Neuroadaptive Control of a Continuum Robot for Finger Rehabilitation
<p>Design of continuum rehabilitation robotics. (<b>a</b>) Lateral view of the CRR, (<b>b</b>) cross-section of the CRR, and (<b>c</b>) dorsal view of the CRR.</p> "> Figure 2
<p>Movement patterns of fingers.</p> "> Figure 3
<p>Movement of abduction–adduction and flexion–extension of index finger.</p> "> Figure 4
<p>Prototype of CRR. (<b>a</b>) Flexed CRR (<b>b</b>); extended CRR; (<b>c</b>) tendon drive servos.</p> "> Figure 5
<p>Kinematic analysis of the finger and forces.</p> "> Figure 6
<p>Kinematic analysis of backbone. (<b>a</b>) Axis and dynamics in perspective and (<b>b</b>) relations in PIP joint.</p> "> Figure 7
<p>Kinematic relations for flexion and extension models.</p> "> Figure 8
<p>Simscape multibody model of CRR.</p> "> Figure 9
<p>Controller scheme.</p> "> Figure 10
<p>Simscape simulation with applying tension to the proximal flexor and extensor.</p> "> Figure 11
<p>Simscape simulation with applying tension to the proximal extensors for abduction and adduction.</p> "> Figure 12
<p>Simscape simulation with applying tension to the middle flexor and extensor.</p> "> Figure 13
<p>Simscape simulation with applying tension to the distal flexor and extensor.</p> "> Figure 14
<p>Simscape simulation with applying tension to the distal flexor and extensor when applying tension to the middle extensor.</p> "> Figure 15
<p>Simscape simulation with applying tension to the middle flexor and extensor when applying tension to proximal extensor.</p> "> Figure 16
<p>Simscape simulation with reference trajectory for MCP joint.</p> "> Figure 17
<p>Simscape simulation with reference trajectory for DIP joint.</p> "> Figure 18
<p>Simscape simulation with reference trajectory for PIP joint.</p> "> Figure 19
<p>Simscape simulation with reference trajectory for MCP, PIP, and DIP joints.</p> "> Figure 20
<p>Simscape simulation for active rehabilitation task controller.</p> "> Figure 21
<p>Simscape simulation for passive rehabilitation task controller.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concept Design
2.2. Kinematic Relations of the Finger
2.3. Kinematic Analysis for Continuum Robots as an Actuator
2.4. Force Relations of Tendons
2.5. Multibody Model and Simulation
2.6. Control Algorithm
2.7. Control Action for Assistive and Active Rehabilitation
3. Results and Discussion
3.1. Results of the Kinematics
Sim-Mechanic Multibody Model
3.2. Control Results
3.3. Assistive and Passive Rehabilitation Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castiblanco, J.C.; Ortmann, S.; Mondragon, I.F.; Alvarado-Rojas, C.; Jöbges, M.; Colorado, J.D. Myoelectric pattern recognition of hand motions for stroke rehabilitation. Biomed. Signal Process. Control 2020, 57, 101737. [Google Scholar] [CrossRef]
- Guo, N.; Wang, X.; Duanmu, D.; Huang, X.; Li, X.; Fan, Y.; Li, H.; Liu, Y.; Yeung, E.H.K.; To, M.K.T.; et al. SSVEP-based brain computer interface controlled soft robotic glove for post-stroke hand function rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Sarac, M.; Solazzi, M.; Frisoli, A. Design requirements of generic hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive, or haptic use. IEEE Trans. Haptics 2019, 12, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.-F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Sanders, Q.; Chan, V.; Augsburger, R.; Cramer, S.C.; Reinkensmeyer, D.J.; Do, A.H. Feasibility of wearable sensing for in-home finger rehabilitation early after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1363–1372. [Google Scholar] [CrossRef]
- Ai, W.; Hou, K.; Wu, J.; Long, Y.; Song, K. Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation. Nat. Commun. 2024, 15, 1329. [Google Scholar] [CrossRef]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef]
- Davarzani, S.; Ahmadi-Pajouh, M.A.; Ghafarirad, H. Design of sensing system for experimental modeling of soft actuator applied for finger rehabilitation. Robotica 2021, 40, 2091–2111. [Google Scholar] [CrossRef]
- Baiden, D.; Ivlev, O. Human-robot-interaction control for orthoses with pneumatic soft-actuators—Concept and initial trails. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Cao, K.; Wei, C.; Zhao, W.; Yao, J. Development of a wearable upper limb rehabilitation robot based on reinforced soft pneumatic actuators. Chin. J. Mech. Eng. 2022, 35, 83. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, X.; Yan, D.; Zhang, Z.; Gong, Y. A composite fabric-based soft rehabilitation glove with soft joint for dementia in parkinson’s disease. IEEE J. Transl. Eng. Health Med. 2020, 8, 1400110. [Google Scholar] [CrossRef]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S. The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (ebpams) for soft exoskeletons. Robot. Auton. Syst. 2018, 99, 63–74. [Google Scholar] [CrossRef]
- Pin, G.W.; Feng, H.X.; Ling, L.P. Bidirectional bending fibre-reinforced soft actuator robotic glove for finger rehabilitation. Int. J. Integr. Eng. 2022, 14, 47–54. [Google Scholar] [CrossRef]
- Güçlü, H.; Cora, A. A survey on wearable hand robotics design for assistive, rehabilitative, and haptic applications. Int. J. Intell. Robot. Appl. 2023, 7, 227–252. [Google Scholar] [CrossRef]
- Akgun, G.; Cetin, A.E.; Kaplanoglu, E. Exoskeleton design and adaptive compliance control for hand rehabilitation. Trans. Inst. Meas. Control 2020, 42, 493–502. [Google Scholar] [CrossRef]
- Gabardi, M.; Solazzi, M.; Leonardis, D.; Frisoli, A. Design and evaluation of a novel 5 dof underactuated thumb-exoskeleton. IEEE Robot. Autom. Lett. 2018, 3, 2322–2329. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Park, W.; Bae, J. Quantitative evaluation of hand functions using a wearable hand exoskeleton system. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1488–1493. [Google Scholar]
- Kawasaki, H.; Ito, S.; Ishigure, Y.; Nishimoto, Y.; Aoki, T.; Mouri, T.; Sakaeda, H.; Abe, M. Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control. In Proceedings of the 2007 IEEE 10th International Conference on Rehabil, Noordwijk, The Netherlands, 13–15 June 2007. [Google Scholar]
- Dragusanu, M.; Iqbal, M.Z.; Baldi, T.L.; Prattichizzo, D.; Malvezzi, M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Trans. Robot. 2022, 38, 1472–1488. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.; Zhu, J.; Fu, Y. A portable device for hand rehabilitation with force cognition: Design, interaction, and experiment. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 599–607. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Zhou, Z.; Xie, J.; Gao, Z.; Xiao, Y.; Dai, P.; Xu, C.; Wang, X.; Zhou, Y. Lightweight soft robotic glove with whole-hand finger motion tracking for hand rehabilitation in virtual reality. Biomimetics 2023, 8, 425. [Google Scholar] [CrossRef]
- Feng, Y. A Survey of Continuum Robots Deployed in the Medical Fields. In Proceedings of the 2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Nanjing, China, 16–18 June 2023; pp. 37–41. [Google Scholar]
- Robinson, G.; Davies, J.B.C. Continuum robots-a state of the art. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 4, pp. 2849–2854. [Google Scholar]
- Lilge, S.; Nuelle, K.; Childs, J.A.; Wen, K.; Rucker, D.C.; Burgner-Kahrs, J. Parallel-Continuum Robots: A Survey. IEEE Trans. Robot. 2024, 40, 3252–3270. [Google Scholar] [CrossRef]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Gilbert, H.B.; Rucker, D.C.; Webster, R.J., III. Concentric tube robots: The state of the art and future directions. In Robotics Research: The 16th International Symposium ISRR, Singapore, 16–19 December 2013; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 253–269. [Google Scholar]
- Dupont, P.E.; Simaan, N.; Choset, H.; Rucker, C. Continuum robots for medical interventions. Proc. IEEE 2022, 110, 847–870. [Google Scholar] [CrossRef] [PubMed]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum robots for medical applications: A survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Kabir, R.; Sunny, S.H.; Ahmed, H.U.; Rahman, M.H. Hand rehabilitation devices: A comprehensive systematic review. Micromachines 2022, 13, 1033. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil. 2018, 15, 9. [Google Scholar] [CrossRef]
- Cempini, M.; De Rossi, S.M.M.; Lenzi, T.; Cortese, M.; Giovacchini, F.; Vitiello, N.; Carrozza, M.C. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, F.C.; Appendino, S.; Battezzato, A.; Favetto, A.; Mousavi, M.; Pescarmona, F. Human finger kinematics and dynamics. In New Advances in Mechanisms, Transmissions and Applications: Proceedings of the Second Conference MeTrApp 2013; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 115–122. [Google Scholar]
- Rao, P.; Peyron, Q.; Lilge, S.; Burgner-Kahrs, J. How to model tendon-driven continuum robots and benchmark modelling performance. Front. Robot. AI 2021, 7, 630245. [Google Scholar] [CrossRef]
- Webster, R.J., III; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Jones, B.A.; Walker, I.D. Practical kinematics for real-time implementation of continuum robots. IEEE Trans. Robot. 2006, 22, 1087–1099. [Google Scholar] [CrossRef]
- Rucker, D.C.; Webster, R.J., III. Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Trans. Robot. 2011, 27, 1033–1044. [Google Scholar] [CrossRef]
- Abdelhafiz, M.H.; Andreasen Struijk, L.N.; Dosen, S.; Spaich, E.G. Biomimetic Tendon-Based Mechanism for Finger Flexion and Extension in a Soft Hand Exoskeleton: Design and Experimental Assessment. Sensors 2023, 23, 2272. [Google Scholar] [CrossRef]
Movement |
|
|
MCP flexion | ||
PIP flexion | ||
DIP flexion | ||
Abduction | ||
Phalanges | MoI * | Damping Ratio |
Proximal | ||
Middle | ||
Distal | ||
Abduction |
Simulation Exp. | |||
---|---|---|---|
MCP trajectory | |||
DIP trajectory | |||
PIP trajectory | |||
MCP, PIP, DIP Trj | |||
Active rehab. | |||
Passive rehab. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgun, G.; Kaplanoglu, E.; Erdemir, G. Neuroadaptive Control of a Continuum Robot for Finger Rehabilitation. Actuators 2024, 13, 500. https://doi.org/10.3390/act13120500
Akgun G, Kaplanoglu E, Erdemir G. Neuroadaptive Control of a Continuum Robot for Finger Rehabilitation. Actuators. 2024; 13(12):500. https://doi.org/10.3390/act13120500
Chicago/Turabian StyleAkgun, Gazi, Erkan Kaplanoglu, and Gokhan Erdemir. 2024. "Neuroadaptive Control of a Continuum Robot for Finger Rehabilitation" Actuators 13, no. 12: 500. https://doi.org/10.3390/act13120500
APA StyleAkgun, G., Kaplanoglu, E., & Erdemir, G. (2024). Neuroadaptive Control of a Continuum Robot for Finger Rehabilitation. Actuators, 13(12), 500. https://doi.org/10.3390/act13120500