–RIF | 7 | 0.39 | 1 |
18 | OXA+–LEVO–CIP–GEN–ERY–CLI–DAP | 7 | 0.39 | 1 |
19 | OXA+–LEVO–GEN–CLI–SYN–DAP–AXO–RIF | 8 | 0.44 | 2 |
20 | OXA+–GEN–ERY–CLI–SYN–DAP–AXO–RIF | 8 | 0.44 | 2 |
21 | PEN–OXA+–GEN–CLI–SYN–DAP–AXO–RIF | 8 | 0.44 | 1 |
22 | PEN–OXA+–GEN–ERY–CLI–SYN–DAP–AXO–RIF | 9 | 0.50 | 3 |
23 | OXA+–LEVO–GEN–ERY–CLI–SYN–DAP–AXO–RIF | 9 | 0.50 | 3 |
24 | PEN–OXA+–LEVO–GEN–CLI–SYN–DAP–AXO–RIF | 9 | 0.50 | 1 |
25 | PEN–OXA+–LEVO–GEN–ERY–CLI–SYN–DAP–AXO–RIF | 10 | 0.56 | 1 |
26 | PEN–OXA+–LEVO–GEN–ERY–CLI–SYN–DAP–TET–AXO–RIF | 11 | 0.61 | 1 |
27 | PEN–OXA+–LEVO–GEN–STR–ERY–CLI–SYN–DAP–TET–AXO–RIF | 12 | 0.67 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jashari, B.; Stessl, B.; Félix, B.; Cana, A.; Bisha, B.; Jankuloski, D.; Blagoevska, K.; Kayode, A.J. Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo. Microorganisms 2024, 12, 2441. https://doi.org/10.3390/microorganisms12122441
Jashari B, Stessl B, Félix B, Cana A, Bisha B, Jankuloski D, Blagoevska K, Kayode AJ. Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo. Microorganisms. 2024; 12(12):2441. https://doi.org/10.3390/microorganisms12122441
Chicago/Turabian StyleJashari, Besart, Beatrix Stessl, Benjamin Félix, Armend Cana, Bledar Bisha, Dean Jankuloski, Katerina Blagoevska, and Adeoye J. Kayode. 2024. "Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo" Microorganisms 12, no. 12: 2441. https://doi.org/10.3390/microorganisms12122441
APA StyleJashari, B., Stessl, B., Félix, B., Cana, A., Bisha, B., Jankuloski, D., Blagoevska, K., & Kayode, A. J. (2024). Multilocus Sequence Typing and Antimicrobial Susceptibility of Listeria monocytogenes Isolated from Foods Surveyed in Kosovo. Microorganisms, 12(12), 2441. https://doi.org/10.3390/microorganisms12122441