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Abstract: This paper combines the Kalman filter observer with self-sensing technology and integrates
it into the electromagnetic damper (EMD), estimating the displacement and velocity of the EMD
based on the three-phase voltage generated by the permanent magnet synchronous motor (PMSM).
The self-sensing performance of the EMD is verified through theoretical analysis and experimental
results. A vehicle suspension vibration control system composed of one-quarter vehicle electromag-
netic suspension (EMS), a acceleration damping driven control (ADDC) algorithm, and a vibration
excitation platform is established to test the vibration control performance of the self-sensing EMS.
The experimental results show that under random road excitation, compared to passive suspension,
the self-sensing-based ADDC reduced the vehicle vertical acceleration of the vehicle suspension,
with a 28.92% decrease in the root mean square (RMS) value of the vehicle vertical acceleration. This
verifies the effectiveness of the self-sensing capability of the EMS system. Incorporating self-sensing
technology into the EMS system improves the vibration reduction performance of the suspension.

Keywords: semi-active control; self-sensing; variable damping; electromagnetic suspension

1. Introduction

Semi-active suspensions combine the advantages of both passive and active suspen-
sions, offering suspension performance similar to active systems while maintaining low
cost and energy consumption. Therefore, semi-active suspension technology provides
an alternative research direction for improving ride comfort. Currently, actuators made
of magnetorheological materials are applied in vehicle suspension systems for vibration
reduction [1,2]. Though the traditional semi-active vehicle suspension consumes less power
than the active one, it still needs energy input. An electromagnetic damper (EMD) can
harvest the energy from road vibration instead of consuming it [3]. Therefore, to achieve
real-time control of the mechanical characteristics of the semi-active suspension, this paper
adopts an electromagnetic damper (EMD) composed of a ball screw and a permanent mag-
net synchronous motor (PMSM) to form an electromagnetic suspension (EMS) system. By
controlling the load components in the circuit, the EMS exhibits mechanically controllable
damping characteristics.

In traditional suspension control methods, suspension displacement and velocity are
considered known parameters, often relying on displacement sensors to obtain suspen-
sion displacement and velocity information [4], such as linear displacement sensors [5,6].
However, these sensors are expensive and require a large amount of installation space,
making the installation process quite inconvenient [7], which increases system cost and
complexity. To address these issues, some experts and researchers use state estimation
methods [8]. Ren et al. [9] developed a suspension state observer based on unscented
Kalman filtering, which improved the robustness of the control strategy and adapted to
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different types of road disturbances. Pan et al. [10] proposed a nonlinear tracking control
strategy with an Extended State Observer (ESO) for vehicle active suspension to improve
ride comfort. Wang et al. [11] introduced an LPV Kalman filter to estimate state variables
in semi-active air suspension systems that are difficult or impossible to measure physically.
Zhang et al. [12] designed a Luenberger state observer to provide unmeasurable state
parameters for the air suspension controller. Xia et al. [13] proposed a hybrid controller to
estimate seat suspension friction using accelerations, relative displacements, and circuit
currents that can be measured in practice, and compensated for frictional effects in an
H∞ controller. Although these methods have demonstrated their effectiveness, they still
rely on sensor inputs, making them susceptible to fluctuations and noise, which affects
suspension performance.

Self-sensing technology offers a new solution to these problems [14,15]. Verma et al. [16]
present a self-sensing electromagnetic actuator for the vibration control of flexible structures.
The back electromotive force generated in the coil is measured to evaluate the velocity
and displacement of the structure. Yao et al. [17] present a virtual phase torque diagram
method based on a self-sensing motor drive system to address the issue in electromechan-
ical system diagnostics where traditional vibration analysis methods are affected by the
positioning of additional sensors. Hu et al. [18] present a novel magnetorheological damper
based on integrated linear variable differential sensor technology with self-sensing abil-
ity. Deng et al. [19] present a magnetorheological automobile damper with a self-sensing
function. The self-sensing performance of the magnetorheological automobile damper
is verified from the theoretical analysis and experimental results, and the vibration con-
trol performance of the self-sensing magnetorheological automobile damper is tested. By
applying self-sensing technology, dampers can independently collect data on suspension
displacement and velocity, which will greatly reduce system costs, save suspension space,
and reduce the need for sensors in the suspension system, thereby improving the stabil-
ity and controllability of the suspension system. Currently, there are certain fluctuation
errors in self-sensing technology. Considering the characteristics of EMS, integrating state
estimation with self-sensing technology would have greater practical application value.

This paper applies self-sensing technology to electromagnetic suspension, estimating
suspension displacement and suspension velocity without the need for external sensor
signal input, and provides the data to the controller to achieve semi-active control of the
suspension. The main contributions of this paper are listed as follows.

• Based on the characteristics of electromagnetic suspension, the Kalman filter observer
is combined with self-sensing technology to estimate suspension displacement and
velocity, and its accuracy is verified through experiments.

• The self-sensing EMD is tested on a one-quarter vehicle testing platform to verify the
vibration-damping performance of the self-sensing semi-active EMS.

The subsequent sections of this paper are structured as follows. Section 2 presents the
variable damping electromagnetic suspension system. Section 3 presents the principles
of self-sensing and provides experimental verification. The controller design is shown
in Section 4. The experimental evaluations are presented in Section 5. Finally, Section 6
presents the conclusions of this research.

2. Variable Damping Electromagnetic Suspension System
2.1. Overview of EMS System

As shown in Figure 1, the EMS system connects the EMD to the vehicle body and
the unsprung mass through the top and bottom mounting rings, respectively. When the
vehicle travels on uneven road surfaces, road excitations are transmitted from the wheel to
the vehicle suspension, resulting in linear reciprocating motion between the vehicle body
and the unsprung mass. The EMD converts this linear motion into the rotational motion of
the motor through a ball screw mechanism. According to Faraday’s law of electromagnetic
induction, motor rotation generates electromotive force (EMF), which can produce electrical
circuit currents. By incorporating a variable resistance module into the external circuit
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of the motor and using a controller to send signals to change the resistance value of the
variable resistance module, the EMD can achieve variable damping characteristics, forming
a variable damping electromagnetic suspension (VD-EMS) system. This study’s variable
damping function is based on the controllable damping characteristics of the Panasonic
400W PMSM(MSMF042L1U2M). An electromagnetic damper circuit with variable damping
is established using the PMSM. The three-phase voltage, internal resistance, and inductance
of the three-phase PMSM can be equivalent to a unidirectional DC circuit through a three-
phase rectifier, as shown in Figure 2. By connecting the variable resistance module in series
with the DC circuit and adjusting the resistance value, the current in the circuit can be
altered, thereby changing the damping characteristics of the EMD.
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2.2. Principle of EMD Variable Damping

According to the previous text, the circuit is simplified into a DC circuit with a voltage
ei, resistance ri, and inductance li, as shown in Figure 2.

In the closed circuit of Figure 2, the relative motion between the stator and rotor of the
PMSM generates an EMF:

ei = keωm (1)

where ke is the motor voltage constant and ωm is the angular velocity of the motor rotor.
According to Ohm’s law for the closed circuit, the circuit’s current ie is given by the

following equation:

ie =
ei

ri + Re
(2)

where ri is the internal resistance of the motor and Re is the resistance value of the variable
resistance module.



Actuators 2024, 13, 480 4 of 20

In the PMSM, this current generates an electromagnetic torque Te:

Te = kiie (3)

where ki is the torque constant, approximately equal to ke.
Thus, the electromagnetic force Fe generated by the EMD can be obtained by the

following equation:

Fe = r2
gk2

i
vm

ri + Re
(4)

where rg is the transmission ratio from vertical to rotational motion of the ball screw, related
to the lead l of the screw, where rg= 2π/l, vm is the relative velocity of the EMD and
vm = ωm/rg.

Therefore, the variable damping ce of the EMD system can be obtained by the following
equation:

ce =
r2

gk2
i

ri + Re
(5)

According to Equation (5), variable damping can be achieved by adjusting the resis-
tance in the circuit.

2.3. Characteristic Experiment of EMD

The designed EMD is installed on a suspension test platform for characteristic test-
ing, as shown in Figure 3. In the test experiment, a sinusoidal excitation is applied,
x = 0.02 sin(3 πt). The characteristic test aims to verify the effectiveness of controlling the
EMD damping by changing the external circuit resistance. Resistors of 2 Ω, 3 Ω, 8 Ω, and
15 Ω are connected to the circuit. Figure 4a shows the force–displacement characteristic
curves (indicator characteristic curve) of the EMD at different resistances. As the connected
resistance increases, the area enclosed by the characteristic curve decreases. The area of
the characteristic curve represents the change in the damping coefficient because it reflects
the variation in the energy output of the EMD. For the same motion velocity, if the energy
output changes over the same period, the damping coefficient of the EMD changes accord-
ingly. Figure 4b shows the force–velocity characteristic curves of the EMD under different
resistances, where the slope of the curves represents the damping coefficient of the EMD.
As the connected resistance gradually increases, the slope decreases, indicating a reduction
in the damping coefficient. Figure 5 illustrates the changes in the voltage across the load
and the current in the external circuit as the load resistance varies. As the load resistance
increases, the voltage gradually rises, while the current gradually decreases.
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The above experimental results demonstrate that by changing the resistance of the
external circuit, variable damping can be achieved. The damping adjustment is achieved
by controlling the current in the coil through changes in the load.

3. Self-Sensing of VD-EMS System
3.1. Analysis of the Principle of Self-Sensing

The suspension self-sensing means that the relative displacement and relative velocity
of the suspension can be estimated by the three-phase induced voltage of the PMSM
without the help of external sensors. Based on the working principle, the encoder generates
A/B phase pulses during operation. There is a phase difference between the A/B phase
pulses, as shown in Figure 6. Assuming that when phase A leads phase B, the motor rotates
forward, as shown in Figure 6a, then when phase B leads phase A, the motor reverses, as
shown in Figure 6b.
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In the EMD, a PMSM is used as a generator, converting the up-and-down vibration of
the suspension into the rotation of the motor rotor. This rotation cuts through magnetic flux
lines, generating an EMF. Analogous to the working principle of an encoder, converting the
voltage of the PMSM into pulse form allows estimation of the motor’s rotational direction,
thereby obtaining the suspension’s movement direction, which in turn enables estimation
of suspension displacement and velocity. The self-sensing working principle is illustrated
in Figure 7.
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Figure 7. Self-sensing working principle.

The PMSM is connected in a star configuration, which can be simplified as three inter-
nal voltage sources, three internal resistors, and three inductors. When the motor rotates, it
generates three-phase approximately sinusoidal voltages [20]. Due to the complexity of
handling three-phase sinusoidal voltages, it is necessary to equivalently transform it into
a stationary α-β coordinate system using the amplitude-invariant Clarke transformation,
which can be expressed as [21]

[
Uα

Uβ

]
=

[
2
3 − 1

3 − 1
3

0
√

3
3

√
3

3

]Uab
Ubc
Uca

 (6)

In this expression, Uα and Uβ represent the voltages in the α-β coordinate system
respectively. The voltages in the α–β coordinate system can be represented in the form of
pulses. Through the above transformation, the three-phase voltage signals generated by
the servo motor can be converted into two-phase pulse signals, as shown in Figure 8. By
applying the two-phase pulse signal, the relative displacement and relative velocity of the
suspension can be estimated.
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3.2. Suspension Displacement and Velocity Estimation

According to Figure 8, the number of rising and falling edge pulses generated for each
rotation of the motor can be calculated using the following equation:

np = 4p (7)

where np represents the number of rising and falling edges within a rotation period, and p
is the number of pole pairs of the motor; the motor pole pair number selected in this paper
is 5.

When the motor is rotating forward, U f leads Ur; while it is in reverse rotation, it
is the opposite, as shown in Figure 8. By counting both forward and reverse pulses, the
relationship between the motor angle and the pulse count is obtained as follows:

θm =
2π

np
ns (8)

where ns is the sum of the number of forward and reverse voltage pulses.
In EMD, the ball screw can convert the motor’s rotational angle into suspension

displacement. Therefore, by estimating the motor’s rotational angle, the suspension dis-
placement can be determined as follows:

ds = θm

(
l

2π

)
(9)

Therefore, the speed of the permanent magnet synchronous motor can be obtained by
the following equation:

ω =
2π

p∆t
(10)

where ∆t is the time difference between two consecutive pulses.
Similarly, by estimating the motor’s angular velocity, the relative velocity of the

suspension can be determined as follows:

vm = ωm

(
l

2π

)
(11)

To evaluate the estimation performance of the self-sensing algorithm, as shown in
Figure 3, the designed EMD is installed on a suspension vehicle test platform for experi-
mental validation. The accuracy of displacement and velocity estimations is verified under
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sinusoidal road surface excitation. In the experiments, a sinusoidal excitation is applied:
x =0.015 sin(2 πt). To obtain the three-phase voltage, a voltage measurement module is
used to collect the three-phase voltage of the PMSM before rectification. Due to significant
noise interference in the collected voltage signal, which affects subsequent voltage varia-
tions, a Butterworth low-pass filter is applied before signal acquisition. Figure 9 shows a
comparison of the actual and estimated values of the suspension’s relative displacement
and relative velocity under sinusoidal road excitation.
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The Root Mean Square Error (RMSE) is a commonly used metric to measure the
difference between values and can be used to assess the accuracy of model predictions. The
expression for RMSE is as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(12)

where n is the number of observations, yi is the estimated value, and ŷi is the actual value.
The calculations reveal that the RMSE for estimated displacement is 0.818 mm, and the

RMSE for estimated velocity is 13.908 mm/s. The relative RMSE for estimated displacement
is 7.91%, and the relative RMSE for estimated velocity is 21.41%.

3.3. Self-Sensing Combined with Kalman Filter Observer

Due to the high measurement accuracy of acceleration sensors, they can be used
to measure acceleration signals at various positions in a vehicle. When placed on the
vehicle body, they can also be used to evaluate ride comfort based on the data. The root
mean square error (RMSE) of the velocity estimated through self-sensing is 13.908 mm/s,
with a relative RMSE of 21.41%. A smaller relative RMSE indicates higher estimation
accuracy. However, the velocity estimation accuracy is relatively low, which negatively
impacts vibration reduction. Therefore, the Kalman filter is used to further improve velocity
estimation accuracy. The self-sensing electromagnetic suspension combined with a Kalman
filter observer is shown in Figure 10.

According to Newton’s law of motion, the dynamic equation of a passive suspension
can be expressed as follows:{

ms
..
zs = −ks(zs − zt)− cs

( .
zs −

.
zt
)

mt
..
zt = −kt

(
zt − zg

)
+ ks(zs − zt) + cs

( .
zs −

.
zt
) (13)
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In the equation, ms is the vehicle body mass, mt is the wheel mass, ks is the spring
stiffness coefficient, kt is the equivalent stiffness coefficient of the tire, cs is the system
equivalent damping coefficient including the ball screw friction, zs is the absolute dis-
placement of the vehicle body, zt is the absolute displacement of the wheel, and zg is the
road excitation.
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The state vector and output vector of the system are x =
[
zs − zt zt − zg

.
zs

.
zt
]T

and y =
[..
zs

.
zs −

.
zt zs − zt

]T , respectively.
Therefore, the state-space equation for the state-space variables can be written as in

Equation (14): { .
x = Ax + Bu + Γw
y = Cx + Du + v

(14)

In the equation,

A =


0 0 1 −1
0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mt

− ks
mt

cs
mt

− cs
mt

, B =


0
0
0
0

, Γ =


0
−1
0
0

, C =

− ks
ms

0 − cs
ms

cs
ms

0 0 1 −1
1 0 0 0

,

D =

0
0
0

, u is the input variable, and w and v represent the assumed independent process

Gaussian noise and observation Gaussian noise, respectively. w =
.

zg,
.

zg represents the rate
of change of the road surface roughness velocity. Qk = E

(
wwT) and Rk = E

(
vvT) are the

corresponding process noise covariance and observation noise covariance, respectively.
The discrete expression required for computation based on the system’s state-space

equation is established as follows:{
xk = Φxk−1 + B′uk−1 + Γ′wk−1
yk = Hxk + D′uk + vk

(15)

where k represents the discrete time sampling instant.
Since the system is linear and the system noise follows a Gaussian distribution, the

time update and measurement update equations of the Kalman filter algorithm can be
easily derived [22].

Time Update (“Predict”)

1. Project the state ahead:

x̂−k+1 = Φkx̂k + B′uk (16)

2. Project the error covariance ahead:
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P−
k+1 = ΦkPkΦT

k + Qk (17)

Measurement Update (“Correct”)

1. Compute the Kalman gain:

Kk = P−
k HT

k(HkP−
k PT

k + Rk)
−1

(18)

2. Update estimate with measurement yk:

x̂k = x̂−k + K(yk − Hkx̂−k ) (19)

3. Update the error covariance:

Pk = (I − KkHk)P−
k (20)

As shown in Figure 10 the EMD is installed on the test bench to estimate the vehicle
vibration state, verifying the filtering effect of the Kalman filter. As shown in Figure 11,
the estimation performance of relative velocity under sinusoidal excitation is presented.
Figure 11a shows the results under low-frequency sine excitation, while Figure 11b shows
the results under high-frequency sine excitation. The SS-Estimate represents the per-
formance of standalone self-sensing estimation, and the KFSS-Estimate represents the
self-sensing estimation performance combined with a Kalman filter observer. As shown
in Figure 12, under the condition of a Class C road at a speed of 40 km/h, the RMSE of
relative velocity is 0.130 m/s for the SS-Estimate and 0.054 m/s for the KFSS-Estimate.
Compared to standalone self-sensing, the self-sensing accuracy is improved by 58.46%
when combined with the Kalman filter observer.
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4. Controller Design

The semi-active suspension is a complex nonlinear system with numerous influencing
factors, making the control method one of the most important aspects. There are many types
of semi-active control methods; commonly used ones include H∞ control [23], skyhook
control [24], sliding mode control [25], and adaptive control [26]. In vehicle suspension
system vibration control algorithms, the most straightforward and widely applied method
is the skyhook control algorithm. Initially proposed by Karnopp in the United States, the
skyhook control algorithm uses an imaginary damper connected to the skyhook to reduce
vehicle body vibrations [27]. Similar to skyhook control, acceleration damping driven
control (ADDC) assumes the presence of an ideal skyhook and uses an inertial container
connected to the skyhook to suppress vehicle body vibrations, as shown in Figure 13a. This
paper applies a variable resistance module to achieve variable damping in the semi-active
suspension system, thereby providing the force required for ideal acceleration damping
control. Figure 13b shows the one-quarter vehicle two-degree-of-freedom model of the
electromagnetic suspension, where cs represents the variable damping of the EMD. The
values of these parameters in the EMS one-quarter vehicle model are listed in Table 1.
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As a semi-active actuator, the electromagnetic force provided by the EMD is essen-
tially a damping force, in which direction can only be opposite to the relative motion, that 
is, Fe = −ce(zsሶ −  ztሶ ), where  ce represents the variable damping. After obtaining the ideal 
control force, which varies with the system’s motion through control algorithms and sys-
tem states, the electromagnetic force of the system is equated to the ideal control force. 
According to Equation (4), the following can be obtained: 

( )
2 2

t
g i

a
i e

s

r k
F z

r R
z=

+
−−    (23)

Figure 13. One-quarter vehicle 2-degree-of-freedom suspension system model: (a) ideal acceleration
damping suspension; (b) EMS.
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Table 1. Parameters of the quarter vehicle model with EMS.

Parameter Symbol Value

Vehicle mass ms 255 kg
Wheel mass mt 35 kg

Spring stiffness ks 21,000 N/m
Tire stiffness kt 200,000 N/m

Equivalent damping cs 1500 N·s/m
Ideal inertia badd 250 kg

According to Figure 13a, the differential equation for the suspension system is estab-
lished as follows: {

ms
..
zs = −ks(zs − zt)− cs

( .
zs −

.
zt
)
− badd

..
zs

mt
..
zt = −kt

(
zt − zg

)
+ ks(zs − zt) + cs

( .
zs −

.
zt
) (21)

The ideal inertial container connects the vehicle body to an imaginary skyhook rigidly.
However, in practice, such a stationary skyhook cannot be provided. To address this,
the ideal inertial container must be installed within the suspension system; for active
control, the ideal input can be directly provided to the system by the actuator, Fa = badd

..
zs.

In the semi-active system studied here, the input force to the system is provided by the
EMD, which achieves acceleration damping control through the adjustable damping of the
electromagnetic suspension. According to Figure 13b, the differential equation for the EMS
model can be written as follows:{

ms
..
zs = −ks(zs − zt)− cs

( .
zs −

.
zt
)
+ Fe

mt
..
zt = −kt

(
zt − zg

)
+ ks(zs − zt) + cs

( .
zs −

.
zt
)
− Fe

(22)

As a semi-active actuator, the electromagnetic force provided by the EMD is essentially
a damping force, in which direction can only be opposite to the relative motion, that
is, Fe = −ce

( .
zs −

.
zt
)
, where ce represents the variable damping. After obtaining the

ideal control force, which varies with the system’s motion through control algorithms and
system states, the electromagnetic force of the system is equated to the ideal control force.
According to Equation (4), the following can be obtained:

Fa = −
r2

gk2
i

ri + Re

( .
zs −

.
zt
)

(23)

Thus, the ideal variable damping resistance is given by

Re = −
r2

gk2
i

Fa

( .
zs −

.
zt
)
− ri (24)

After obtaining the ideal resistance according to Equation (24), the closest one is
extracted from among the 26 resistance levels of the system circuit structure. The controller
adjusts the MOSFET switches to set the total external resistance to the indexed level,
ensuring that the actual equivalent electromagnetic damping force produced by the EMD
is as close as possible to the ideal force. This process is carried out at every moment in the
system, allowing the EMD to provide an equivalent damping force that varies with the
system’s state during vibration. The basis for providing the damping force is to minimize
the difference between the actual equivalent damping force and the desired ideal force,
thus making the vibration situation as close as possible to the ideal case and achieving the
vibration reduction goal.

The logic of the semi-active control strategy is shown in Figure 14.
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The ideal force Fa required for the system is calculated using the control algorithm.
Since the actual equivalent damping force can only be in the opposite direction to the
relative velocity, two cases can be considered:

1. When the ideal force is in the opposite direction to the relative velocity, the actual
equivalent damping force will be in the same direction as the ideal force. In this
case, by selecting the appropriate external resistance, the actual equivalent damping
force can be set as close as possible to the ideal force, thereby ensuring that the
system’s vibration follows the pattern set by the control algorithm. It is important
to note that due to the discrete nature of the external resistance used, the actual
control resistance cannot be exactly equal to the ideal resistance. Therefore, the actual
equivalent damping force cannot perfectly match the ideal force, but the difference
can be minimized to make the vibration response as close as possible to the ideal case.

2. When the ideal force is in the same direction as the relative velocity, the actual equiv-
alent damping force will necessarily be in the opposite direction to the ideal force.
In this situation, the control will cause the vibration to worsen. At this point, the
maximum resistance should be selected for the external resistor to minimize the actual
equivalent damping force and ensure that the difference between the actual equiv-
alent damping force and the ideal force is minimized, thereby reducing the degree
of vibration deterioration. For the designed variable resistance module, using the
maximum resistance ensures that the system’s equivalent damping coefficient reaches
a sufficiently low level, making the equivalent damping force close to 0; the degree of
vibration deterioration can be almost ignored.

For the first case, after determining the required ideal resistance Re, the closest external
resistance combination Rex is selected by indexing all resistance combinations in the
external variable resistance module. For the second case, the maximum resistance Rmax in
the variable resistance module is used directly. By implementing these strategies, the control
program and self-sensing estimation information can be utilized in real time to control the
required resistance for the system. This allows for selecting the appropriate resistance level
to adjust the EMD damping, thereby generating the equivalent electromagnetic damping
force Fe, which is then input into the system to achieve semi-active vibration control.

5. Performance Evaluation Test

Applying self-sensing technology to semi-active control in electromagnetic suspension,
the damping effect of the EMS is verified through experiments and evaluated by the
vehicle’s vertical acceleration value. In the experiment, the vibration-damping effects are
tested by using the self-sensing estimated values as the observation values of ADDC and
by using the sensor’s measured values as the observation values of ADDC, respectively.
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5.1. Introduction of the Test System

The EMS test system based on the one-quarter vehicle testing platform is illustrated in
Figure 15. In the test system, the bottom is equipped with a retractable electric cylinder that
provides excitation to simulate different driving conditions. The tire stiffness is equivalent
to two high-stiffness springs, and above the tire springs is the wheel mass. The EMS springs
are mounted on linear guide rails on both sides, with the vehicle body mass located above
the suspension springs. An acceleration sensor and a displacement sensor are installed
on the vehicle body to measure the body acceleration, suspension displacement, and
suspension velocity. The upper and lower ends of the EMD are fixed to the test platform
through specialized clamps. When the electric cylinder at the bottom generates excitation,
it drives the vehicle body to move up and down, and the ball screw in the EMD converts
the linear vertical motion into the rotational motion of the motor. Signal acquisition is
performed using an NI cRIO, and a variable resistance module is connected to the circuit to
achieve variable damping functionality.
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5.2. Performance Evaluation Under Sine Excitation

A sinusoidal excitation is used as an ideal road input excitation. To facilitate a com-
parison between passive suspension and semi-active EMS, the sinusoidal excitation is
applied to the wheel. In practical driving conditions, vehicles are predominantly sub-
jected to low-frequency vibrations. The vehicle’s natural frequency can be calculated using
Equation (25).

f0 =
1

2π

√
ks

ms
(25)

Based on the values of the relevant parameters in Table 1, the vehicle’s natural fre-
quency can be determined, f 0 = 1.48 Hz, given a sinusoidal excitation, x = 0.01sin(3πt).
Figure 16 shows the estimation performance of relative velocity under semi-active control
conditions. As shown in Figure 17, under sinusoidal excitation, the EMD suspension can
generate damping forces to reduce vehicle body vibrations. Comparing the vehicle’s verti-
cal acceleration in Figure 18, it can be seen that both the sensor measurement-controlled
(referred to as ADDC) semi-active suspension and the self-sensing estimation-controlled
(referred to as SS_ADDC) semi-active suspension reduce the vehicle’s vertical acceleration.
Calculations show that the root mean square (RMS) value of the vehicle vertical acceleration
for the ADDC suspension is reduced by approximately 40.92%, while for the SS_ADDC
suspension, it is reduced by about 43.31%. Similarly, comparing the suspension travel in
Figure 19, both methods reduce the suspension travel, and the results are similar, with the
peak suspension travel reduced by approximately 65%.
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Figure 19. Suspension travel under sine excitation.

5.3. Performance Evaluation Under Random Road Excitation

To comprehensively evaluate the performance of the EMS system, random road
excitation tests were conducted. The random road excitation was generated based on
filtered white noise and a quarter-vehicle model. We compared the vehicle body vertical
acceleration and suspension travel under the 40 km/h vehicle speed condition on a Class
C road surface for different suspensions. Figure 20 shows the estimation performance
of relative velocity under semi-active control conditions. As shown in Figure 21, under
random road excitation, the EMD suspension can generate damping forces to reduce
vehicle body vibrations. As shown in Figure 22, both the ADDC suspension and the
SS_ADDC suspension effectively reduce the vehicle vertical acceleration, enhancing ride
comfort. From the suspension travel comparison curve in Figure 23, it can be seen that the
suspension travel of the ADDC suspension and SS_ADDC suspension is not significantly
different from that of the passive suspension.
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We quantified the percentage improvement in vibration performance of the EMS.
According to the ISO 2631-1 standard [28], ride comfort is evaluated using the root mean
square (RMS) of the vehicle body vertical acceleration, the frequency-weighted root mean
square (FW-RMS), and the vibration dose value (VDV) to the fourth power. In Figure 24, the
RMS, FWRMS, and VDV of each vehicle’s vertical acceleration are displayed. Compared
with the passive suspension, the RMS, FW-RMS, and VDV of the vertical acceleration of
the ADDC suspension have reductions of 31.16%, 28.75%, and 26.88%. Compared with the
passive suspension, due to the presence of errors in self-sensing, the performance indicators
of the SS_ADDC suspension have reductions by 28.92%, 28.01%, and 28.18%, respectively.
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The above experimental results indicate that, compared to passive suspension, EMS
can effectively reduce vibrations caused by road impacts, thus improving the vehicle’s ride
comfort to a certain extent. This also indicates that applying the self-sensing technology
combined with the Kalman filter observer to the electromagnetic suspension for vibration
control is feasible, and the control effect is comparable to that of the ADDC control.

6. Conclusions

This paper introduces a method for achieving semi-active control of the VD-EMS
system using self-sensing technology, which reduces the need for external sensors. The
accuracy of the self-sensing method and the effectiveness of the semi-active control in vi-
bration reduction were validated through simulations and experiments. The main research
results can be concluded as follows:

1. The variable-damping electromagnetic suspension system was designed, and the
corresponding mathematical and physical models were established. The mechanism
for achieving variable damping by altering the external circuit resistance was analyzed.
This laid the foundation for the application of self-sensing technology in EMS.

2. We combined the Kalman filter observer with self-sensing technology to estimate the
velocity and displacement of the electromagnetic suspension, and the accuracy of the
estimation results was verified through experiments.

3. Parameters estimated through self-sensing were applied to the ADDC, to validate the
effectiveness of an EMS in vibration. Applying self-sensing technology to vibration
control in EMS is a feasible method.

This paper applies self-sensing technology to the semi-active control of EMS, thereby
reducing the number of sensors, simplifying system complexity, and lowering the cost of
the suspension system. Currently, self-sensing technology still has some errors, leading
to fluctuations in the vibration reduction effect. Future research will focus on addressing
the errors present in self-sensing technology and applying this method to the full vehicle
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suspension system. More advanced controllers will be utilized to enhance the performance
of the EMS system.
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