Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways
<p>Volcano plot showing differentially expressed genes (DEGs) in SARS-CoV-2-infected Calu-3 cells vs. control (uninfected) cells. The most expressive DEGs are identified. de: Differential expression. down: Down-regulated. no_sig: Non-significant. up: Up-regulated.</p> "> Figure 2
<p>Heatmap of the top 20 DEGs in Calu-3 cells. Expression patterns of genes are compared between control (C1, C2, and C5) and infected (I1, I2, and I5) samples. For each gene, the relative values of gene expression are depicted in a blue-red scale, in which red tones are representative of higher expression, and blue tones, of lower expression. FPKM: Fragments per Kilobase Million.</p> "> Figure 3
<p>Functional enrichment of up-regulated DEGs. Enriched terms for Gene Ontology’s (GO) biological process (<b>A</b>). Enriched terms for KEGG Pathways and WikiPathways (<b>B</b>).</p> "> Figure 4
<p>Calu-3 cells 24 h after SARS-CoV-2 infection. The transcriptional features of the infected cells indicate a metabolic model with the activation of inflammatory and antiviral signaling, in addition to both apoptotic and cytoprotective/proliferative signaling. Up-regulated genes include a potential SARS-CoV-2 receptor (EPHA4), a chaperone (HSPA6), pro-inflammatory transcription factors (IRF3 and FOS), and inflammatory mediators (ACE, MMP17, IL6, SECTM1, and ISG15).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Infection and RNA Extraction
2.3. Library Construction and Next-Generation Sequencing
2.4. RNA-Seq Data Analysis
2.4.1. Processing and Filtering
2.4.2. Determination of Differentially Expressed Genes (DEGs)
2.5. Functional Enrichment Analysis
2.6. Functional Enrichment Analysis
3. Results
3.1. Transcriptional Profile of SARS-CoV-2-Infected Cells
3.2. Differentially Expressed Genes (DEGs)
3.3. Functional Enrichment Analysis
3.3.1. Gene Ontology
3.3.2. Pathways Enrichment
4. Discussion
4.1. Neutrophil Extracellular Trap Formation (NETs) and Autoimmunity
4.2. Viral Carcinogenesis and Immune-Evasion
4.3. Coronavirus Disease
4.4. Other Immune-Related Pathways
4.5. Metabolic Transcriptional Model and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. 2023. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---17-august-2023 (accessed on 24 August 2023).
- Samy, A.; Maher, M.A.; Abdelsalam, N.A.; Badr, E. SARS-CoV-2 Potential Drugs, Drug Targets, and Biomarkers: A Viral-Host Interaction Network-Based Analysis. Sci. Rep. 2022, 12, 11934. [Google Scholar] [CrossRef] [PubMed]
- Aiewsakun, P.; Phumiphanjarphak, W.; Ludowyke, N.; Purwono, P.B.; Manopwisedjaroen, S.; Srisaowakarn, C.; Ekronarongchai, S.; Suksatu, A.; Yuvaniyama, J.; Thitithanyanont, A. Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells. Genome Biol. Evol. 2023, 15, evad035. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue Susceptibility to SARS-CoV-2 Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Kreft, M.E.; Jerman, U.D.; Lasič, E.; Hevir-Kene, N.; Rižner, T.L.; Peternel, L.; Kristan, K. The Characterization of the Human Cell Line Calu-3 under Different Culture Conditions and Its Use as an Optimized In Vitro Model to Investigate Bronchial Epithelial Function. Eur. J. Pharm. Sci. 2015, 69, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Xie, Y.; Tang, L.S.; Pu, D.; Zhu, Y.J.; Liu, J.Y.; Ma, X.L. Therapeutic Targets and Interventional Strategies in COVID-19: Mechanisms and Clinical Studies. Signal Transduct. Target. Ther. 2021, 6, 317. [Google Scholar] [CrossRef] [PubMed]
- Bakowski, M.A.; Beutler, N.; Wolff, K.C.; Kirkpatrick, M.G.; Chen, E.; Nguyen, T.T.H.; Riva, L.; Shaabani, N.; Parren, M.; Ricketts, J.; et al. Drug Repurposing Screens Identify Chemical Entities for the Development of COVID-19 Interventions. Nat. Commun. 2021, 12, 3309. [Google Scholar] [CrossRef]
- Baczenas, J.J.; Andersen, H.; Rashid, S.; Yarmosh, D.; Puthuveetil, N.; Parker, M.; Bradford, R.; Florence, C.; Stemple, K.J.; Lewis, M.G.; et al. Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses 2021, 13, 2434. [Google Scholar] [CrossRef]
- Banerjee, A.; El-Sayes, N.; Budylowski, P.; Jacob, R.A.; Richard, D.; Maan, H.; Aguiar, J.A.; Demian, W.L.; Baid, K.; D’Agostino, M.R.; et al. Experimental and Natural Evidence of SARS-CoV-2-Infection-Induced Activation of Type I Interferon Responses. iScience 2021, 24, 102477. [Google Scholar] [CrossRef]
- Thair, S.A.; He, Y.D.; Hasin-Brumshtein, Y.; Sakaram, S.; Pandya, R.; Toh, J.; Rawling, D.; Remmel, M.; Coyle, S.; Dalekos, G.N.; et al. Transcriptomic Similarities and Differences in Host Response between SARS-CoV-2 and Other Viral Infections. iScience 2021, 24, 101947. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, Y.; Sucgang, R.; Ramani, S.; Corry, D.; Kheradmand, F.; Creighton, C.J. Meta-Analysis of Host Transcriptional Responses to SARS-CoV-2 Infection Reveals Their Manifestation in Human Tumors. Sci. Rep. 2021, 11, 2459. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Moller, R.; Al, E. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045. [Google Scholar] [CrossRef]
- Wyler, E.; Mosbauer, K.; Franke, V.; Diag, A.; Gottula, L.T.; Arsiè, R.; Kilronomos, F.; Koppstein, D.; Hönzke, K.; Ayoub, S.; et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021, 24, 102151. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.M.; Subbannayya, Y.; Kim, H.; Hagen, L.; Górna, M.W.; Nieminen, A.I.; Bjørås, M.; Espevik, T.; Kainov, D.; Kandasamy, R.K. Multi-OMICs Landscape of SARS-CoV-2-Induced Host Responses in Human Lung Epithelial Cells. IScience 2023, 26, 105895. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ye, F.; Wu, A.; Yang, R.; Pan, M.; Sheng, J.; Zhu, W.; Mao, L.; Wang, M.; Xia, Z.; et al. Comparative Transcriptome Analysis Reveals the Intensive Early Stage Responses of Host Cells to SARS-CoV-2 Infection. Front. Microbiol. 2020, 11, 593857. [Google Scholar] [CrossRef] [PubMed]
- Shaath, H.; Alajez, N.M. Computational and Transcriptome Analyses Revealed Preferential Induction of Chemotaxis and Lipid Synthesis by SARS-CoV-2. Biology 2020, 9, 260. [Google Scholar] [CrossRef]
- Harcourt, J.L.; Caidi, H.; Anderson, L.J.; Haynes, L.M. Evaluation of the Calu-3 Cell Line as a Model of In Vitro Respiratory Syncytial Virus Infection. J. Virol. Methods 2011, 174, 144–149. [Google Scholar] [CrossRef]
- Capes-Davis, A.; Theodosopoulos, G.; Atkin, I.; Drexler, H.G.; Kohara, A.; MacLeod, R.A.F.; Masters, J.R.; Nakamura, Y.; Reid, Y.A.; Reddel, R.R.; et al. Check Your Cultures! A List of Cross-Contaminated or Misidentified Cell Lines. Int. J. Cancer 2010, 127, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 July 2022).
- Dobin, A.; Gingeras, T.R. Mapping RNA-Seq with STAR. Curr. Protoc. Bioinform. 2016, 51, 11–14. [Google Scholar]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Chen, E.; Tan, C.; Kou, Y.; Duan, Q.; Wang, Z.; Meireles, G.; Clark, N.; Ma’ayan, A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool. BMC Bioinform. 2013, 14, 617–619. [Google Scholar] [CrossRef]
- Shi, L.; Reid, L.H.; Jones, W.D.; Shippy, R.; Warrington, J.A.; Baker, S.C.; Collins, P.J.; De Longueville, F.; Kawasaki, E.S.; Lee, K.Y.; et al. The MicroArray Quality Control (MAQC) Project Shows Inter- and Intraplatform Reproducibility of Gene Expression Measurements. Nat. Biotechnol. 2006, 24, 1151–1161. [Google Scholar] [CrossRef]
- Su, Z.; Labaj, P.; Li, S.; Thierry-Mieg, J.; Thierry-Mieg, D.; Shi, W.; Wang, C.; Schroth, G.; Setterquist, R.; Thompson, J.; et al. A Comprehensive Assessment of RNA-Seq Accuracy, Reproducibility and Information Content by the Sequencing Quality Control Consortium. Nat. Biotechnol. 2014, 32, 903–914. [Google Scholar] [CrossRef]
- Eph Nomenclature Committee. Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins. Cell 1997, 90, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Hafner, C.; Schmitz, G.; Meyer, S.; Bataille, F.; Hau, P.; Langmann, T.; Dietmaier, W.; Landthaler, M.; Vogt, T. Differential Gene Expression of Eph Receptors and Ephrins in Benign Human Tissues and Cancers. Clin. Chem. 2004, 50, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Zalpoor, H.; Akbari, A.; Nabi-Afjadi, M. Ephrin (Eph) Receptor and Downstream Signaling Pathways: A Promising Potential Targeted Therapy for COVID-19 and Associated Cancers and Diseases. Hum. Cell 2022, 35, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Zalpoor, H.; Akbari, A.; Samei, A.; Forghaniesfidvajani, R.; Kamali, M.; Afzalnia, A.; Manshouri, S.; Heidari, F.; Pornour, M.; Khoshmirsafa, M.; et al. The Roles of Eph Receptors, Ilin-1, P2X7, and CD147 in COVIDneurop-19-Associated Neurodegenerative Diseases: Inflammasome and JaK Inhibitors as Potential Promising Therapies. Cell. Mol. Biol. Lett. 2022, 27, 10. [Google Scholar] [CrossRef]
- Beaudoin, C.A.; Jamasb, A.R.; Alsulami, A.F.; Copoiu, L.; van Tonder, A.J.; Hala, S.; Bannerman, B.P.; Thomas, S.E.; Vedithi, S.C.; Torres, P.H.M.; et al. Predicted Structural Mimicry of Spike Receptor-Binding Motifs from Highly Pathogenic Human Coronaviruses. Comput. Struct. Biotechnol. J. 2021, 19, 3938–3953. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the Nomenclature of the Human Heat Shock Proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef]
- Colinet, H.; Lee, S.F.; Hoffmann, A. Temporal Expression of Heat Shock Genes during Cold Stress and Recovery from Chill Coma in Adult Drosophila Melanogaster. FEBS J. 2010, 277, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Trautinger, F.; Kindås-Mügge, I.; Knobler, R.M.; Hönigsmann, H. Stress Proteins in the Cellular Response to Ultraviolet Radiation. J. Photochem. Photobiol. B Biol. 1996, 35, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ritossa, F. Discovery of the Heat Shock Response. Cell Stress Chaperones 1996, 1, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The Evolutionary and Ecological Role of Heat Shock Proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Arrigo, A.-P. Chaperons Moléculaires et Repliement Des Protéines. Medecine/Sciences 2005, 21, 619–625. [Google Scholar] [CrossRef]
- Paladino, L.; Vitale, A.M.; Bavisotto, C.C.; de Macario, E.C.; Cappello, F.; Macario, A.J.L.; Gammazza, A.M. The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19. J. Clin. Med. 2020, 9, 3518. [Google Scholar] [CrossRef]
- Prashanth, G.; Vastrad, B.; Vastrad, C.; Kotrashetti, S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID-19 through RNA Sequencing and Bioinformatics Analysis. Bioinform. Biol. Insights 2021, 15, 11779322211067365. [Google Scholar] [CrossRef]
- Gruner, H.N.; Zhang, Y.; Shariati, K.; Yiv, N.; Hu, Z.; Wang, Y.; Fielding Hejtmancik, J.; McManus, M.T.; Tharp, K.; Ku, G. SARS-CoV-2 ORF3A Interacts with the Clic-like Chloride Channel-1 (CLCC1) and Triggers an Unfolded Protein Response. PeerJ 2023, 11, e15077. [Google Scholar] [CrossRef]
- Slentz-Kesler, K.A.; Hale, L.P.; Kaufman, R.E. Identification and Characterization of K12 (SECTM1), a Novel Human Gene That Encodes a Golgi-Associated Protein with Transmembrane and Secreted Isoforms. Genomics 1998, 47, 327–340. [Google Scholar] [CrossRef]
- Matsuda, A.; Suzuki, Y.; Honda, G.; Muramatsu, S.; Matsuzaki, O.; Nagano, Y.; Doi, T.; Shimotohno, K.; Harada, T.; Nishida, E.; et al. Large-Scale Identification and Characterization of Human Genes That Activate NF-ΚB and MAPK Signaling Pathways. Oncogene 2003, 22, 3307–3318. [Google Scholar] [CrossRef]
- Kamata, H.; Yamamoto, K.; Wasserman, G.A.; Zabinski, M.C.; Yuen, C.K.; Lung, W.Y.; Gower, A.C.; Belkina, A.C.; Ramirez, M.I.; Deng, J.C.; et al. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia. Am. J. Respir. Cell Mol. Biol. 2016, 55, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Touzelet, O.; Broadbent, L.; Armstrong, S.D.; Aljabr, W.; Cloutman-Green, E.; Power, U.F.; Hiscox, J.A. The Secretome Profiling of a Pediatric Airway Epithelium Infected with HRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins. Mol. Cell. Proteom. 2020, 19, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Milde-Langosch, K. The Fos Family of Transcription Factors and Their Role in Tumourigenesis. Eur. J. Cancer 2005, 41, 2449–2461. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.Z.; Sakamuru, S.; Zhao, J.; Ngan, D.K.; Simeonov, A.; Hall, M.D.; Xia, M.; Zheng, W.; Huang, R. Mining of High Throughput Screening Database Reveals AP-1 and Autophagy Pathways as Potential Targets for COVID-19 Therapeutics. Sci. Rep. 2021, 11, 6725. [Google Scholar] [CrossRef]
- English, W.R.; Puente, X.S.; Freije, J.M.P.; Knäuper, V.; Amour, A.; Merryweather, A.; López-Otín, C.; Murphy, G. Membrane Type 4 Matrix Metalloproteinase (MMP17) Has Tumor Necrosis Factor-α Convertase Activity but Does Not Activate pro-MMP2. J. Biol. Chem. 2000, 275, 14046–14055. [Google Scholar] [CrossRef] [PubMed]
- Rooney, A.P.; Piontkivska, H.; Nei, M. Molecular Evolution of the Nontandemly Repeated Genes of the Histone 3 Multigene Family. Mol. Biol. Evol. 2002, 19, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Seal, R.L.; Denny, P.; Bruford, E.A.; Gribkova, A.K.; Landsman, D.; Marzluff, W.F.; McAndrews, M.; Panchenko, A.R.; Shaytan, A.K.; Talbert, P.B. A Standardized Nomenclature for Mammalian Histone Genes. Epigenet. Chromatin 2022, 15, 34. [Google Scholar] [CrossRef]
- Agraz-Cibrian, J.M.; Giraldo, D.M.; Mary, F.M.; Urcuqui-Inchima, S. Understanding the Molecular Mechanisms of NETs and Their Role in Antiviral Innate Immunity. Virus Res. 2017, 228, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.S.; Wanderley, C.W.S.; Veras, F.P.; Gonçalves, A.V.; Lima, M.H.F.; Toller-Kawahisa, J.E.; Gomes, G.F.; Nascimento, D.C.; Monteiro, V.V.S.; Paiva, I.M.; et al. Gasdermin-D Activation by SARS-CoV-2 Triggers NET and Mediate COVID-19 Immunopathology. Crit. Care 2022, 26, 206. [Google Scholar] [CrossRef]
- Hoffman, R.W. T Cells in the Pathogenesis of Systemic Lupus Erythematosus. Clin. Immunol. 2004, 113, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2-Triggered Neutrophil Extracellular Traps Mediate COVID-19 Pathology. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef]
- Middleton, E.; He, X.-Y.; Denorme, F.; Campbell, R.; Ng, D.; Salvatore, S.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.; Loda, M.; et al. Neutrophil Extracellular Traps Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Cremonesi, G.; Khan, A.; Mantelli, F.; Allegretti, M.; Balk, R. Neutrophil Activation and Neutrophil Extracellular Traps (NETs) in COVID-19 ARDS and Immunothrombosis. Eur. J. Immunol. 2023, 53, 2250010. [Google Scholar] [CrossRef]
- Burdette, B.E.; Esparza, A.N.; Zhu, H.; Wang, S. Gasdermin D in Pyroptosis. Acta Pharm. Sin. B 2021, 11, 2768–2782. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Y. Pyroptosis and Respiratory Diseases: A Review of Current Knowledge. Front. Immunol. 2022, 13, 920464. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, Y.; Huang, Z.; Xu, W.; Hu, W.; Yi, L.; Liu, Z.; Chan, H.; Zeng, J.; Liu, X.; et al. SARS-CoV-2 Non-Structural Protein 6 Triggers NLRP3-Dependent Pyroptosis by Targeting ATP6AP1. Cell Death Differ. 2022, 29, 1240–1254. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Zhang, J.; Ou, F.; Wang, J.; Liu, T.; Wu, J. Disulfiram Alleviates Acute Lung Injury and Related Intestinal Mucosal Barrier Impairment by Targeting GSDMD-Dependent Pyroptosis. J. Inflamm. 2022, 19, 17. [Google Scholar] [CrossRef]
- Shahi, A.; Afzali, S.; Firoozi, Z.; Mohaghegh, P.; Moravej, A.; Hosseinipour, A.; Bahmanyar, M.; Mansoori, Y. Potential Roles of NLRP3 Inflammasome in the Pathogenesis of Kawasaki Disease. J. Cell. Physiol. 2023, 238, 513–532. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Rezaei, N. Autoimmune Complications of COVID-19. J. Med. Virol. 2022, 94, 54–62. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Park, J.; Chang, H.R.; Chang, J.; Ahn, J.; Park, H.; Park, J.; Son, N.; Kang, G.; et al. A High-Resolution Temporal Atlas of the SARS-CoV-2 Translatome and Transcriptome. Nat. Commun. 2021, 12, 5120. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin-Drubin, M.E.; Munger, K. Viruses Associated with Human Cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2008, 1782, 127–150. [Google Scholar] [CrossRef]
- Martin, D.; Gutkind, J.S. Human Tumor-Associated Viruses and New Insights into the Molecular Mechanisms of Cancer. Oncogene 2008, 27, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.S.; Chang, Y. Why Do Viruses Cause Cancer? Highlights of the First Century of Human Tumour Virology. Nat. Rev. Cancer 2010, 10, 878–889. [Google Scholar] [CrossRef]
- Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Deciphering the Relationship between SARS-CoV-2 and Cancer. Int. J. Mol. Sci. 2023, 24, 7803. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, G.; Yang, J.; Li, X.; Wang, H.; Yang, J.; Wen, H.; He, F. The Mechanism of Immune Related Signal Pathway Egr2-FasL-Fas in Transcription Regulation and Methylated Modification of Paralichthys Olivaceus under Acute Hypoxia Stress. Fish Shellfish Immunol. 2022, 123, 152–163. [Google Scholar] [CrossRef]
- DosReis, G.A.; Borges, V.M.; Zin, W.A. The Central Role of Fas-Ligand Cell Signaling in Inflammatory Lung Diseases. J. Cell. Mol. Med. 2004, 8, 285–293. [Google Scholar] [CrossRef]
- Griffith, T.S.; Brunner, T.; Fletcher, S.M.; Green, D.R.; Ferguson, T.A. Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege. Science 1995, 270, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Niehans, G.A.; Brunner, T.; Frizelle, S.P.; Liston, J.C.; Salerno, C.T.; Knapp, D.J.; Green, D.R.; Kratzke, R.A. Human Lung Carcinomas Express Fas Ligand. Cancer Res. 1997, 57, 1007–1012. [Google Scholar]
- Albertine, K.H.; Soulier, M.F.; Wang, Z.; Ishizaka, A.; Hashimoto, S.; Zimmerman, G.A.; Matthay, M.A.; Ware, L.B. Fas and Fas Ligand Are Up-Regulated in Pulmonary Edema Fluid and Lung Tissue of Patients with Acute Lung Injury and the Acute Respiratory Distress Syndrome. Am. J. Pathol. 2002, 161, 1783–1796. [Google Scholar] [CrossRef]
- Oldak, M.; Tolzmann, L.; Wnorowski, A.; Podgórska, M.J.; Silling, S.; Lin, R.; Hiscott, J.; Müller, C.S.L.; Vogt, T.; Smola, H.; et al. Differential Regulation of Human Papillomavirus Type 8 by Interferon Regulatory Factors 3 and 7. J. Virol. 2011, 85, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Abate, D.A.; Watanabe, S.; Mocarski, E.S. Major Human Cytomegalovirus Structural Protein Pp65 (PpUL83) Prevents Interferon Response Factor 3 Activation in the Interferon Response. J. Virol. 2004, 78, 10995–11006. [Google Scholar] [CrossRef] [PubMed]
- Binder, M.; Kochs, G.; Bartenschlager, R.; Lohmann, V. Hepatitis C Virus Escape from the Interferon Regulatory Factor 3 Pathway by a Passive and Active Evasion Strategy. Hepatology 2007, 46, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pagano, J.S. IRF-7, a New Interferon Regulatory Factor Associated with Epstein-Barr Virus Latency. Mol. Cell. Biol. 1997, 17, 5748–5757. [Google Scholar] [CrossRef]
- Lei, X.; Dong, X.; Ma, R.; Wang, W.; Xiao, X.; Tian, Z.; Wang, C.; Wang, Y.; Li, L.; Ren, L.; et al. Activation and Evasion of Type I Interferon Responses by SARS-CoV-2. Nat. Commun. 2020, 11, 3810. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Chen, Y.; Wang, H.Y.; Wang, R.F. Mechanisms and Pathways of Innate Immune Activation and Regulation in Health and Cancer. Hum. Vaccines Immunother. 2014, 10, 3270–3285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, X.; Chen, Z.; Zhang, S. Novel GIRlncRNA Signature for Predicting the Clinical Outcome and Therapeutic Response in NSCLC. Front. Pharmacol. 2022, 13, 937531. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Yang, R.; Wang, Q.; Liu, X.; Ma, M.; Li, Y.; Wu, S. Identification of LncRNA-Associated CeRNA Network in High-Grade Serous Ovarian Cancer Metastasis. Epigenomics 2020, 12, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Chu, W.; Yang, W.; Cheng, Y.; Chu, C.; Pan, X.; Ye, J.; Cao, J.; Gan, S.; Cui, X. Identification of RNA Transcript Makers Associated with Prognosis of Kidney Renal Clear Cell Carcinoma by a Competing Endogenous RNA Network Analysis. Front. Genet. 2020, 11, 540094. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Zhou, H.; Wang, J.; Xing, X. Prediction of Prognosis and Chemotherapeutic Sensitivity Based on Cuproptosis-Associated LncRNAs in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes 2023, 14, 1381. [Google Scholar] [CrossRef]
- Bian, B.; Li, L.; Ke, X.; Chen, H.; Liu, Y.; Zheng, N.; Zheng, Y.; Ma, Y.; Zhou, Y.; Yang, J.; et al. Urinary Exosomal Long Non- Coding RNAs as Noninvasive Biomarkers for Diagnosis of Bladder Cancer by RNA Sequencing. Front. Oncol. 2022, 12, 976329. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lu, X.; Ma, J.; Zhou, Q.; Tang, R.; Fu, Z.; Wang, F.; Lv, M.; Lu, C. Comprehensive Analysis of LncRNA and MiRNA Regulatory Network Reveals Potential Prognostic Non-Coding RNA Involved in Breast Cancer Progression. Front. Genet. 2021, 12, 621809. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Z. Analysis of Competing Endogenous RNA Network to Identify the Key RNAs Associated with Prostate Adenocarcinoma. Pathol. Res. Pract. 2018, 214, 1811–1817. [Google Scholar] [CrossRef]
- Stingi, A.; Cirillo, L. SARS-CoV-2 Infection and Cancer: Evidence for and against a Role of SARS-CoV-2 in Cancer Onset. BioEssays 2021, 43, 2000289. [Google Scholar] [CrossRef] [PubMed]
- Kittana, N. Angiotensin-Converting Enzyme 2–Angiotensin 1-7/1-9 System: Novel Promising Targets for Heart Failure Treatment. Fundam. Clin. Pharmacol. 2018, 32, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Banu, N.; Panikar, S.S.; Leal, L.R.; Leal, A.R. Protective Role of ACE2 and Its Downregulation in SARS-CoV-2 Infection Leading to Macrophage Activation Syndrome: Therapeutic Implications. Life Sci. 2020, 256, 117905. [Google Scholar] [CrossRef]
- El-Arif, G.; Khazaal, S.; Farhat, A.; Harb, J.; Annweiler, C.; Wu, Y.; Cao, Z.; Kovacic, H.; Khattar, Z.A.; Fajloun, Z.; et al. Angiotensin II Type I Receptor (AT1R): The Gate towards COVID-19-Associated Diseases. Molecules 2022, 27, 2048. [Google Scholar] [CrossRef]
- Ashour, L. Roles of the ACE/Ang II/AT1R Pathway, Cytokine Release, and Alteration of Tight Junctions in COVID-19 Pathogenesis. Tissue Barriers 2023, 11, 192–209. [Google Scholar] [CrossRef]
- Schubert, K.; Karousis, E.D.; Jomaa, A.; Scaiola, A.; Echeverria, B.; Gurzeler, L.A.; Leibundgut, M.; Thiel, V.; Mühlemann, O.; Ban, N. SARS-CoV-2 Nsp1 Binds the Ribosomal MRNA Channel to Inhibit Translation. Nat. Struct. Mol. Biol. 2020, 27, 959–966. [Google Scholar] [CrossRef]
- Thoms, M.; Buschauer, R.; Ameismeier, M.; Koepke, L.; Denk, T.; Hirschenberger, M.; Kratzat, H.; Hayn, M.; MacKens-Kiani, T.; Cheng, J.; et al. Structural Basis for Translational Shutdown and Immune Evasion by the Nsp1 Protein of SARS-CoV-2. Science 2020, 369, 1249–1256. [Google Scholar] [CrossRef]
- Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.T.; Grishin, N.V.; et al. Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation. Science 2015, 347, aaa2630. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Cao, Z.; Xie, X.; Zhang, X.; Chen, J.Y.C.; Wang, H.; Menachery, V.D.; Rajsbaum, R.; Shi, P.Y. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 2020, 33, 108234. [Google Scholar] [CrossRef]
- Karaulov, A.V.; Shulzhenko, A.E.; Karsonova, A. V Expression of IFN-Inducible Genes with Antiviral Function OAS1 and MX1 in Health and under Conditions of Recurrent Herpes Simplex Infection. Bull. Exp. Biol. Med. 2017, 163, 370–373. [Google Scholar] [CrossRef]
- Han, L.; Wei, M.; Jian, Z.; Yi, D.; Jing, Z.; Ling, M.; Xue, N.; Zhang, J.; Gao, C.; Wang, P.H. SARS-CoV-2 ORF9b Antagonizes Type I and III Interferons by Targeting Multiple Components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and CGAS-STING Signaling Pathways. J. Med. Virol. 2021, 93, 5376–5389. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, Z.; Xiao, X.; Tian, Z.; Dong, X.; Wang, C.; Li, L.; Ren, L.; Lei, X.; Xiang, Z.; et al. SARS-CoV-2 Nsp12 Attenuates Type I Interferon Production by Inhibiting IRF3 Nuclear Translocation. Cell. Mol. Immunol. 2021, 18, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Allen, I.C.; Moore, C.B.; Schneider, M.; Lei, Y.; Daves, B.K.; Scull, M.A.; Gris, D.; Roney, K.E.; Zimmermann, A.G.; Bowzard, J.B. NLRX1 Protein Attenuates Inflammatory Responses to Virus Infection by Interfering with the RIG-I-MAVS Signaling Pathway and TRAF6 Ubiquitin Ligase. Immunity 2011, 34, 854–865. [Google Scholar] [CrossRef]
- Diao, F.; Li, S.; Tian, Y.; Zhang, M.; Xu, L.G.; Zhang, Y.; Wang, R.P.; Chen, D.; Zhai, Z.; Zhong, B.; et al. Negative Regulation of MDA5- but Not RIG-I-Mediated Innate Antiviral Signaling by the Dihydroxyacetone Kinase. Proc. Natl. Acad. Sci. USA 2007, 104, 11706–11711. [Google Scholar] [CrossRef] [PubMed]
- Komuro, A.; Bamming, D.; Horvath, C.M. Negative Regulation of Cytoplasmic RNA-Mediated Antiviral Signaling. Cytokine 2008, 43, 350–358. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.H.; Gringhuis, S.I. C-Type Lectin Receptors in the Control of T Helper Cell Differentiation. Nat. Rev. Immunol. 2016, 16, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Raulf, M.K.; Lepenies, B. C-Type Lectins: Their Network and Roles in Pathogen Recognition and Immunity. Histochem. Cell Biol. 2017, 147, 223–237. [Google Scholar] [CrossRef]
- Weber, A.N.R.; Bittner, Z.A.; Shankar, S.; Liu, X.; Chang, T.H.; Jin, T.; Tapia-Abellán, A. Recent Insights into the Regulatory Networks of NLRP3 Inflammasome Activation. J. Cell Sci. 2020, 133, jcs248344. [Google Scholar] [CrossRef]
- Den Dunnen, J.; Gringhuis, S.I.; Geijtenbeek, T.B.H. Innate Signaling by the C-Type Lectin DC-SIGN Dictates Immune Responses. Cancer Immunol. Immunother. 2009, 58, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Mesman, A.W.; Geijtenbeek, T.B.H. Fucose-Specific DC-SIGN Signalling Directs T Helper Cell Type-2 Responses via IKKε-and CYLD-Dependent Bcl3 Activation. Nat. Commun. 2014, 5, 3898. [Google Scholar] [CrossRef] [PubMed]
- Eyerich, S.; Wagener, J.; Wenzel, V.; Scarponi, C.; Pennino, D.; Albanesi, C.; Schaller, M.; Behrendt, H.; Ring, J.; Schmidt-Weber, C.B.; et al. IL-22 and TNF-α Represent a Key Cytokine Combination for Epidermal Integrity during Infection with Candida Albicans. Eur. J. Immunol. 2011, 41, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Van Der Vlist, M.; Klaver, E.J.; Van Die, I.; Vriend, L.E.M.; De Jong, M.A.W.P.; Geijtenbeek, T.B.H. Fucose-Based PAMPs Prime Dendritic Cells for Follicular T Helper Cell Polarization via DC-SIGN-Dependent IL-27 Production. Nat. Commun. 2014, 5, 5074. [Google Scholar] [CrossRef]
- Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular Mechanisms Regulating NLRP3 Inflammasome Activation. Cell. Mol. Immunol. 2016, 13, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.; El Sanadi, C.; Kaiser, W.J.; Mocarski, E.S.; Dubyak, G.R. Pro-Apoptotic Chemotherapeutic Drugs Induce Non-Canonical Processing and Release of IL-1β via Caspase-8 in Dendritic Cells. J. Immunol. 2013, 191, 4789–4803. [Google Scholar] [CrossRef]
- Masumoto, J.; Dowds, T.A.; Schaner, P.; Chen, F.F.; Ogura, Y.; Li, M.; Zhu, L.; Katsuyama, T.; Sagara, J.; Taniguchi, S.; et al. ASC Is an Activating Adaptor for NF-ΚB and Caspase-8-Dependent Apoptosis. Biochem. Biophys. Res. Commun. 2003, 303, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Dupaul-Chicoine, J.; Saleh, M. A New Path to IL-1β Production Controlled by Caspase-8. Nat. Immunol. 2012, 13, 211–212. [Google Scholar] [CrossRef]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal Developmental Pathways for the Generation of Pathogenic Effector TH17 and Regulatory T Cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef] [PubMed]
- De Biasi, S.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Gozzi, L.; Iannone, A.; Lo Tartaro, D.; Mattioli, M.; et al. Marked T Cell Activation, Senescence, Exhaustion and Skewing towards TH17 in Patients with COVID-19 Pneumonia. Nat. Commun. 2020, 11, 3434. [Google Scholar] [CrossRef]
- Bulek, K.; Swaidani, S.; Aronica, M.; Li, X. Epithelium: The Interplay between Innate and Th2 Immunity. Immunol. Cell Biol. 2010, 88, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Saenz, S.A.; Taylor, B.C.; Artis, D. Welcome to the Neighborhood: Epithelial Cell-Derived Cytokines License Innate and Adaptive Immune Responses at Mucosal Sites. Immunol. Rev. 2008, 226, 172–190. [Google Scholar] [CrossRef] [PubMed]
- Nathan, A.T.; Peterson, E.A.; Chakir, J.; Wills-Karp, M. Innate Immune Responses of Airway Epithelium to House Dust Mite Are Mediated through β-Glucan–Dependent Pathways. J. Allergy Clin. Immunol. 2009, 123, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; He, L.; Ding, N.; Sun, W.; Qiu, L.; Xu, L.; Jia, A.; Peng, C.; Zhang, D.; Xiang, X. Bronchial Epithelial Cells of Young and Old Mice Directly Regulate the Differentiation of Th2 and Th17. Biosci. Rep. 2019, 39, BSR20181948. [Google Scholar] [CrossRef]
- Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Chandler, K.B.; Xia, C.; Feldman, J.; et al. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1156–1165. [Google Scholar] [CrossRef]
- Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science 2020, 369, 330–333. [Google Scholar] [CrossRef]
- Sun, Z.; Ren, K.; Zhang, X.; Chen, J.; Jiang, Z.; Jiang, J.; Ji, F.; Ouyang, X.; Li, L. Mass Spectrometry Analysis of Newly Emerging Coronavirus HCoV-19 Spike Protein and Human ACE2 Reveals Camouflaging Glycans and Unique Post-Translational Modifications. Engineering 2020, 7, 1441–1451. [Google Scholar] [CrossRef]
- Shibabaw, T. Inflammatory Cytokine: Il-17a Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J. Inflamm. Res. 2020, 13, 673–680. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xiang, S.Y.; Lu, J.; Li, Y.; Zhao, S.J.; Jiang, C.W.; Liu, X.G.; Liu, Z.B.; Zhang, J. Electroacupuncture Inhibits IL-17/IL-17R and Post-Receptor MAPK Signaling Pathways in a Rat Model of Chronic Obstructive Pulmonary Disease. Acupunct. Med. 2021, 39, 663–672. [Google Scholar] [CrossRef] [PubMed]
- De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; et al. Th17-Type Cytokines, IL-6 and TNF-α Synergistically Activate STAT3 and NF-KB to Promote Colorectal Cancer Cell Growth. Oncogene 2015, 34, 3493–3503. [Google Scholar] [CrossRef] [PubMed]
- Li, J.K.; Nie, L.; Zhao, Y.P.; Zhang, Y.Q.; Wang, X.; Wang, S.S.; Liu, Y.; Zhao, H.; Cheng, L. IL-17 Mediates Inflammatory Reactions via P38/c-Fos and JNK/c-Jun Activation in an AP-1-Dependent Manner in Human Nucleus Pulposus Cells. J. Transl. Med. 2016, 14, 77. [Google Scholar] [CrossRef]
- Ho, A.W.; Garg, A.V.; Monin, L.; Simpson-Abelson, M.R.; Kinner, L.; Gaffen, S.L. The Anaphase-Promoting Complex Protein 5 (AnapC5) Associates with A20 and Inhibits IL-17-Mediated Signal Transduction. PLoS ONE 2013, 8, 70168. [Google Scholar] [CrossRef] [PubMed]
- Zepp, J.A.; Liu, C.; Qian, W.; Wu, L.; Gulen, M.F.; Kang, Z.; Li, X. TRAF4 Restricts IL-17-Mediated Pathology and Signaling Processes. J. Immunol. 2012, 189, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xia, T.; Shin, W.J.; Yu, K.M.; Jung, W.; Herrmann, A.; Foo, S.S.; Chen, W.; Zhang, P.; Lee, J.S.; et al. Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. mBio 2022, 13, e0040222. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.S.; Sun, H.; Zhu, H.P.; Li, G.L.; Xu, F.; Lu, H.J.; Tang, A.; Wu, B.B.; Li, Y.D.; Yao, P.P.; et al. Comparative Transcriptomic Analyzes of Human Lung Epithelial Cells Infected with Wild-Type SARS-CoV-2 and Its Variant with a 12-Bp Missing in the E Gene. Front. Microbiol. 2023, 13, 1079764. [Google Scholar] [CrossRef]
- Al-Lamki, R.S.; Mayadas, T.N. TNF Receptors: Signaling Pathways and Contribution to Renal Dysfunction. Kidney Int. 2015, 87, 281–296. [Google Scholar] [CrossRef]
- Venkatesh, D.; Ernandez, T.; Rosetti, F.; Batal, I.; Cullere, X.; Luscinskas, F.W.; Zhang, Y.; Stavrakis, G.; García-cardeña, G.; Horwitz, B.; et al. TNF Receptor 2 Induces IRF1 Transcription Factor-Dependent Interferon-β Autocrine Signaling to Promote Monocyte Recruitment. Immunity 2013, 38, 1025–1037. [Google Scholar] [CrossRef]
- Skaug, B.; Jiang, X.; Chen, Z.J. The Role of Ubiquitin in NF-ΚB Regulatory Pathways. Annu. Rev. Biochem. 2009, 78, 769–796. [Google Scholar] [CrossRef]
- Potere, N.; Batticciotto, A.; Vecchié, A.; Porreca, E.; Cappelli, A.; Abbate, A.; Dentali, F.; Bonaventura, A. The Role of IL-6 and IL-6 Blockade in COVID-19. Expert Rev. Clin. Immunol. 2021, 17, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, T.K.; Schäuble, S.; Mirhakkak, M.H.; Wu, W.; Ng, A.C.; Yip, C.C.Y.; López, A.G.; Wolf, T.; Yeung, M.; Chan, K.; et al. Comparative Transcriptomic Analysis of Rhinovirus and Influenza Virus Infection. Front. Microbiol. 2020, 11, 1580. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, C.R.; Ott, M. Modeling Multi-Organ Infection by SARS-CoV-2 Using Stem Cell Technology. Cell Stem Cell 2020, 27, 859–868. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | ENSEMBL | Gene Name | Log2fc | Regulation |
---|---|---|---|---|
GCSAM | ENSG00000174500 | Germinal center associated signaling and motility | −3.567 | Down |
CDRT1 | ENSG00000241322 | F-box and WD repeat domain containing 10B | −2.814 | Down |
EPHA4 | ENSG00000116106 | EPH receptor A4 | 2.631 | Up |
SUGCT | ENSG00000175600 | Succinyl-CoA:glutarate-CoA transferase | −2.436 | Down |
ETV2 | ENSG00000105672 | ETS variant transcription factor 2 | 2.364 | Up |
H3C13 | ENSG00000183598 | H3 clustered histone 13 | 2.252 | Up |
HSPA6 | ENSG00000173110 | Heat shock protein family A (Hsp70) member 6 | 2.131 | Up |
SYCP3 | ENSG00000139351 | Synaptonemal complex protein 3 | −2.058 | Down |
SNPH | ENSG00000101298 | Syntaphilin | 2.054 | Up |
SECTM1 | ENSG00000141574 | Secreted and transmembrane 1 | 1.942 | Up |
TAS1R3 | ENSG00000169962 | Taste 1 receptor member 3 | 1.886 | Up |
FOS | ENSG00000170345 | Fos proto-oncogene, AP-1 transcription factor subunit | 1.872 | Up |
GATD3 | ENSG00000160221 | Glutamine amidotransferase class 1 domain containing 3 | 1.855 | Up |
ANKRD24 | ENSG00000089847 | Ankyrin repeat domain 24 | 1.814 | Up |
EGR2 | ENSG00000122877 | Early growth response 2 | 1.793 | Up |
TEAD2 | ENSG00000074219 | TEA domain transcription factor 2 | 1.786 | Up |
GP6 | ENSG00000088053 | Glycoprotein VI platelet | −1.780 | Down |
MMP17 | ENSG00000198598 | Matrix metallopeptidase 17 | 1.780 | Up |
H2AC13 | ENSG00000196747 | H2A clustered histone 13 | 1.771 | Up |
SLC34A1 | ENSG00000131183 | Solute carrier family 34 member 1 | 1.756 | Up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, E.P.V.; da Silva Felipe, S.M.; de Freitas, R.M.; da Cruz Freire, J.E.; Oliveira, A.E.R.; Canabrava, N.; Soares, P.M.; van Tilburg, M.F.; Guedes, M.I.F.; Grueter, C.E.; et al. Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens 2023, 12, 1373. https://doi.org/10.3390/pathogens12111373
Pereira EPV, da Silva Felipe SM, de Freitas RM, da Cruz Freire JE, Oliveira AER, Canabrava N, Soares PM, van Tilburg MF, Guedes MIF, Grueter CE, et al. Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens. 2023; 12(11):1373. https://doi.org/10.3390/pathogens12111373
Chicago/Turabian StylePereira, Eric Petterson Viana, Stela Mirla da Silva Felipe, Raquel Martins de Freitas, José Ednésio da Cruz Freire, Antonio Edson Rocha Oliveira, Natália Canabrava, Paula Matias Soares, Mauricio Fraga van Tilburg, Maria Izabel Florindo Guedes, Chad Eric Grueter, and et al. 2023. "Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways" Pathogens 12, no. 11: 1373. https://doi.org/10.3390/pathogens12111373
APA StylePereira, E. P. V., da Silva Felipe, S. M., de Freitas, R. M., da Cruz Freire, J. E., Oliveira, A. E. R., Canabrava, N., Soares, P. M., van Tilburg, M. F., Guedes, M. I. F., Grueter, C. E., & Ceccatto, V. M. (2023). Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens, 12(11), 1373. https://doi.org/10.3390/pathogens12111373