Adaptive NN Force Loading Control of Electro-Hydraulic Load Simulator
<p>The schematic structure of the electro-hydraulic load simulator.</p> "> Figure 2
<p>A block diagram of the proposed control scheme.</p> "> Figure 3
<p>Test platform of electro-hydraulic load simulator.</p> "> Figure 4
<p>Force-tracking curve for large load.</p> "> Figure 5
<p>Control input for large load.</p> "> Figure 6
<p>Variation curve of <math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo stretchy="false">^</mo> </mover> </semantics></math> for large load.</p> "> Figure 7
<p>Variation curve of <math display="inline"><semantics> <mover accent="true"> <mi>ϑ</mi> <mo stretchy="false">^</mo> </mover> </semantics></math> for large load.</p> "> Figure 8
<p>Force-tracking curve for small load.</p> "> Figure 9
<p>Control input for small load.</p> "> Figure 10
<p>Variation curve of <math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo stretchy="false">^</mo> </mover> </semantics></math> for small load.</p> "> Figure 11
<p>Variation curve of <math display="inline"><semantics> <mover accent="true"> <mi>ϑ</mi> <mo stretchy="false">^</mo> </mover> </semantics></math> for small load.</p> ">
Abstract
:1. Introduction
2. System Modeling
3. Adaptive Neural Network Controller Design
4. Experimental Verification
4.1. Experimental Scenario of Large Load
4.2. Experimental Scenario of Small Load
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Yao, J.; Deng, W. Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation. ISA Trans. 2021, 109, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Shi, G.; Wang, D.; He, C.; Hu, J.; Wang, W. Iterative learning based output feedback control for electro-hydraulic loading system of a gait simulator. Mechatronics 2018, 54, 110–120. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Li, H. Study on eliminating the superfluous force of marine electrohydraulic load simulator applied with dual-valve parallel connected control. J. Mech. Eng. 2005, 41, 229–233. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q. A Novel Method for Constraining the Disturbance Torque of Electro-Hydraulic Load Simulator. In Proceedings of the 1995 International Conference on Fluid Power Transmission and Control, Shanghai, China, 5–7 October 1995; International Academic Publishers: Beijing, China, 1995; pp. 383–385. [Google Scholar]
- Yao, J.; Jiao, Z.; Ma, D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron. 2014, 61, 6285–6293. [Google Scholar] [CrossRef]
- Soleimani, A.M.; Ramli, R.; Ibrahim, M.F. Hybrid design of PID controller for four DoF lower limb exoskeleton. Appl. Math. Model. 2019, 72, 17–27. [Google Scholar]
- Zhang, J.; Lu, B.; Chen, C.; Li, Z. A New Active Disturbance Rejection Control Tuning Method for High-Order Electro-Hydraulic Servo Systems. Actuators 2024, 13, 296. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Shao, F.; Zhang, X. Fixed-Time Sliding Mode-Based Active Disturbance Rejection Tracking Control Method for Robot Manipulators. Machines 2023, 11, 140. [Google Scholar] [CrossRef]
- Feng, H.; Ma, W.; Yin, C.; Cao, D. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom. Constr. 2021, 127, 103722. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Shao, F.; Zhang, X. Research on the Optimization of the PID Control Method for an EOD Robotic Manipulator Using the PSO Algorithm for BP Neural Networks. Actuators 2024, 13, 386. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Y.; Celler, B.G.; Su, S.W. Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown. IEEE Trans. Ind. Electron. 2016, 63, 6909–6920. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, G.; Liu, Q.; Yao, J. ESO-based adaptive full state constraint control of uncertain systems and its application to hydraulic servo systems. Mech. Syst. Signal Process. 2022, 167, 108560. [Google Scholar] [CrossRef]
- Feng, H.; Song, Q.; Ma, S.; Ma, W.; Yin, C.; Cao, D.; Yu, H. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Trans. 2022, 129, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, G. RBF Neural Network Sliding Mode Control for Electro Hydraulic Servo System. Chin. Hydraul. Pneum. 2019, 2, 109–114. [Google Scholar]
- Yang, G.; Yao, J. Multilayer neuroadaptive force control of electro-hydraulic load simulators with uncertainty rejection. Appl. Soft Comput. 2022, 130, 109672. [Google Scholar] [CrossRef]
- Qing, G.; Chen, Z. Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty. Mech. Syst. Signal Process. 2021, 146, 106869. [Google Scholar]
- Du, P.V.; Vu Anh, T.H.; Ahn, K.K. Actuator failure compensation-based command filtered control of electro-hydraulic system with position constraint. ISA Trans. 2022, 134, 561–572. [Google Scholar]
- Li, J.; Ji, R.; Liang, X.; Ge, S.S.; Yan, H. Command Filter-Based Adaptive Fuzzy Finite-Time Output Feedback Control of Nonlinear Electrohydraulic Servo System. IEEE Trans. Instrum. Meas. 2022, 71, 3529410. [Google Scholar] [CrossRef]
- Tee, K.P.; Ge, S.S.; Tay, E.H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 2009, 45, 918–927. [Google Scholar] [CrossRef]
- Nie, S.; Qian, L.; Chen, L.; Tian, L.; Zou, Q. Barrier Lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electro-hydraulic system. Def. Technol. 2021, 17, 836–845. [Google Scholar] [CrossRef]
- Li, K.; Li, Y. Adaptive Fuzzy Finite-time Dynamic Surface Control for High-order Nonlinear System with Output Constraints. Int. J. Control Autom. Syst. 2020, 19, 112–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, C.; Li, Y.; Guan, X. Adaptive Neural Networks-Based Visual Servoing Control for Manipulator with visibility constraint and Dead-Zone Input. Neurocomputing 2018, 332, 44–55. [Google Scholar] [CrossRef]
- Jing, C.; Zhang, H.; Yan, B.; Hui, Y.; Xu, H. State and disturbance observer based robust disturbance rejection control for friction electro-hydraulic load simulator. Nonlinear Dyn. 2024, 112, 17241–17255. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Du, X. Adaptive backstepping sliding mode compensation control for electro-hydraulic load simulator with backlash links. Int. J. Robust Nonlinear Control 2024, 34, 8724–8743. [Google Scholar] [CrossRef]
- Huang, J.; Song, Z.; Wu, J.; Guo, H.; Qiu, C.; Tan, Q. Parameter Adaptive Sliding Mode Force Control for Aerospace Electro-Hydraulic Load Simulator. Aerospace 2023, 10, 160. [Google Scholar] [CrossRef]
- Kang, S.; Yan, H.; Dong, L.; Li, C. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model. Mech. Syst. Signal Process 2018, 102, 117–138. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Liu, L.; Li, D.; Tong, S.; Chen, C.L.P. Adaptive Neural Network Control for a Class of Nonlinear Systems with Function Constraints on States. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2732–2741. [Google Scholar] [CrossRef]
- Lewis, F.L.; Yesildirek, A.; Liu, K. Multilayer neural net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 1996, 7, 388–3981. [Google Scholar] [CrossRef]
- Ge, S.S.; Hang, C.C.; Zhang, T. Nonlinear adaptive control using neural networks and its application to CSTR systems. J. Process Control 1999, 9, 313–323. [Google Scholar] [CrossRef]
Parameter | Definition | Parameter | Definition |
---|---|---|---|
Servo valve gain | Friction and output of force sensor | ||
u | Control voltage | Loading force | |
Area gradient of servo valve | Flow coefficient | ||
Pressure of rodless cavity and rod cavity | Load mass, damping coefficient, and load spring constant | ||
Area of rodless cavity and rod cavity | Actual and desired force of loading cylinder | ||
Spool displacement | Displacement of tested cylinder | ||
Positive constants of control | Positive function of states | ||
State errors | ith-Order virtual control | ||
Constants of control | Weight matrix |
Parameter | Value | Unit |
---|---|---|
21 | MPa | |
Pa | ||
B | 2000 | |
D | 0.348 | m |
d | 0.180 | m |
L | 0.7 | m |
m | 300 | kg |
K | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yan, H.; Zhang, P.; Shan, J.; Li, J. Adaptive NN Force Loading Control of Electro-Hydraulic Load Simulator. Actuators 2024, 13, 471. https://doi.org/10.3390/act13120471
Chen Z, Yan H, Zhang P, Shan J, Li J. Adaptive NN Force Loading Control of Electro-Hydraulic Load Simulator. Actuators. 2024; 13(12):471. https://doi.org/10.3390/act13120471
Chicago/Turabian StyleChen, Zanwei, Hao Yan, Peng Zhang, Jiefeng Shan, and Jiafeng Li. 2024. "Adaptive NN Force Loading Control of Electro-Hydraulic Load Simulator" Actuators 13, no. 12: 471. https://doi.org/10.3390/act13120471
APA StyleChen, Z., Yan, H., Zhang, P., Shan, J., & Li, J. (2024). Adaptive NN Force Loading Control of Electro-Hydraulic Load Simulator. Actuators, 13(12), 471. https://doi.org/10.3390/act13120471