Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review
<p>Flow chart of the search and inclusion process.</p> "> Figure 2
<p>Robot dynamics including the friction model.</p> "> Figure 3
<p>Computed torque control architecture.</p> "> Figure 4
<p>Architecture of a sliding mode controller.</p> "> Figure 5
<p>Architecture of a sliding mode controller with chattering suppressor.</p> "> Figure 6
<p>Architecture of a Linear Quadratic Regulator.</p> "> Figure 7
<p>Simplified control architecture of a PD controller.</p> "> Figure 8
<p>Robot control architecture of a PID controller.</p> "> Figure 9
<p>Generalized control architecture of an AI-based controller.</p> ">
Abstract
:1. Introduction
2. Current Reviews
3. Methodology
3.1. Research Question Formulation
3.2. Literature Search Strategy
3.3. Inclusion and Exclusion Criteria
- -
- Rehabilitation exoskeleton robots;
- -
- Proposed a novel control system;
- -
- Dynamic simulation or prototype testing on human subjects;
- -
- Published within the period of 2014–2024.
- -
- Soft robotics;
- -
- Papers not applying novel control systems in rehabilitation processes;
- -
- Reviews, editorials, or commentaries without empirical data.
3.4. Study Selection
3.5. Data Extraction and Synthesis
3.6. Quality Assessment
3.7. Data Analysis
4. Robot Dynamic Modeling
5. Overview of Robot Control System
5.1. Nonlinear Control System
5.1.1. Computed Torque Control
5.1.2. Adaptive Control
5.1.3. Robust Control
5.1.4. Sliding Mode Control
5.2. Linear Control
5.2.1. Linear Quadratic Regulator
- Control Strategies
- Modeling Techniques
- Human–Robot Interaction
- Adaptability
- Energy Efficiency
- Experimental Validation
5.2.2. PD Control
5.2.3. PID Control
- Strengths and Limitations Across Studies
5.3. Admittance Control
5.4. Model Predictive Control
5.5. Intelligent Control System
5.6. Hybrid Control System
6. Discussion
7. Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, J.; Xie, S.Q.; Das, R.; Zhu, G.L. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med. Eng. Phys. 2014, 36, 1555–1566. [Google Scholar] [CrossRef]
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. Neuroeng. Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- de Miguel-Fernández, J.; Lobo-Prat, J.; Prinsen, E.; Font-Llagunes, J.M.; Marchal-Crespo, L. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: A systematic review and analysis of clinical effectiveness. J. Neuroeng. Rehabil. 2023, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ren, H.; Ci, Z.; Yuan, X.; Zhang, P.; Wang, C. Control Method of Upper Limb Rehabilitation Exoskeleton for Better Assistance: A Comprehensive Review. J. Field Robot. 2024. [Google Scholar] [CrossRef]
- Gasperina, S.D.; Roveda, L.; Pedrocchi, A.; Braghin, F.; Gandolla, M. Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Front. Robot. AI 2021, 8, 745018. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, H.; Liu, Z.; Li, B.; Cheng, H. Exploring Challenges and Opportunities of Wearable Robots: A Comprehensive Review of Design, Human-Robot Interaction and Control Strategy. APSIPA Trans. Signal Inf. Process. 2023, 12, e47. [Google Scholar] [CrossRef]
- Su, D.; Hu, Z.; Wu, J.; Shang, P.; Luo, Z. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Front. Neurorobot. 2023, 17, 1186175. [Google Scholar] [CrossRef]
- Brown, D.F.; Xie, S.Q. Effectiveness of Intelligent Control Strategies in Robot-Assisted Rehabilitation—A Systematic Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 1828–1840. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shao, D.; Tarabini, M.; Moezi, S.A.; Li, K.; Saccomandi, P. Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review. Micromachines 2024, 15, 489. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, K.; Lu, J.; Yang, H. A review on the application of intelligent control strategies for post-stroke hand rehabilitation machines. Adv. Mech. Eng. 2023, 15, 16878132221148018. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 2022. Available online: https://books.google.com/books/about/Introduction_to_Robotics_Global_Edition.html?id=Bjw1EAAAQBAJ (accessed on 29 November 2024).
- Hasan, S.; Dhingra, A.K. Development of a model reference computed torque controller for a human lower extremity exoskeleton robot. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 1615–1637. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181. [Google Scholar] [CrossRef]
- Narayan, J.; Abbas, M.; Patel, B.; Dwivedy, S.K. Adaptive RBF neural network-computed torque control for a pediatric gait exoskeleton system: An experimental study. Intell. Serv. Robot. 2023, 16, 549–564. [Google Scholar] [CrossRef]
- Dao, Q.-T.; Yamamoto, S.-I. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1719–1722. [Google Scholar]
- Mungai, M.E.; Grizzle, J.W. Feedback Control Design for Robust Comfortable Sit-to-Stand Motions of 3D Lower-Limb Exoskeletons. IEEE Access 2020, 9, 122–161. [Google Scholar] [CrossRef]
- Hasan, S.K. A Realistic Model Reference Computed Torque Control Strategy for Human Lower Limb Exoskeletons. Actuators 2024, 13, 445. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Tian, Y. Adaptive computed torque control based on RBF network for a lower limb exoskeleton. In Proceedings of the 2018 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, 9–11 March 2018; pp. 35–40. [Google Scholar]
- Sabet, S.; Dabiri, A.; Armstrong, D.G.; Poursina, M. Computed Torque Control of the Stewart platform with uncertainty for lower extremity robotic rehabilitation. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 5058–5064. [Google Scholar]
- Jiang, Z.; Wang, Z.; Lv, Q.; Yang, J. Impedance Learning-Based Hybrid Adaptive Control of Upper Limb Rehabilitation Robots. Actuators 2024, 13, 220. [Google Scholar] [CrossRef]
- Cai, S.; Xie, P.; Li, G.; Xie, L. Compensation-corrective adaptive control strategy for upper-limb rehabilitation robots. Robot. Auton. Syst. 2024, 177, 104701. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, S.; Zhou, Y.; Gao, H. An admittance controller based on assistive torque estimation for a rehabilitation leg exo-skeleton. Intell. Serv. Robot. 2019, 12, 381–391. [Google Scholar] [CrossRef]
- Alibeji, N.A.; Molazadeh, V.; Moore-Clingenpeel, F.; Sharma, N. A Muscle Synergy-Inspired Control Design to Coordinate Functional Electrical Stimulation and a Powered Exoskeleton artificial generation of synergies to reduce input dimensionality. IEEE Control Syst. 2018, 38, 35–60. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Tian, Y. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. ISA Trans. 2021, 128, 184–197. [Google Scholar] [CrossRef]
- Pan, C.-T.; Lee, M.-C.; Huang, J.-S.; Chang, C.-C.; Hoe, Z.-Y.; Li, K.-M. Active Assistive Design and Multiaxis Self-Tuning Control of a Novel Lower Limb Rehabilitation Exoskeleton. Machines 2022, 10, 318. [Google Scholar] [CrossRef]
- Hasan, S.K.; Dhingra, A.K. An adaptive controller for human lower extremity exoskeleton robot. Microsyst. Technol. 2021, 27, 2829–2846. [Google Scholar] [CrossRef]
- Casas, J.; Chang, C.-H.; Duenas, V.H. Switched Concurrent Learning Adaptive Control for Treadmill Walking Using a Lower Limb Hybrid Exoskeleton. IEEE Trans. Control Syst. Technol. 2023, 32, 174–188. [Google Scholar] [CrossRef]
- Kagirov, I.; Kapustin, A.; Kipyatkova, I.; Klyuzhev, K.; Kudryavcev, A.; Kudryavcev, I.; Loskutov, Y.; Ryumin, D.; Karpov, A. Medical exoskeleton “Remotion” with an intelligent control system: Modeling, implementation, and testing. Simul. Model. Pract. Theory 2020, 107, 102200. [Google Scholar] [CrossRef]
- Zhang, S.; Guan, X.; Ye, J.; Chen, G.; Zhang, Z.; Leng, Y. Gait Deviation Correction Method for Gait Rehabilitation with a Lower Limb Exoskeleton Robot. IEEE Trans. Med. Robot. Bionics 2022, 4, 754–763. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Genetically optimized parameter estimation of mathematical model for multi-joints hip–knee exoskeleton. Robot. Auton. Syst. 2020, 125, 103425. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Barari, A. Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton. Mathematics 2023, 11, 1564. [Google Scholar] [CrossRef]
- Chen, C.; Huang, J.; Tu, X. Design and single-parameter adaptive fuzzy control of pneumatic lower limb exoskeleton with full state constraints. Robotica 2022, 41, 995–1014. [Google Scholar] [CrossRef]
- Brahmi, B.; Ahmed, T.; El Bojairami, I.; Swapnil, A.A.Z.; Zaman, A.U.; Schultz, K.; McGonigle, E.; Rahman, M.H. Flatness Based Control of a Novel Smart Exoskeleton Robot. IEEE/ASME Trans. Mechatron. 2021, 27, 974–984. [Google Scholar] [CrossRef]
- Wu, J.; Gao, J.; Song, R.; Li, R.; Li, Y.; Jiang, L. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 2016, 33, 13–22. [Google Scholar] [CrossRef]
- Chang, C.-H.; Casas, J.; Duenas, V.H. Closed-Loop Kinematic and Indirect Force Control of a Cable-Driven Knee Exoskeleton: A Lyapunov-Based Switched Systems Approach. IEEE Open J. Ultrason. Ferroelectr. Freq. Control 2023, 2, 171–184. [Google Scholar] [CrossRef]
- Sharifi, M.; Mehr, J.K.; Mushahwar, V.K.; Tavakoli, M. Autonomous Locomotion Trajectory Shaping and Nonlinear Control for Lower Limb Exoskeletons. IEEE/ASME Trans. Mechatron. 2022, 27, 645–655. [Google Scholar] [CrossRef]
- Guzmán, C.H.; Blanco, A.; Brizuela, J.A.; Gómez, F.A. Robust control of a hip–joint rehabilitation robot. Biomed. Signal Process. Control 2017, 35, 100–109. [Google Scholar] [CrossRef]
- Han, J.; Yang, S.; Xia, L.; Chen, Y.-H. Deterministic Adaptive Robust Control with a Novel Optimal Gain Design Approach for a Fuzzy 2-DOF Lower Limb Exoskeleton Robot System. IEEE Trans. Fuzzy Syst. 2020, 29, 2373–2387. [Google Scholar] [CrossRef]
- Al-Awad, N.A.; Humaidi, A.J.; Al-Araji, A.S. Fractional multi-loop active disturbance rejection control for a lower knee exoskeleton system. Acta Polytech. 2023, 63, 158–170. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, H. Design and Control of a Series Elastic Actuator with Clutch for Hip Exoskeleton for Precise Assistive Magnitude and Timing Control and Improved Mechanical Safety. IEEE/ASME Trans. Mechatron. 2019, 24, 2215–2226. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Guo, Y.; Wang, H. Active torque-based gait adjustment multi-level control strategy for lower limb patient–exoskeleton coupling system in rehabilitation training. Math. Comput. Simul. 2023, 215, 357–381. [Google Scholar] [CrossRef]
- Yang, S.; Pei, J.; Liu, Y.; Chen, Y.-H. Robust tracking control design with a novel leakage-type adaptive mechanism for an uncertain lower limb exoskeleton robot. J. Vib. Control 2022, 29, 2681–2695. [Google Scholar] [CrossRef]
- Long, Y.; Du, Z.; Cong, L.; Wang, W.; Zhang, Z.; Dong, W. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans. 2017, 67, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Fang, Y. Adaptive neural network-based practical predefined-time nonsingular terminal sliding mode control for upper limb rehabilitation robots. Commun. Nonlinear Sci. Numer. Simul. 2024, 136, 108085. [Google Scholar] [CrossRef]
- Long, Y.; Peng, Y. Extended State Observer-Based Nonlinear Terminal Sliding Mode Control with Feedforward Compensation for Lower Extremity Exoskeleton. IEEE Access 2022, 10, 8643–8652. [Google Scholar] [CrossRef]
- Hsu, S.-H.; Changcheng, C.; Lee, H.-J.; Chen, C.-T. Design and Implementation of a Robotic Hip Exoskeleton for Gait Rehabilitation. Actuators 2021, 10, 212. [Google Scholar] [CrossRef]
- Wu, H.; Jia, T.; Li, N.; Wu, J.; Yan, L. Study on the control algorithm for lower limb exoskeleton based on ADAMS/Simulink co-simulation. J. Vibroeng. 2017, 19, 2976–2986. [Google Scholar] [CrossRef]
- Hasan, S.; Dhingra, A.K. Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot. Results Control Optim. 2022, 7, 100107. [Google Scholar] [CrossRef]
- Hasan, S.; Dhingra, A.K. Development of a sliding mode controller with chattering suppressor for human lower extremity exoskeleton robot. Results Control Optim. 2022, 7, 100123. [Google Scholar] [CrossRef]
- He, D.; Wang, H.; Tian, Y.; Ma, X. Model-free finite-time robust control using fractional-order ultra-local model and prescribed performance sliding surface for upper-limb rehabilitation exoskeleton. ISA Trans. 2024, 147, 511–526. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Z.; Chen, B.; Huang, G.; Wu, X.; Wang, T. Human gait tracking for rehabilitation exoskeleton: Adaptive fractional order sliding mode control approach. Intell. Robot. 2023, 3, 95–112. [Google Scholar] [CrossRef]
- Mohan, S.; Mohanta, J.; Kurtenbach, S.; Paris, J.; Corves, B.; Huesing, M. Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech. Mach. Theory 2017, 112, 272–294. [Google Scholar] [CrossRef]
- Ben Abdallah, I.; Bouteraa, Y. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach. Sensors 2024, 24, 1047. [Google Scholar] [CrossRef]
- Tanyildizi, A.K.; Yakut, O.; Taşar, B.; Tatar, A.B. Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method. Neural Comput. Appl. 2021, 33, 8089–8103. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Elsabbagh, A. Fuzzy radial-based impedance controller design for lower limb exoskeleton robot. Robotica 2022, 41, 326–345. [Google Scholar] [CrossRef]
- He, Y.; Li, N.; Wang, C.; Xia, L.-Q.; Yong, X.; Wu, X.-Y. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. Front. Inf. Technol. Electron. Eng. 2019, 20, 318–329. [Google Scholar] [CrossRef]
- Bergmann, L.; Lück, O.; Voss, D.; Buschermöhle, P.; Liu, L.; Leonhardt, S.; Ngo, C. Lower Limb Exoskeleton with Compliant Actuators: Design, Modeling, and Human Torque Estimation. IEEE/ASME Trans. Mechatron. 2022, 28, 758–769. [Google Scholar] [CrossRef]
- Ajjanaromvat, N.; Parnichkun, M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation. Mechatronics 2018, 51, 85–96. [Google Scholar] [CrossRef]
- Hasan, S.K.; Dhingra, A. Developing a Linear Quadratic Regulator for Human Lower Extremity Exoskeleton Robot. J. Mechatron. Robot. 2022, 6, 28–46. [Google Scholar] [CrossRef]
- Yatsun, S.F.; Mal’chikov, A.V.; Yatsun, A.S. A Method for Obtaining the Parameters for Changing the Settings of the Control System of a Rehabilitation Device. Biomed. Eng. 2023, 57, 107–111. [Google Scholar] [CrossRef]
- Orekhov, G.; Luque, J.; Lerner, Z.F. Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control. IEEE Robot. Autom. Lett. 2020, 5, 6025–6032. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, Z.; Huang, C.; Guo, Q. Modelling and analysis of coupling dynamics of swinging a lower limb exoskeleton. Nonlinear Dyn. 2022, 111, 1213–1234. [Google Scholar] [CrossRef]
- Yu, S.; Liu, C.; Ye, C.; Fu, R. Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation. Actuators 2024, 13, 202. [Google Scholar] [CrossRef]
- Tanyıldızı, A.K. A three-DoF upper limb exoskeleton’s design, modeling, and interaction-based control. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 476. [Google Scholar] [CrossRef]
- Guzmán-Valdivia, C.; Blanco-Ortega, A.; Oliver-Salazar, M.; Gómez-Becerra, F.; Carrera-Escobedo, J. HipBot—The design, development and control of a therapeutic robot for hip rehabilitation. Mechatronics 2015, 30, 55–64. [Google Scholar] [CrossRef]
- Li, Y.; Guan, X.; Han, X.; Tang, Z.; Meng, K.; Shi, Z.; Penzlin, B.; Yang, Y.; Ren, J.; Yang, Z.; et al. Design and Preliminary Validation of a Lower Limb Exoskeleton with Compact and Modular Actuation. IEEE Access 2020, 8, 66338–66352. [Google Scholar] [CrossRef]
- Pillai, B.M.; Owatchaiyapong, P.; Treratanakulchai, S.; Sivaraman, D.; Ongwattanakul, S.; Suthakorn, J. Lower Limb Exoskeleton with Energy-Storing Mechanism for Spinal Cord Injury Rehabilitation. IEEE Access 2023, 11, 133850–133866. [Google Scholar] [CrossRef]
- Pan, J.; Astarita, D.; Baldoni, A.; Dell’Agnello, F.; Crea, S.; Vitiello, N.; Trigili, E. NESM-γ: An Upper-Limb Exoskeleton with Compliant Actuators for Clinical Deployment. IEEE Robot. Autom. Lett. 2022, 7, 7708–7715. [Google Scholar] [CrossRef]
- Joyo, M.K.; Raza, Y.; Ahmed, S.F.; Billah, M.M.; Kadir, K.; Naidu, K.; Ali, A.; Yusof, Z.M. Optimized Proportional-Integral-Derivative Controller for Upper Limb Rehabilitation Robot. Electronics 2019, 8, 826. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, K.-S.; Kim, S. Generalized Control Framework for Exoskeleton Robots by Interaction Force Feedback Control. Int. J. Control Autom. Syst. 2021, 19, 3419–3427. [Google Scholar] [CrossRef]
- Keemink, A.Q.L.; van Oort, G.; Wessels, M.; Stienen, A.H.A. Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 817–829. [Google Scholar] [CrossRef]
- Zarrin, R.S.; Zeiaee, A.; Langari, R. A Variable-Admittance Assist-As-Needed Controller for Upper-Limb Rehabilitation Exoskeletons. IEEE Robot. Autom. Lett. 2024, 9, 5903–5910. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Y.; Wu, Z.; Tan, M.; Yu, J. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human–Robot Interaction Force Measurement. Think. Ski. Creat. 2024, 5, 0115. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, B.; Ye, Z.; Deng, M.; Yang, C. Physical Human–Robot Interaction of a Robotic Exoskeleton by Admittance Control. IEEE Trans. Ind. Electron. 2018, 65, 9614–9624. [Google Scholar] [CrossRef]
- Ranatunga, I.; Lewis, F.L.; Popa, D.O.; Tousif, S.M. Adaptive Admittance Control for Human–Robot Interaction Using Model Reference Design and Adaptive Inverse Filtering. IEEE Trans. Control Syst. Technol. 2016, 25, 278–285. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, M.; Wang, W.; Zhang, Y.; An, B. Trajectory tracking control of wearable upper limb rehabilitation robot based on Laguerre model predictive control. Robot. Auton. Syst. 2024, 179, 104745. [Google Scholar] [CrossRef]
- Bao, X.; Sheng, Z.; Dicianno, B.E.; Sharma, N. A Tube-Based Model Predictive Control Method to Regulate a Knee Joint with Functional Electrical Stimulation and Electric Motor Assist. IEEE Trans. Control Syst. Technol. 2020, 29, 2180–2191. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.A.; Ponce, P.; Molina, A. ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton. Soft Comput. 2016, 21, 571–584. [Google Scholar] [CrossRef]
- Hasan, S. Radial basis function-based exoskeleton robot controller development. IET Cyber-Syst. Robot. 2022, 4, 228–250. [Google Scholar] [CrossRef]
- Hasan, S. Deep Learning Technology-Based Exoskeleton Robot Controller Development. arXiv 2022, arXiv:2209.12133v2. [Google Scholar]
- Huang, M.; Huang, X.; Tu, X.; Li, Z.; Wen, Y. An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis. Clust. Comput. 2016, 19, 1987–2000. [Google Scholar] [CrossRef]
- Dan, Y.; Ge, Y.; Wang, A.; Li, Z. Human-Gait-Based Tracking Control for Lower Limb Exoskeleton Robot. J. Robot. Mechatron. 2022, 34, 615–621. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, W.; Wang, L.; Zhang, W.; Feng, Y.; Ding, X. Joint-Angle Adaptive Coordination Control of a Serial-Parallel Lower Limb Rehabilitation Exoskeleton. IEEE Trans. Med. Robot. Bionics 2022, 4, 775–784. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J. Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton. IEEE/CAA J. Autom. Sin. 2020, 7, 1478–1488. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Cao, Y.; Xiong, C.-H.; Mohammed, S. Echo State Network-Enhanced Super-Twisting Control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles. IEEE/ASME Trans. Mechatron. 2022, 27, 5107–5118. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Tian, Y.; Caldwell, D.G. Task performance-based adaptive velocity assist-as-needed control for an upper limb exoskeleton. Biomed. Signal Process. Control 2022, 73, 103474. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q. Real-Time Locomotion Mode Recognition and Assistive Torque Control for Unilateral Knee Exoskeleton on Different Terrains. IEEE/ASME Trans. Mechatron. 2020, 25, 2722–2732. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Chen, B.; Wu, H. Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 2018, 53, 85–94. [Google Scholar] [CrossRef]
- Asl, H.J.; Narikiyo, T.; Kawanishi, M. Neural network-based bounded control of robotic exoskeletons without velocity measurements. Control Eng. Pract. 2018, 80, 94–104. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, D.; Dong, X. Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 2018, 323, 256–264. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Xiong, C. Single-Layer Learning-Based Predictive Control with Echo State Network for Pneumatic-Muscle-Actuators-Driven Exoskeleton. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 80–90. [Google Scholar] [CrossRef]
- Aliman, N.; Ramli, R.; Haris, S.M.; Amiri, M.S.; Van, M. A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton. Eng. Sci. Technol. Int. J. 2022, 35, 101097. [Google Scholar] [CrossRef]
- Giovacchini, F.; Vannetti, F.; Fantozzi, M.; Cempini, M.; Cortese, M.; Parri, A.; Yan, T.; Lefeber, D.; Vitiello, N. A light-weight active orthosis for hip movement assistance. Robot. Auton. Syst. 2015, 73, 123–134. [Google Scholar] [CrossRef]
- Huang, P.; Li, Z.; Zhou, M.; Li, X.; Cheng, M. Fuzzy Enhanced Adaptive Admittance Control of a Wearable Walking Exoskeleton with Step Trajectory Shaping. IEEE Trans. Fuzzy Syst. 2022, 30, 1541–1552. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S.; Wang, A.; Li, W.; Ma, Z.; Yue, X. Humanoid control of lower limb exoskeleton robot based on human gait data with sliding mode neural network. CAAI Trans. Intell. Technol. 2022, 7, 606–616. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Q.; Li, T.; Yan, Y. Output Constrained Control of Lower Limb Exoskeleton Based on Knee Motion Probabilistic Model with Finite-Time Extended State Observer. IEEE/ASME Trans. Mechatron. 2023, 28, 2305–2316. [Google Scholar] [CrossRef]
- Park, K.-W.; Choi, J.; Kong, K. Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton. IEEE Trans. Ind. Electron. 2022, 70, 646–656. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Zheng, C.; Zhu, L.; Wang, Y. Research on Mechanical Leg Structure Design and Control System of Lower Limb Exoskeleton Rehabilitation Robot Based on Magnetorheological Variable Stiffness and Damping Actuator. Actuators 2024, 13, 132. [Google Scholar] [CrossRef]
- Gordleeva, S.Y.; Lobov, S.A.; Grigorev, N.A.; Savosenkov, A.O.; Shamshin, M.O.; Lukoyanov, M.V.; Khoruzhko, M.A.; Kazantsev, V.B. Real-Time EEG–EMG Human–Machine Interface-Based Control System for a Lower-Limb Exoskeleton. IEEE Access 2020, 8, 84070–84081. [Google Scholar] [CrossRef]
- Villa-Parra, A.C.; Delisle-Rodriguez, D.; Botelho, T.; Mayor, J.J.V.; Delis, A.L.; Carelli, R.; Neto, A.F.; Bastos, T.F. Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG. Res. Biomed. Eng. 2018, 34, 198–210. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Chen, G.; Yu, H. Multi-modal control scheme for rehabilitation robotic exoskeletons. Int. J. Robot. Res. 2017, 36, 759–777. [Google Scholar] [CrossRef]
- Kumar, S.; Wöhrle, H.; Trampler, M.; Simnofske, M.; Peters, H.; Mallwitz, M.; Kirchner, E.A.; Kirchner, F. Modular Design and Decentralized Control of the Recupera Exoskeleton for Stroke Rehabilitation. Appl. Sci. 2019, 9, 626. [Google Scholar] [CrossRef]
Degrees of Freedom (DOF) | Control Techniques | Reference |
---|---|---|
12 | Time-delay estimation-based computed torque control with adaptive RBFNN compensator system. | [13] |
6 | Adaptive RBF neural network-computed torque control system for pediatric gait exoskeletons. | [14] |
6 | Polynomial Chaos Expansion-integrated computed torque control system for Stewart platform rehabilitation. | [19] |
2 | Modified computed torque control system with fractional-order derivatives for PAM-based orthosis. | [15] |
12 | Adaptive computed torque control system with RBF neural networks for exoskeletons. | [18] |
18 | Quadratic programming-based computed torque control system for sit-to-stand exoskeletons. | [16] |
7 | Realistic model reference computed torque controller for adaptive exoskeleton rehabilitation robotics. | [17] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
Not Specified | Impedance learning-based hybrid adaptive control system for upper-limb robots. | [20] |
4 | Compensation-corrective adaptive control system for upper-limb robotic assistance. | [21] |
4 | Synergy-inspired adaptive control system for hybrid FES-powered exoskeleton gait restoration. | [23] |
2 | Adaptive frequency oscillator-based control system for hemiplegic gait rehabilitation exoskeleton. | [22] |
7 | Direct adaptive control system for 7-DOF lower extremity rehabilitation exoskeleton. | [26] |
4 | Multi-axis self-tuning control system for motor-driven lower-limb exoskeleton. | [25] |
Not Specified | Adaptive interaction torque-based assist-as-needed control system with nonlinear observer. | [24] |
4 | Switched concurrent learning adaptive control system for hybrid treadmill exoskeletons. | [27] |
Not Specified | Control system with adaptive drive for medical lower-limb exoskeleton. | [28] |
8 | Gait deviation correction method-based control system for stroke rehabilitation exoskeletons. | [29] |
4 | Genetic algorithm-based parameter estimation system for hip-knee exoskeleton control. | [30] |
4 | Optimally initialized incremental model reference adaptive control system for exoskeletons. | [31] |
1 | Single-parameter adaptive fuzzy control system for pneumatic lower-limb exoskeletons. | [32] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
7 | Differential flatness-based control system for smart upper-limb rehabilitation exoskeleton. | [33] |
Not Specified | Closed-loop kinematic and indirect force control system for cable-driven knee exoskeleton. | [35] |
Not Specified | Adaptive central pattern generator-based nonlinear control system for lower-limb exoskeletons. | [36] |
5 | Generalized proportional integral control system for hip-joint rehabilitation robot. | [37] |
2 | Deterministic adaptive robust control system with fuzzy optimization for 2-DOF exoskeletons. | [38] |
6 | Series elastic actuator with clutch control system for hip exoskeletons. | [40] |
1 | Fractional multi-loop active disturbance rejection control system for knee exoskeletons. | [39] |
3 | Adaptive robust control system for 3DOF lower-limb rehabilitation robot. | [34] |
Not Specified | Multi-level adaptive control system with ACPG and TDE for rehabilitation exoskeletons. | [41] |
2 | Active disturbance rejection control system with ESO for gait tracking exoskeletons. | [43] |
2 | Leakage-type adaptive robust control system for uncertain lower-limb exoskeletons. | [42] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
5 | Adaptive neural network-based predefined-time sliding mode control for upper-limb robots. | [44] |
7 | Extended state observer-based nonlinear terminal sliding mode control for exoskeletons. | [45] |
4 | Linear extended state observer-based fast terminal sliding mode control for hip exoskeletons. | [46] |
Not Specified | Sliding mode control system with ADAMS/Simulink co-simulation for lower-limb exoskeletons. | [47] |
8 | Eight-DOF lower-limb exoskeleton with super-twisting sliding mode control system. | [48] |
7 | Fractional-order finite-time robust control system for upper-limb rehabilitation exoskeletons. | [50] |
2 | Adaptive fractional-order fast terminal sliding mode control for gait tracking exoskeletons. | [51] |
7 | Sliding mode control system with chattering suppressor for lower-limb exoskeletons. | [49] |
3 | Non-singular fast terminal sliding mode control system for 2PPR-2PRP rehabilitation manipulator. | [52] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
2 | Fuzzy logic-based optimized stimulation control system for upper-limb rehabilitation. | [53] |
2 | Fuzzy logic control system for twin-double pendulum lower-limb exoskeleton. | [54] |
6 | Fuzzy radial-based impedance control system for six-DOF lower-limb exoskeletons. | [55] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
10 | Zero Moment Point preview control with multi-modal EEG/EMG sensors for autonomous exoskeleton. | [56] |
6 | Linear Quadratic Gaussian and Unscented Kalman Filter control system for compliant lower-limb exoskeletons. | [57] |
Not Specified | Online Learning LQR with adaptive iterative learning control for gait exoskeleton. | [58,59] |
7 | Linear Quadratic Regulator control system for trajectory tracking in lower-limb exoskeletons. | [59] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
Not Specified | Proportional-differential control system for lower-limb exoskeleton trajectory tracking. | [60] |
Not Specified | Regression-based open-loop motor control system for cable-driven exoskeletons. | [61] |
4 | Proportional-derivative feedback control system for lower-limb exoskeleton swing dynamics. | [62] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
4 | PID-controlled omnidirectional mobile exoskeleton for lower-limb rehabilitation. | [63] |
4 | Differential inverse kinematics with PID control for redundant 4R exoskeleton shoulder joint. | [71] |
6 | Hierarchical control system with model-based low-level torque control for upper-limb exoskeletons. | [68] |
3 | Fractional PID control system with IMU-based joint angle estimation for 3-DOF upper-limb exoskeleton. | [64] |
Not Specified | High-level gait control with low-level motor control for modular lower-limb exoskeleton. | [66] |
2 | Optimized PID control system for 2-DOF upper-limb rehabilitation exoskeleton using PSO and ABC. | [69] |
5 | Energy-storing mechanism with PID control system for spinal cord injury rehabilitation exoskeleton. | [67] |
2 | Interaction force feedback control system with PID for multi-SISO exoskeleton robots. | [70] |
5 | PID and impedance control system for five-DOF robotic hip rehabilitation device. | [65] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
8 | Variable-admittance assist-as-needed control system for upper-limb exoskeletons. | [72] |
6 | Admittance control system with interaction force measurement for adaptive lower-limb rehabilitation robot. | [73] |
Not Specified | Adaptive admittance control system for human–robot interaction in robotic exoskeletons. | [74] |
7 | Adaptive admittance control with model reference design and inverse filtering for pHRI. | [75] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
2 | Laguerre function-based model predictive control for trajectory tracking in upper-limb exoskeletons. | [76,77] |
Not Specified | Tube-based nonlinear model predictive control for knee joint regulation in neuro-prosthesis systems. | [77] |
8 | ANFIS and model predictive control for reconfigurable lower-limb exoskeletons. | [78] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
4 | Neural network-based sliding mode control for pneumatic artificial muscle-powered robotic orthosis. | [81] |
6 | Adaptive radial basis function network with feed-forward control for lower-limb exoskeletons. | [82] |
7 | Radial basis function neural network-based control system for lower-limb exoskeletons. | [79] |
7 | Deep Learning-based hybrid control system with PD feedback for lower-limb exoskeletons. | [80] |
3 | Radial basis function neural network-based adaptive coordination control for lower-limb exoskeleton. | [83] |
Not Specified | Echo State Network-enhanced super-twisting control for pneumatic muscle-driven gait exoskeleton. | [85] |
7 | RBFN-based neural-fuzzy adaptive control for upper-limb rehabilitation exoskeletons. | [88] |
2 | Neural network-based bounded control for robotic exoskeletons without velocity measurements. | [89] |
7 | Task performance-based adaptive velocity assist-as-needed control for upper-limb exoskeleton. | [86] |
Not Specified | Neural-network-based nonlinear model predictive control for pneumatic muscle actuator-driven exoskeleton. | [84] |
Not Specified | Enhanced neural network control with repetitive learning for lower-limb rehabilitation exoskeletons. | [90] |
2 | Single-layer learning-based predictive control with Echo State Network for PMA-driven exoskeletons. | [91] |
Not Specified | Hierarchical control system with real-time locomotion mode recognition for knee exoskeleton. | [87] |
Degrees of Freedom (DOF) | Control Technique | Reference |
---|---|---|
Not Specified | Adaptive-fuzzy-PD control system with online tuning for lower-limb exoskeletons. | [92] |
Not Specified | Hybrid torque control with adaptive oscillators for bilateral active pelvis exoskeleton. | [93] |
10 | Fuzzy-enhanced adaptive admittance control for wearable exoskeletons with step trajectory shaping. | [94] |
2 | Sliding mode neural network control system for humanoid lower-limb exoskeletons. | [95] |
2 | Probabilistic knee motion model with finite-time observer for exoskeleton control. | [96] |
Not Specified | Hybrid Filtered Disturbance Observer control system for adaptive exoskeleton motion stabilization. | [97] |
1 | Fuzzy-switch damping control system with magnetorheological actuators for exoskeleton stability. | [98] |
Not Specified | Motion-intention recognition control system using sEMG signals for knee exoskeleton rehabilitation. | [100] |
1 | Multi-modal control scheme with SEAs for adaptable rehabilitation exoskeleton operation. | [101] |
Not Specified | EEG-EMG multimodal control system for real-time lower-limb exoskeleton rehabilitation. | [99] |
7 | Model reference computed torque controller for adaptive lower-limb exoskeleton rehabilitation. | [12] |
3 | Hybrid modular control system with decentralized FPGA-based actuators for exoskeleton rehabilitation. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashud, G.; Hasan, S.; Alam, N. Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review. Actuators 2025, 14, 108. https://doi.org/10.3390/act14030108
Mashud G, Hasan S, Alam N. Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review. Actuators. 2025; 14(3):108. https://doi.org/10.3390/act14030108
Chicago/Turabian StyleMashud, Gazi, SK Hasan, and Nafizul Alam. 2025. "Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review" Actuators 14, no. 3: 108. https://doi.org/10.3390/act14030108
APA StyleMashud, G., Hasan, S., & Alam, N. (2025). Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review. Actuators, 14(3), 108. https://doi.org/10.3390/act14030108