Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It
<p>Life’s fundamental biochemistry comprises just six chemical elements (carbon, nitrogen, hydrogen, oxygen, sulfur, and phosphorus). (<b>A</b>) The atomic composition of the Milky Way Galaxy [<a href="#B55-life-13-02281" class="html-bibr">55</a>] is primarily dominated by hydrogen and helium, but the remaining portion is dominated by oxygen, carbon, and nitrogen. (<b>B</b>) Carbon, nitrogen, hydrogen, oxygen, sulfur, and phosphorus are distributed between five classes of important biomolecules. Nitrogen occurs in what are arguably the two most important—genetic information (nucleic acid) and the structural and catalytic molecules that interact to produce metabolism (proteins). (<b>C</b>) Simplified abiotic synthetic pathways of life’s biochemical building blocks (adapted from [<a href="#B56-life-13-02281" class="html-bibr">56</a>]). (<b>D</b>) These fundamental building blocks are found in meteorites (shown in log scale). Sugars are found up to 180 parts per million (ppm) in the Murchison (carbonaceous chondrite, CM) meteorite [<a href="#B57-life-13-02281" class="html-bibr">57</a>]. Amino acids, the most abundant, can be found up to 21 ppm within CM Chondrites and 2400 ppm within CR Chondrites [<a href="#B26-life-13-02281" class="html-bibr">26</a>,<a href="#B27-life-13-02281" class="html-bibr">27</a>]. Fatty acids can be found up to 1000 ppm and 10 ppm within CM and CR Chondrites, respectively [<a href="#B58-life-13-02281" class="html-bibr">58</a>]. Nucleobases are found least abundantly up to 34 parts per billion (ppb) in the Murchison meteorite [<a href="#B59-life-13-02281" class="html-bibr">59</a>]; nucleotides have never been detected within extraterrestrial material.</p> "> Figure 2
<p>Heteropolymers comprising a mixture of amino acids and hydroxy acids (depsipeptides), exposed to wet-dry cycling, become enriched in amino acids (adapted from [<a href="#B52-life-13-02281" class="html-bibr">52</a>]). This enrichment, in part, is due to the stability difference between peptide (C-N) and ester (C-O-C) bonds, suggesting the eventual convergence of an amino acid homopolymer (peptide) over time.</p> "> Figure 3
<p>The universe of amino acid structures. (<b>A</b>) Distribution of amino acids based on the number of C-bound side chains vs. N-bound side chains (genetically encoded amino acids highlighted: alanine, proline, and glycine). (<b>B</b>) With each additional C-atom in the backbone, the number of possible C-bound side chain attachment sites increase by 2. The coded amino acids, except glycine, are merely a point in this possible space. (<b>C</b>) While C-bound side chain attachment sites are theoretically infinite, the backbone nitrogen can only attach two side chains while retaining its neutral valence. Here, the genetically encoded amino acids, except proline, exist in simply one point within the possible space.</p> "> Figure 4
<p>Xeno amino acids potentially change the biochemistry of protein folding (<b>A</b>) Combinations of peptide torsion angles (<span class="html-italic">ϕ</span> and <span class="html-italic">Ψ</span>: see <a href="#life-13-02281-box001" class="html-boxed-text">Box 1</a>) summarize peptide/protein secondary structure (adapted from [<a href="#B120-life-13-02281" class="html-bibr">120</a>]). Zones A and B are torsion-angle pairs disallowed by biophysics under strict steric considerations yet observed empirically upon careful investigation for specific combinations of side chains (discussed in [<a href="#B121-life-13-02281" class="html-bibr">121</a>]). This provides one clue that the current, well-established map of secondary structure could shift or become unrecognizable if rebuilt for xeno amino acids. (<b>B</b>) The dominant secondary structures of life on Earth, α-helices and β-sheets (first described by [<a href="#B122-life-13-02281" class="html-bibr">122</a>]), form and are stabilized by hydrogen bonds (blue dotted lines). These hydrogen bonds usually involve atoms in the amino acid backbone. The bonds and, therefore, protein structures would be obstructed or altered if peptides comprised a heterogeneous enantiomeric mixture, more than one sidechain per amino acid or longer backbones (i.e., β-, γ-, δ-) (<b>C</b>) Multiple secondary structures within a single polymerized amino acid sequence combine to form the larger, folded tertiary structure. It follows from (<b>A</b>–<b>C</b>) that protein structures could be unpredictably different if the fundamental building blocks (amino acids) were changed. Images were created using Mol* Viewer [<a href="#B123-life-13-02281" class="html-bibr">123</a>] with PDB 4LV0 AmpC beta-lactamase in complex with m-aminophenyl boronic acid [<a href="#B124-life-13-02281" class="html-bibr">124</a>].</p> "> Figure 5
<p>Like amino acid backbones, many side chains are possible beyond the 20 found within the standard genetic code. (<b>A</b>) Abiotic synthesis: various other side chains are found in meteorites and produced by prebiotic simulations (see [<a href="#B144-life-13-02281" class="html-bibr">144</a>]: supplementary data); (<b>B</b>) biological: many other side chains are used by living organisms (see [<a href="#B145-life-13-02281" class="html-bibr">145</a>]); (<b>C</b>) synthetic biology has successfully incorporated hundreds of alternative side chains into protein synthesis, including numerous far larger than anything found within the standard genetic code, shown as red diamonds [<a href="#B146-life-13-02281" class="html-bibr">146</a>,<a href="#B147-life-13-02281" class="html-bibr">147</a>,<a href="#B148-life-13-02281" class="html-bibr">148</a>] (also see [<a href="#B138-life-13-02281" class="html-bibr">138</a>]). (<b>D</b>) Theoretical: the addition of each carbon atom increases exponentially (combinatorially) the number of chemical structures that are possible (see: [<a href="#B41-life-13-02281" class="html-bibr">41</a>]).</p> "> Figure 6
<p>A comparison of three major syntheses of scientific literature concerning the antiquity of amino acids within the standard genetic code. All agree that the canonical alphabet of 20 amino acids evolved from an earlier genetic code involving fewer amino acids. (<b>A</b>) Trifonov [<a href="#B172-life-13-02281" class="html-bibr">172</a>] analyzed 40 peer-reviewed publications about the evolution of the genetic code to calculate a detailed chronology by which the set of 20 became established. (<b>B</b>) Higgs and Pudritz [<a href="#B173-life-13-02281" class="html-bibr">173</a>] analyzed a similar amount of different literature to arrive at broadly similar conclusions. (<b>C</b>) Cleaves [<a href="#B20-life-13-02281" class="html-bibr">20</a>] focused on the literature of prebiotic chemistry alone (meteorites, spark tube experiments, and HCN polymerization) to agree with both. Adapted from [<a href="#B144-life-13-02281" class="html-bibr">144</a>].</p> "> Figure 7
<p>A literature map of foundational and recent (>2010) publications [<a href="#B10-life-13-02281" class="html-bibr">10</a>,<a href="#B18-life-13-02281" class="html-bibr">18</a>,<a href="#B52-life-13-02281" class="html-bibr">52</a>,<a href="#B60-life-13-02281" class="html-bibr">60</a>,<a href="#B78-life-13-02281" class="html-bibr">78</a>,<a href="#B131-life-13-02281" class="html-bibr">131</a>,<a href="#B132-life-13-02281" class="html-bibr">132</a>,<a href="#B144-life-13-02281" class="html-bibr">144</a>,<a href="#B147-life-13-02281" class="html-bibr">147</a>,<a href="#B161-life-13-02281" class="html-bibr">161</a>,<a href="#B174-life-13-02281" class="html-bibr">174</a>,<a href="#B175-life-13-02281" class="html-bibr">175</a>,<a href="#B176-life-13-02281" class="html-bibr">176</a>,<a href="#B177-life-13-02281" class="html-bibr">177</a>,<a href="#B178-life-13-02281" class="html-bibr">178</a>,<a href="#B179-life-13-02281" class="html-bibr">179</a>,<a href="#B180-life-13-02281" class="html-bibr">180</a>,<a href="#B181-life-13-02281" class="html-bibr">181</a>,<a href="#B182-life-13-02281" class="html-bibr">182</a>,<a href="#B183-life-13-02281" class="html-bibr">183</a>,<a href="#B184-life-13-02281" class="html-bibr">184</a>,<a href="#B185-life-13-02281" class="html-bibr">185</a>,<a href="#B186-life-13-02281" class="html-bibr">186</a>,<a href="#B187-life-13-02281" class="html-bibr">187</a>,<a href="#B188-life-13-02281" class="html-bibr">188</a>,<a href="#B189-life-13-02281" class="html-bibr">189</a>,<a href="#B190-life-13-02281" class="html-bibr">190</a>,<a href="#B191-life-13-02281" class="html-bibr">191</a>,<a href="#B192-life-13-02281" class="html-bibr">192</a>,<a href="#B193-life-13-02281" class="html-bibr">193</a>,<a href="#B194-life-13-02281" class="html-bibr">194</a>,<a href="#B195-life-13-02281" class="html-bibr">195</a>,<a href="#B196-life-13-02281" class="html-bibr">196</a>,<a href="#B197-life-13-02281" class="html-bibr">197</a>,<a href="#B198-life-13-02281" class="html-bibr">198</a>] converging on direct exploration of alternative amino acid alphabets, traced back through diverse subdisciplines to foundational works. This literature involves both theory and experiment. Whereas experimental work is already starting to integrate the 3 named subfields (de novo protein design, prebiotic chemistry, and molecular evolution), relevant theory is at present siloed between two largely unconnected edges: sophisticated subatomic modeling of alternative side chains and biologically inspired design of xeno alphabets.</p> "> Figure 8
<p>Why does life on Earth use one precise set of 20 L-<span class="html-italic">α</span>-monosubstituted-amino acids? As the focus of this question narrows from amino acids as a class of chemicals to the 20 specific side chains used by post-LUCA life, the probable role of physicochemical constraint diminishes relative to that of biological evolution.</p> ">
Abstract
:1. Introduction
2. Would a Xeno Biochemistry Use Amino Acids?
3. Would a Xeno Biochemistry Use Monosubstituted L-α-Amino Acids?
3.1. α-Amino Acids versus Longer Backbones
3.2. L- vs. D-Stereochemistry
Would a Xeno-Biochemistry Use L-Amino Acids?
3.3. Monosubstitution
4. Would a Xeno Biochemistry Use Different Side-Chains?
4.1. Clues from De Novo Protein Design: Altering the Functional Units of Life as We Know It
4.2. Clues from Prebiotic Chemistry: Bridging the Gap between Life and the Non-Living Universe
4.3. Clues from Molecular Evolutionary Biology: Natural Selection Guiding Alphabet Design
5. Discussion
5.1. Would Xeno Biochemistry Use Amino Acids?
5.2. Would a Xeno Biochemistry Use Monosubstituted L-α-Amino Acids?
5.3. Would a Xeno Biochemistry Use Different Side Chains?
5.4. What Tractable Questions Would Represent Progress for Xeno Amino Acid Science?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Böck, A.; Forchhammer, K.; Heider, J.; Leinfelder, W.; Sawers, G.; Veprek, B.; Zinoni, F. Selenocysteine: The 21st Amino Acid. Mol. Microbiol. 1991, 5, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Rother, M.; Krzycki, J.A. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea. Archaea 2010, 2010, e453642. [Google Scholar] [CrossRef] [PubMed]
- Kivenson, V.; Paul, B.G.; Valentine, D.L. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front. Microbiol. 2021, 12, 680620. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Evans, P.N.; Gagen, E.J.; Woodcroft, B.J.; Hedlund, B.P.; Woyke, T.; Hugenholtz, P.; Rinke, C. Recoding of Stop Codons Expands the Metabolic Potential of Two Novel Asgardarchaeota Lineages. ISME Commun. 2021, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brugère, J.-F.; Atkins, J.F.; O’Toole, P.W.; Borrel, G. Pyrrolysine in Archaea: A 22nd Amino Acid Encoded through a Genetic Code Expansion. Emerg. Top. Life Sci. 2018, 2, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Ambrogelly, A.; Gundllapalli, S.; Herring, S.; Polycarpo, C.; Frauer, C.; Söll, D. Pyrrolysine Is Not Hardwired for Cotranslational Insertion at UAG Codons. Proc. Natl. Acad. Sci. USA 2007, 104, 3141–3146. [Google Scholar] [CrossRef]
- Budisa, N.; Kubyshkin, V.; Schmidt, M. Xenobiology: A Journey towards Parallel Life Forms. ChemBioChem 2020, 21, 2228–2231. [Google Scholar] [CrossRef]
- Young, T.S.; Schultz, P.G. Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon. J. Biol. Chem. 2010, 285, 11039–11044. [Google Scholar] [CrossRef]
- Opuu, V.; Simonson, T. Enzyme redesign and genetic code expansion. Protein Eng. Des. Sel. 2023; ahead of print. [Google Scholar] [CrossRef]
- Weber, A.L.; Miller, S.L. Reasons for the Occurrence of the Twenty Coded Protein Amino Acids. J. Mol. Evol. 1981, 17, 273–284. [Google Scholar] [CrossRef]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Bendia, A.G.; Araujo, G.G.; Pulschen, A.A.; Contro, B.; Duarte, R.T.D.; Rodrigues, F.; Galante, D.; Pellizari, V.H. Surviving in Hot and Cold: Psychrophiles and Thermophiles from Deception Island Volcano, Antarctica. Extremophiles 2018, 22, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, J.K.; Zachara, J.M.; Balkwill, D.L.; Kennedy, D.; Li, S.-M.W.; Kostandarithes, H.M.; Daly, M.J.; Romine, M.F.; Brockman, F.J. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State. Appl. Environ. Microbiol. 2004, 70, 4230–4241. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial Communities in Acid Mine Drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Shibuya, M.; Kinoshita, I.; Yatabe, J.; Narumi, I.; Shibata, H.; Hayashi, R.; Fujiwara, D.; Murano, Y.; Hashimoto, H.; et al. DNA Damage and Survival Time Course of Deinococcal Cell Pellets during 3 Years of Exposure to Outer Space. Front. Microbiol. 2020, 11, 2050. [Google Scholar] [CrossRef] [PubMed]
- Danko, D.C.; Sierra, M.A.; Benardini, J.N.; Guan, L.; Wood, J.M.; Singh, N.; Seuylemezian, A.; Butler, D.J.; Ryon, K.; Kuchin, K.; et al. A Comprehensive Metagenomics Framework to Characterize Organisms Relevant for Planetary Protection. Microbiome 2021, 9, 82. [Google Scholar] [CrossRef]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Urey, H.C. Organic Compound Synthesis on the Primitive Earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef]
- Cleaves, H.J., II. The Origin of the Biologically Coded Amino Acids. J. Theor. Biol. 2010, 263, 490–498. [Google Scholar] [CrossRef]
- Kebukawa, Y.; Chan, Q.H.S.; Tachibana, S.; Kobayashi, K.; Zolensky, M.E. One-Pot Synthesis of Amino Acid Precursors with Insoluble Organic Matter in Planetesimals with Aqueous Activity. Sci. Adv. 2017, 3, e1602093. [Google Scholar] [CrossRef]
- Magrino, T.; Pietrucci, F.; Saitta, A.M. Step by Step Strecker Amino Acid Synthesis from Ab Initio Prebiotic Chemistry. J. Phys. Chem. Lett. 2021, 12, 2630–2637. [Google Scholar] [CrossRef]
- Pietrucci, F.; Aponte, J.C.; Starr, R.; Pérez-Villa, A.; Elsila, J.E.; Dworkin, J.P.; Saitta, A.M. Hydrothermal Decomposition of Amino Acids and Origins of Prebiotic Meteoritic Organic Compounds. ACS Earth Space Chem. 2018, 2, 588–598. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Lawless, J.G.; Ponnamperuma, C. Nonprotein Amino Acids in the Murchison Meteorite. Proc. Natl. Acad. Sci. USA 1971, 68, 486–490. [Google Scholar] [CrossRef]
- Burton, A.S.; Stern, J.C.; Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Understanding Prebiotic Chemistry through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites. Chem. Soc. Rev. 2012, 41, 5459–5472. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Callahan, M.P.; Dworkin, J.P.; Elsila, J.E. The Effects of Parent Body Processes on Amino Acids in Carbonaceous Chondrites. Meteorit. Planet. Sci. 2010, 45, 1948–1972. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef]
- Elsila, J.E.; Aponte, J.C.; Blackmond, D.G.; Burton, A.S.; Dworkin, J.P.; Glavin, D.P. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories. ACS Cent. Sci. 2016, 2, 370–379. [Google Scholar] [CrossRef]
- Simkus, D.N.; Aponte, J.C.; Elsila, J.E.; Hilts, R.W.; McLain, H.L.; Herd, C.D.K. New Insights into the Heterogeneity of the Tagish Lake Meteorite: Soluble Organic Compositions of Variously Altered Specimens. Meteorit. Planet. Sci. 2019, 54, 1283–1302. [Google Scholar] [CrossRef]
- Koga, T.; Naraoka, H. A New Family of Extraterrestrial Amino Acids in the Murchison Meteorite. Sci. Rep. 2017, 7, 636. [Google Scholar] [CrossRef]
- Naraoka, H.; Takano, Y.; Dworkin, J.P. Soluble Organic Molecules in Samples of the Carbonaceous Asteroid (162173) Ryugu. Science 2023, 379, eabn9033. [Google Scholar] [CrossRef]
- Parker, G.A. The Reproductive Behaviour and the Nature of Sexual Selection in Scatophaga stercoraria L. (Diptera: Scatophagidae): II. The Fertilization Rate and the Spatial and Temporal Relationships of Each Sex Around the Site of Mating and Oviposition. J. Anim. Ecol. 1970, 39, 205–228. [Google Scholar] [CrossRef]
- Aponte, J.C.; Elsila, J.E.; Hein, J.E.; Dworkin, J.P.; Glavin, D.P.; McLain, H.L.; Parker, E.T.; Cao, T.; Berger, E.L.; Burton, A.S. Analysis of Amino Acids, Hydroxy Acids, and Amines in CR Chondrites. Meteorit. Planet. Sci. 2020, 55, 2422–2439. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D. The Role of Lipid Membranes in Life’s Origin. Life 2017, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Todd, Z.R.; Cohen, Z.R.; Catling, D.C.; Keller, S.L.; Black, R.A. Growth of Prebiotically Plausible Fatty Acid Vesicles Proceeds in the Presence of Prebiotic Amino Acids, Dipeptides, Sugars, and Nucleic Acid Components. Langmuir 2022, 38, 15106–15112. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Becker, S.; Tiede, N.; Wiedemann, S.; Feldmann, J.; Carell, T. A One-Pot, Water Compatible Synthesis of Pyrimidine Nucleobases under Plausible Prebiotic Conditions. Chem. Commun. 2019, 55, 1939–1942. [Google Scholar] [CrossRef] [PubMed]
- Oró, J. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions. Nature 1961, 191, 1193–1194. [Google Scholar] [CrossRef] [PubMed]
- Engelhart, A.E.; Hud, N.V. Primitive Genetic Polymers. Cold Spring Harb. Perspect. Biol. 2010, 2, a002196. [Google Scholar] [CrossRef]
- Fine, J.L.; Pearlman, R.E. On the Origin of Life: An RNA-Focused Synthesis and Narrative. RNA 2023, rna.079598.123. [Google Scholar] [CrossRef]
- Orgel, L.E. Prebiotic Chemistry and the Origin of the RNA World. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99–123. [Google Scholar] [CrossRef]
- Meringer, M.; Cleaves, H.J.; Freeland, S.J. Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures. J. Chem. Inf. Model. 2013, 53, 2851–2862. [Google Scholar] [CrossRef] [PubMed]
- Boutlerow, M.A. Formation Synthétique d’une Substance Sucrée. CR Acad. Sci. 1861, 53, 145–147. [Google Scholar]
- Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A. Borate Minerals Stabilize Ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef] [PubMed]
- Decker, P.; Schweer, H.; Pohlamnn, R. Bioids: X. Identification of Formose Sugars, Presumable Prebiotic Metabolites, Using Capillary Gas Chromatography/Gas Chromatography—Mas Spectrometry of n-Butoxime Trifluoroacetates on OV-225. J. Chromatogr. A 1982, 244, 281–291. [Google Scholar] [CrossRef]
- Shapiro, R. Prebiotic Ribose Synthesis: A Critical Analysis. Orig. Life Evol. Biosph. 1988, 18, 71–85. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J. The new solar abundances—Part I: The observations. In Communications in Asteroseismology; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2006. [Google Scholar] [CrossRef]
- Pasek, M.A. Rethinking Early Earth Phosphorus Geochemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 853–858. [Google Scholar] [CrossRef]
- Jerome, C.A.; Kim, H.-J.; Mojzsis, S.J.; Benner, S.A.; Biondi, E. Catalytic Synthesis of Polyribonucleic Acid on Prebiotic Rock Glasses. Astrobiology 2022, 22, 629–636. [Google Scholar] [CrossRef]
- Schuster, G.B.; Cafferty, B.J.; Karunakaran, S.C.; Hud, N.V. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J. Am. Chem. Soc. 2021, 143, 9279–9296. [Google Scholar] [CrossRef]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating Life’s Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef]
- Kim, S.C.; O’flaherty, D.K.; Giurgiu, C.; Zhou, L.; Szostak, J.W. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J. Am. Chem. Soc. 2021, 143, 3267–3279. [Google Scholar] [CrossRef]
- Forsythe, J.G.; Yu, S.; Mamajanov, I.; Grover, M.A.; Krishnamurthy, R.; Fernández, F.M.; Hud, N.V. Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angew. Chem. Int. Ed. 2015, 54, 9871–9875. [Google Scholar] [CrossRef]
- Anastasi, C.; Buchet, F.F.; Crowe, M.A.; Parkes, A.L.; Powner, M.W.; Smith, J.M.; Sutherland, J.D. RNA: Prebiotic Product, or Biotic Invention? Chem. Biodivers. 2007, 4, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Freeland, S. Undefining Life’s Biochemistry: Implications for Abiogenesis. J. R. Soc. Interface 2022, 19, 20210814. [Google Scholar] [CrossRef] [PubMed]
- Croswell, K. The Alchemy of the Heavens; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Kitadai, N.; Maruyama, S. Origins of Building Blocks of Life: A Review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial Ribose and Other Sugars in Primitive Meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.-Y.; Pearce, B.K.; Pudritz, R.E.; Lee, D. Meteoritic Abundances of Fatty Acids and Potential Reaction Pathways in Planetesimals. Icarus 2019, 319, 685–700. [Google Scholar] [CrossRef]
- Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dworkin, J.P.; Naraoka, H. Identifying the Wide Diversity of Extraterrestrial Purine and Pyrimidine Nucleobases in Carbonaceous Meteorites. Nat. Commun. 2022, 13, 2008. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Jacobson, K.C.; Eskew-Martin, J.; Forsythe, J.G.; Grover, M.A.; Williams, L.D.; Hud, N.V. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life 2022, 12, 265. [Google Scholar] [CrossRef]
- Guo, R.; McGrath, J.E. 5.17—Aromatic Polyethers, Polyetherketones, Polysulfides, and Polysulfones. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 377–430. [Google Scholar] [CrossRef]
- Robinson, B.A.; Tester, J.W. Kinetics of Alkaline Hydrolysis of Organic Esters and Amides in Neutrally-Buffered Solution. Int. J. Chem. Kinet. 1990, 22, 431–448. [Google Scholar] [CrossRef]
- Irion, R. Astrobiologists Try to “Follow the Water to Life”. Science 2002, 296, 647–648. [Google Scholar] [CrossRef]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef]
- McKay, C.P.; Smith, H.D. Possibilities for Methanogenic Life in Liquid Methane on the Surface of Titan. Icarus 2005, 178, 274–276. [Google Scholar] [CrossRef]
- Budisa, N.; Schulze-Makuch, D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment. Life 2014, 4, 331–340. [Google Scholar] [CrossRef]
- Finney, J.L. Water? What’s so Special about It? Phil Trans. R. Soc. Lond. B 2004, 359, 1145–1165. [Google Scholar] [CrossRef]
- Lynden-Bell, R.M.; Morris, S.C.; Barrow, J.D.; Finney, J.L.; Harper, C. (Eds.) Water and Life: The Unique Properties of H2O; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Mottl, M.J.; Glazer, B.T.; Kaiser, R.I.; Meech, K.J. Water and Astrobiology. Geochemistry 2007, 67, 253–282. [Google Scholar] [CrossRef]
- Lelais, G.; Seebach, D. Beta2-Amino Acids-Syntheses, Occurrence in Natural Products, and Components of Beta-Peptides1,2. Biopolymers 2004, 76, 206–243. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The Versatile GABA in Plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef] [PubMed]
- Sigel, E.; Steinmann, M.E. Structure, Function, and Modulation of GABA(A) Receptors. J. Biol. Chem. 2012, 287, 40224–40231. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R.; Metcalf, J.S.; Morrison, L.F.; Codd, G.A.; Bergman, B. Diverse Taxa of Cyanobacteria Produce β-N-Methylamino-l-Alanine, a Neurotoxic Amino Acid. Proc. Natl. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Bell, E.A. α-Amino-β-Methylaminopropionic Acid, a New Amino Acid from Seeds of Cycas Circinalis. Phytochemistry 1967, 6, 759–762. [Google Scholar] [CrossRef]
- Kiss, L.; Mándity, I.M.; Fülöp, F. Highly Functionalized Cyclic β-Amino Acid Moieties as Promising Scaffolds in Peptide Research and Drug Design. Amino Acids 2017, 49, 1441–1455. [Google Scholar] [CrossRef] [PubMed]
- Legrand, B.; Maillard, L.T. α,β-Unsaturated γ-Peptide Foldamers. ChemPlusChem 2021, 86, 629–645. [Google Scholar] [CrossRef]
- Nagata, M.; Watanabe, M.; Doi, R.; Uemura, M.; Ochiai, N.; Ichinose, W.; Fujiwara, K.; Sato, Y.; Kameda, T.; Takeuchi, K.; et al. Helix-Forming Aliphatic Homo-δ-Peptide Foldamers Based on the Conformational Restriction Effects of Cyclopropane. Org. Biomol. Chem. 2023, 21, 970–980. [Google Scholar] [CrossRef]
- Forsythe, J.G.; English, S.L.; Simoneaux, R.E.; Weber, A.L. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions. Orig. Life Evol. Biosph. 2018, 48, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, F.; Martinek, T.A.; Tóth, G.K. Application of Alicyclic β-Amino Acids in Peptide Chemistry. Chem. Soc. Rev. 2006, 35, 323–334. [Google Scholar] [CrossRef]
- Steer, D.; Lew, R.; Perlmutter, P.; Smith, A.; Aguilar, M.-I. Beta-Amino Acids: Versatile Peptidomimetics. Curr. Med. Chem. 2002, 9, 811–822. [Google Scholar] [CrossRef]
- Levin, S.R.; Scott, T.W.; Cooper, H.S.; West, S.A. Darwin’s Aliens. Int. J. Astrobiol. 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Burton, A.S.; Berger, E.L. Insights into Abiotically-Generated Amino Acid Enantiomeric Excesses Found in Meteorites. Life 2018, 8, 14. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Amino Acids in Meteorites. Adv. Space Res. 1983, 3, 5–18. [Google Scholar] [CrossRef]
- Ashe, K.; Fernández-García, C.; Corpinot, M.K.; Coggins, A.J.; Bučar, D.-K.; Powner, M.W. Selective Prebiotic Synthesis of Phosphoroaminonitriles and Aminothioamides in Neutral Water. Commun. Chem. 2019, 2, 23. [Google Scholar] [CrossRef]
- Strecker, A. Ueber Die Künstliche Bildung Der Milchsäure Und Einen Neuen, Dem Glycocoll Homologen Körper—Strecker—1850—Justus Liebigs Annalen Der Chemie—Wiley Online Library. Justus Liebigs Ann. Der Chem. 1850, 75, 27–45. [Google Scholar] [CrossRef]
- Masamba, W. Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis. Molecules 2021, 26, 1707. [Google Scholar] [CrossRef] [PubMed]
- Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-Amino Acids in Nature, Agriculture and Biomedicine. All Life 2020, 13, 11–22. [Google Scholar] [CrossRef]
- Sasabe, J.; Suzuki, M. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J. Med. 2019, 68, 1–16. [Google Scholar] [CrossRef]
- Heck, S.D.; Siok, C.J.; Krapcho, K.J.; Kelbaugh, P.R.; Thadeio, P.F.; Welch, M.J.; Williams, R.D.; Ganong, A.H.; Kelly, M.E.; Lanzetti, A.J.; et al. Functional Consequences of Posttranslational Isomerization of Ser46 in a Calcium Channel Toxin. Science 1994, 266, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H.; Dumin, E.; Balan, L.; Foltyn, V.N. D-Amino Acids in the Brain: D-Serine in Neurotransmission and Neurodegeneration. FEBS J. 2008, 275, 3514–3526. [Google Scholar] [CrossRef]
- D’Aniello, A.; D’Onofrio, G.; Pischetola, M.; D’Aniello, G.; Vetere, A.; Petrucelli, L.; Fisher, G.H. Biological Role of D-Amino Acid Oxidase and D-Aspartate Oxidase. Effects of D-Amino Acids. J. Biol. Chem. 1993, 268, 26941–26949. [Google Scholar] [CrossRef]
- Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological Functions of D-Amino Acid Oxidases: From Yeast to Humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
- Maruyama, C.; Hamano, Y. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis. Methods Mol. Biol. 2023, 2670, 3–16. [Google Scholar] [CrossRef]
- Vollmer, W.; Blanot, D.; de Pedro, M.A. Peptidoglycan Structure and Architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef]
- Evans, A.C.; Meinert, C.; Giri, C.; Goesmann, F.; Meierhenrich, U.J. Chirality, Photochemistry and the Detection of Amino Acids in Interstellar Ice Analogues and Comets. Chem. Soc. Rev. 2012, 41, 5447–5458. [Google Scholar] [CrossRef]
- Davankov, V.A. Inherent Homochirality of Primary Particles and Meteorite Impacts as Possible Source of Prebiotic Molecular Chirality. Russ. J. Phys. Chem. 2009, 83, 1247–1256. [Google Scholar] [CrossRef]
- Jorissen, A.; Cerf, C. Asymmetric Photoreactions as the Origin of Biomolecular Homochirality: A Critical Review. Orig. Life Evol. Biosph. 2002, 32, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Sato, M.; Ishiguro, S.; Saito, T.; Morishita, Y.; Sato, I.; Nishino, H.; Inoue, Y.; Soai, K. Enantioselective Synthesis of Near Enantiopure Compound by Asymmetric Autocatalysis Triggered by Asymmetric Photolysis with Circularly Polarized Light. J. Am. Chem. Soc. 2005, 127, 3274–3275. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.F.; Sasselov, D.D. On the Origins of Life’s Homochirality: Inducing Enantiomeric Excess with Spin-Polarized Electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, M.L. Translations: On the Origin of Ferments. New Experiments Relative to so-Termed Spontaneous Generation. J. Cell Sci. 1860, s1–s8, 255–259. [Google Scholar] [CrossRef]
- Weissbuch, I.; Lahav, M. Crystalline Architectures as Templates of Relevance to the Origins of Homochirality. Chem. Rev. 2011, 111, 3236–3267. [Google Scholar] [CrossRef] [PubMed]
- Noorduin, W.L.; Bode, A.A.C.; van der Meijden, M.; Meekes, H.; van Etteger, A.F.; van Enckevort, W.J.P.; Christianen, P.C.M.; Kaptein, B.; Kellogg, R.M.; Rasing, T.; et al. Complete Chiral Symmetry Breaking of an Amino Acid Derivative Directed by Circularly Polarized Light. Nat. Chem. 2009, 1, 729–732. [Google Scholar] [CrossRef]
- Takahashi, J.; Kobayashi, K. Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry 2019, 11, 919. [Google Scholar] [CrossRef]
- Breslow, R.; Cheng, Z.-L. L-Amino Acids Catalyze the Formation of an Excess of D-Glyceraldehyde, and Thus of Other D Sugars, under Credible Prebiotic Conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 5723–5725. [Google Scholar] [CrossRef]
- Wagner, A.J.; Zubarev, D.Y.; Aspuru-Guzik, A.; Blackmond, D.G. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. ACS Cent. Sci. 2017, 3, 322–328. [Google Scholar] [CrossRef]
- Blackmond, D.G. The Origin of Biological Homochirality. Cold Spring Harb. Perspect. Biol. 2019, 11, a032540. [Google Scholar] [CrossRef]
- Percec, V.; Leowanawat, P. Why Are Biological Systems Homochiral? Isr. J. Chem. 2011, 51, 1107–1117. [Google Scholar] [CrossRef]
- Toxvaerd, S. Origin of Homochirality in Biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299. [Google Scholar] [CrossRef]
- Bryliakov, K.P. Chemical Mechanisms of Prebiotic Chirality Amplification. Research 2020, 2020, 5689246. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem. Rev. 2014, 114, 285–366. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A. The Origin and Amplification of Biomolecular Chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Sallembien, Q.; Bouteiller, L.; Crassous, J.; Raynal, M. Possible Chemical and Physical Scenarios towards Biological Homochirality. Chem. Soc. Rev. 2022, 51, 3436–3476. [Google Scholar] [CrossRef] [PubMed]
- Brack, A.; Spach, G. β-Structures of Polypeptides with L- and D-Residues. J. Mol. Evol. 1979, 13, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Nanda, V.; Andrianarijaona, A.; Narayanan, C. The Role of Protein Homochirality in Shaping the Energy Landscape of Folding. Protein Sci. 2007, 16, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Weil-Ktorza, O.; Fridmann-Sirkis, Y.; Despotovic, D.; Naveh-Tassa, S.; Levy, Y.; Metanis, N.; Longo, L.M. Functional Ambidexterity of an Ancient Nucleic Acid-Binding Domain. bioRxiv 2023. [Google Scholar] [CrossRef]
- Genchi, G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Deng, Q.; Zhu, T.F. Bioorthogonal Information Storage in L-DNA with a High-Fidelity Mirror-Image Pfu DNA Polymerase. Nat. Biotechnol. 2021, 39, 1548–1555. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, W.; Liu, X.; Wang, J.; Zhang, B.; Fan, C.; Liu, L.; Pena-Alcantara, G.; Ling, J.-J.; Chen, J.; et al. Mirror-Image Gene Transcription and Reverse Transcription. Chem 2019, 5, 848–857. [Google Scholar] [CrossRef]
- Green, M.M.; Jain, V. Homochirality in Life: Two Equal Runners, One Tripped. Orig. Life Evol. Biosph. 2010, 40, 111–118. [Google Scholar] [CrossRef]
- Elsliger, M.-A.; Wilson, I.A. 1.8 Structure Validation and Analysis. In Comprehensive Biophysics; Egelman, E.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 116–135. [Google Scholar] [CrossRef]
- Kalmankar, N.V.; Ramakrishnan, C.; Balaram, P. Sparsely Populated Residue Conformations in Protein Structures: Revisiting “Experimental” Ramachandran Maps. Proteins 2014, 82, 1101–1112. [Google Scholar] [CrossRef]
- Linderstrøm-Lang, K. Proteins and Enzymes; Stanford University Press: Redwood City, CA, USA, 1952. [Google Scholar]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef]
- London, N.; Miller, R.M.; Krishnan, S.; Uchida, K.; Irwin, J.J.; Eidam, O.; Gibold, L.; Cimermančič, P.; Bonnet, R.; Shoichet, B.K.; et al. Covalent Docking of Large Libraries for the Discovery of Chemical Probes. Nat. Chem. Biol. 2014, 10, 1066–1072. [Google Scholar] [CrossRef]
- Fretheim, K.; Iwai, S.; Feeney, R.E. Extensive Modification of Protein Amino Groups by Reductive Addition of Different Sized Substituents. Int. J. Pept. Protein Res. 1979, 14, 451–456. [Google Scholar] [CrossRef]
- Tanaka, M. Design and Synthesis of Chiral α,α-Disubstituted Amino Acids and Conformational Study of Their Oligopeptides. Chem. Pharm. Bull. 2007, 55, 349–358. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Hayashi, Y. Highly Sterically Hindered Peptide Bond Formation between α,α-Disubstituted α-Amino Acids and N-Alkyl Cysteines Using α,α-Disubstituted α-Amidonitrile. J. Am. Chem. Soc. 2022, 144, 10145–10150. [Google Scholar] [CrossRef]
- McKay, C.P. What Is Life—And How Do We Search for It in Other Worlds? PLoS Biol. 2004, 2, e302. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B. Principles that Govern the Folding of Protein Chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Frank, F.C. Energy of Formation of Cyclol Molecules. Nature 1936, 138, 242. [Google Scholar] [CrossRef]
- Linus, P.; Carl, N. The Structure of Proteins. J. Am. Chem. Soc. 1939, 61, 1860–1867. [Google Scholar] [CrossRef]
- Chiarabelli, C.; Vrijbloed, J.W.; Thomas, R.M.; Luisi, P.L. Investigation of de Novo Totally Random Biosequences, Part I. Chem. Biodivers. 2006, 3, 827–839. [Google Scholar] [CrossRef]
- Chiarabelli, C.; Vrijbloed, J.W.; De Lucrezia, D.; Thomas, R.M.; Stano, P.; Polticelli, F.; Ottone, T.; Papa, E.; Luisi, P.L. Investigation of de Novo Totally Random Biosequences, Part II: On the Folding Frequency in a Totally Random Library of de Novo Proteins Obtained by Phage Display. Chem. Biodivers. 2006, 3, 840–859. [Google Scholar] [CrossRef]
- Uy, R.; Wold, F. Posttranslational Covalent Modification of Proteins. Science 1977, 198, 890–896. [Google Scholar] [CrossRef]
- Wong, J.T.-F.; Bronskill, P.M. Inadequacy of Prebiotic Synthesis as Origin of Proteinous Amino Acids. J. Mol. Evol. 1979, 13, 115–125. [Google Scholar] [CrossRef]
- Fekkes, D. Automated Analysis of Primary Amino Acids in Plasma by High-Performance Liquid Chromatography. Methods Mol. Biol. 2012, 828, 183–200. [Google Scholar] [CrossRef]
- Flissi, A.; Ricart, E.; Campart, C.; Chevalier, M.; Dufresne, Y.; Michalik, J.; Jacques, P.; Flahaut, C.; Lisacek, F.; Leclère, V.; et al. Norine: Update of the Nonribosomal Peptide Resource. Nucleic Acids Res. 2020, 48, D465–D469. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Bacon, C.; Agboha, N.; Muscalli, M.; Freeland, S. Evolution as a Guide to Designing Xeno Amino Acid Alphabets. Int. J. Mol. Sci. 2021, 22, 2787. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.; Gan, Q.; Fan, C. “Not-so-Popular” Orthogonal Pairs in Genetic Code Expansion. Protein Sci. 2023, 32, e4559. [Google Scholar] [CrossRef]
- Lee, J.; Schwieter, K.E.; Watkins, A.M.; Kim, D.S.; Yu, H.; Schwarz, K.J.; Lim, J.; Coronado, J.; Byrom, M.; Anslyn, E.V.; et al. Expanding the Limits of the Second Genetic Code with Ribozymes. Nat. Commun. 2019, 10, 5097. [Google Scholar] [CrossRef] [PubMed]
- Dell, M.; Dunbar, K.L.; Hertweck, C. Ribosome-Independent Peptide Biosynthesis: The Challenge of a Unifying Nomenclature. Nat. Prod. Rep. 2022, 39, 453–459. [Google Scholar] [CrossRef]
- Reimer, J.M.; Haque, A.S.; Tarry, M.J.; Schmeing, T.M. Piecing Together Nonribosomal Peptide Synthesis. Curr. Opin. Struct. Biol. 2018, 49, 104–113. [Google Scholar] [CrossRef]
- Feldman, A.W.; Dien, V.T.; Karadeema, R.J.; Fischer, E.C.; You, Y.; Anderson, B.A.; Krishnamurthy, R.; Chen, J.S.; Li, L.; Romesberg, F.E. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J. Am. Chem. Soc. 2019, 141, 10644–10653. [Google Scholar] [CrossRef]
- Mayer-Bacon, C.; Meringer, M.; Havel, R.; Aponte, J.C.; Freeland, S. A Closer Look at Non-Random Patterns within Chemistry Space for a Smaller, Earlier Amino Acid Alphabet. J. Mol. Evol. 2022, 90, 307–323. [Google Scholar] [CrossRef]
- Freeland, S. “Terrestrial” Amino Acids and Their Evolution. In Amino Acids, Peptides and Proteins in Organic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 43–75. [Google Scholar] [CrossRef]
- Dumas, A.; Lercher, L.; Spicer, C.D.; Davis, B.G. Designing Logical Codon Reassignment—Expanding the Chemistry in Biology. Chem. Sci. 2014, 6, 50–69. [Google Scholar] [CrossRef]
- Liu, C.C.; Schultz, P.G. Adding New Chemistries to the Genetic Code. Annu. Rev. Biochem. 2010, 79, 413–444. [Google Scholar] [CrossRef]
- Nödling, A.R.; Spear, L.A.; Williams, T.L.; Luk, L.Y.; Tsai, Y.-H. Using Genetically Incorporated Unnatural Amino Acids to Control Protein Functions in Mammalian Cells. Essays Biochem. 2019, 63, 237–266. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B.; Corley, L.G. An Active Variant of Staphylococcal Nuclease Containing Norleucine in Place of Methionine. J. Biol. Chem. 1969, 244, 5149–5152. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H. Arginine as an Evolutionary Intruder into Protein Synthesis. Biochem. Biophys. Res. Commun. 1973, 53, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino Acid Index Database, Progress Report 2008. Nucleic Acids Res 2008, 36, D202–D205. [Google Scholar] [CrossRef] [PubMed]
- Beadle, G.W.; Tatum, E.L.; Lederberg, J. The Nobel Prize in Physiology or Medicine 1958. Available online: https://www.nobelprize.org/prizes/medicine/1958/summary/ (accessed on 29 October 2023).
- Crick, F.H.; Watson, J.D.; Wilkins, M.H. The Nobel Prize in Physiology or Medicine 1962. Available online: https://www.nobelprize.org/prizes/medicine/1962/summary/ (accessed on 29 October 2023).
- Delbrück, M.; Hershey, A.D.; Luria, S.E. The Nobel Prize in Physiology or Medicine 1969. Available online: https://www.nobelprize.org/prizes/medicine/1969/press-release/ (accessed on 29 October 2023).
- Holley, R.W.; Khorana, H.G.; Nirenberg, M.W. The Nobel Prize in Physiology or Medicine 1968. Available online: https://www.nobelprize.org/prizes/medicine/1968/summary/ (accessed on 29 October 2023).
- Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef]
- Crick, F.H. Codon—Anticodon Pairing: The Wobble Hypothesis. J. Mol. Biol. 1966, 19, 548–555. [Google Scholar] [CrossRef]
- Knight, R.D.; Freeland, S.J.; Landweber, L.F. Selection, History and Chemistry: The Three Faces of the Genetic Code. Trends Biochem. Sci. 1999, 24, 241–247. [Google Scholar] [CrossRef]
- Koonin, E.V.; Novozhilov, A.S. Origin and Evolution of the Universal Genetic Code. Annu. Rev. Genet. 2017, 51, 45–62. [Google Scholar] [CrossRef]
- Wong, J.T.-F. A Co-Evolution Theory of the Genetic Code. Proc. Natl. Acad. Sci. USA 1975, 72, 1909–1912. [Google Scholar] [CrossRef]
- Levinthal, C. How to Fold Graciously. Mössbaun Spectrosc. Biol. Syst. Proc. 1969, 67, 22–24. [Google Scholar]
- Kryshtafovych, A.; Venclovas, Č.; Fidelis, K.; Moult, J. Progress over the First Decade of CASP Experiments. Proteins 2005, 61 (Suppl. S7), 225–236. [Google Scholar] [CrossRef] [PubMed]
- Altman, S.; Cech, T.R. The Nobel Prize in Chemistry 1989. Available online: https://www.nobelprize.org/prizes/chemistry/1989/summary/ (accessed on 29 October 2023).
- Gilbert, W. Origin of Life: The RNA World. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Joyce, G.F. The Antiquity of RNA-Based Evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef]
- Štorchová, H.; Gesteland, R.F.; Atkins, J.F. The RNA World. Biol. Plant 1994, 36, 358. [Google Scholar] [CrossRef]
- Benner, S.A.; Ellington, A.D.; Tauer, A. Modern Metabolism as a Palimpsest of the RNA World. Proc. Natl. Acad. Sci. USA 1989, 86, 7054–7058. [Google Scholar] [CrossRef] [PubMed]
- Freeland, S.J.; Knight, R.D.; Landweber, L.F. Do Proteins Predate DNA? Science 1999, 286, 690–692. [Google Scholar] [CrossRef]
- Rivas, M.; Fox, G.E. Ancestry of RNA/RNA Interaction Regions within Segmented Ribosomes. RNA 2023, 29, 1388–1399. [Google Scholar] [CrossRef]
- Yarus, M. The Genetic Code and RNA-Amino Acid Affinities. Life 2017, 7, 13. [Google Scholar] [CrossRef]
- Doig, A.J. Frozen, but No Accident—Why the 20 Standard Amino Acids Were Selected. FEBS J. 2017, 284, 1296–1305. [Google Scholar] [CrossRef]
- Trifonov, E.N. Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code. Gene 2000, 261, 139–151. [Google Scholar] [CrossRef]
- Higgs, P.G.; Pudritz, R.E. A Thermodynamic Basis for Prebiotic Amino Acid Synthesis and the Nature of the First Genetic Code. Astrobiology 2009, 9, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B.; Haber, E.; Sela, M.; White, F.H., Jr. The Kinetics of Formation of Native Ribonuclease during Oxidation of the Reduced Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1961, 47, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Voráček, V.; Freeland, S. What Would an Alien Amino Acid Alphabet Look Like and Why? Astrobiology 2023, 23, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Culka, M.; Kalvoda, T.; Gutten, O.; Rulíšek, L. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains? J. Phys. Chem. B 2021, 125, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. 22 A Model of Evolutionary Change in Proteins. Atlas Protein Seq. Struct. 1978, 5, 345–352. [Google Scholar]
- Frenkel-Pinter, M.; Haynes, J.W.C.M.; Petrov, A.S.; Burcar, B.T.; Krishnamurthy, R.; Hud, N.V.; Leman, L.J.; Williams, L.D. Selective Incorporation of Proteinaceous over Nonprosteinaceous Cationic Amino Acids in Model Prebiotic Oligomerization Reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 16338–16346. [Google Scholar] [CrossRef] [PubMed]
- Furka, Á.; Sebestyén, F.; Asgedom, M.; Dibó, G. General Method for Rapid Synthesis of Multicomponent Peptide Mixtures. Int. J. Pept. Protein Res. 1991, 37, 487–493. [Google Scholar] [CrossRef]
- Granold, M.; Hajieva, P.; Toşa, M.I.; Irimie, F.-D.; Moosmann, B. Modern Diversification of the Amino Acid Repertoire Driven by Oxygen. Proc. Natl. Acad. Sci. USA 2018, 115, 41–46. [Google Scholar] [CrossRef]
- Ilardo, M.; Meringer, M.; Freeland, S.; Rasulev, B.; Ii, H.J.C. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids. Sci. Rep. 2015, 5, 9414. [Google Scholar] [CrossRef]
- Kalvoda, T.; Culka, M.; Rulíšek, L.; Andris, E. Exhaustive Mapping of the Conformational Space of Natural Dipeptides by the DFT-D3//COSMO-RS Method. J. Phys. Chem. B 2022, 126, 5949–5958. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Szostak, J.W. Functional Proteins from a Random-Sequence Library. Nature 2001, 410, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. Evolutionary Rate at the Molecular Level. Nature 1968, 217, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.M.; Despotović, D.; Weil-Ktorza, O.; Walker, M.J.; Jabłońska, J.; Fridmann-Sirkis, Y.; Varani, G.; Metanis, N.; Tawfik, D.S. Primordial Emergence of a Nucleic Acid-Binding Protein via Phase Separation and Statistical Ornithine-to-Arginine Conversion. Proc. Natl. Acad. Sci. USA 2020, 117, 15731–15739. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.M.; Lee, J.; Blaber, M. Simplified Protein Design Biased for Prebiotic Amino Acids Yields a Foldable, Halophilic Protein. Proc. Natl. Acad. Sci. USA 2013, 110, 2135–2139. [Google Scholar] [CrossRef]
- Makarov, M.; Rocha, A.C.S.; Krystufek, R.; Cherepashuk, I.; Dzmitruk, V.; Charnavets, T.; Faustino, A.M.; Lebl, M.; Fujishima, K.; Fried, S.D.; et al. Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability. J. Am. Chem. Soc. 2023, 149, 5320–5329. [Google Scholar] [CrossRef]
- Maynard Smith, J. Natural Selection and the Concept of a Protein Space. Nature 1970, 225, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, B. Solid Phase Synthesis. Science 1986, 232, 341–347. [Google Scholar] [CrossRef]
- Moosmann, B. Redox Biochemistry of the Genetic Code. Trends Biochem. Sci. 2021, 46, 83–86. [Google Scholar] [CrossRef]
- Philip, G.K.; Freeland, S.J. Did Evolution Select a Nonrandom “Alphabet” of Amino Acids? Astrobiology 2011, 11, 235–240. [Google Scholar] [CrossRef]
- Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, J.; Bím, D.; Gutten, O.; Rulíšek, L. Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. J. Chem. Theory Comput. 2018, 14, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.S.; Santiago, J.V.; Bray-Hall, S.T.; Doshi, N.; Grantcharova, V.P.; Yi, Q.; Baker, D. Functional Rapidly Folding Proteins from Simplified Amino Acid Sequences. Nat. Struct. Mol. Biol. 1997, 4, 805–809. [Google Scholar] [CrossRef]
- Tanaka, J.; Doi, N.; Takashima, H.; Yanagawa, H. Comparative Characterization of Random-Sequence Proteins Consisting of 5, 12, and 20 Kinds of Amino Acids. Protein Sci. 2010, 19, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Tretyachenko, V.; Vymětal, J.; Neuwirthová, T.; Vondrášek, J.; Fujishima, K.; Hlouchová, K. Modern and Prebiotic Amino Acids Support Distinct Structural Profiles in Proteins. Open Biol. 2022, 12, 220040. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.L. Thermal Synthesis and Hydrolysis of Polyglyceric Acid. Orig. Life Evol. Biosph. 1989, 19, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Woolfson, D.N. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J. Mol. Biol. 2021, 433, 167160. [Google Scholar] [CrossRef]
- Brack, A.; Orgel, L.E. β Structures of Alternating Polypeptides and Their Possible Prebiotic Significance. Nature 1975, 256, 383–387. [Google Scholar] [CrossRef]
- Tretyachenko, V.; Vymětal, J.; Bednárová, L.; Kopecký, V.; Hofbauerová, K.; Jindrová, H.; Hubálek, M.; Souček, R.; Konvalinka, J.; Vondrášek, J.; et al. Random Protein Sequences Can Form Defined Secondary Structures and Are Well-Tolerated In Vivo. Sci. Rep. 2017, 7, 15449. [Google Scholar] [CrossRef]
- Merrifield, B. The Nobel Prize in Chemistry 1984. Available online: https://www.nobelprize.org/prizes/chemistry/1984/summary/ (accessed on 29 October 2023).
- Furka, Á. Forty Years of Combinatorial Technology. Drug Discov. Today 2022, 27, 103308. [Google Scholar] [CrossRef]
- Moult, J. A Decade of CASP: Progress, Bottlenecks and Prognosis in Protein Structure Prediction. Curr. Opin. Struct. Biol. 2005, 15, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.T.; Bonneau, R.; Ruczinski, I.; Baker, D. Ab Initio Protein Structure Prediction of CASP III Targets Using ROSETTA. Proteins 1999, 37 (Suppl. S3), 171–176. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of Folded Proteins. Nature 1977, 267, 585–590. [Google Scholar] [CrossRef]
- Krishnan, A. What Are Academic Disciplines? Some Observations on the Disciplinarity vs. Interdisciplinarity Debate; Working Paper; National Centre for Research Methods: Bristol, UK, 2009. [Google Scholar]
- Chin, J.W. Reprogramming the Genetic Code. EMBO J. 2011, 30, 2312–2324. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, D.; Chin, J.W. Reprogramming the Genetic Code. Nat. Rev. Genet. 2020, 22, 169–184. [Google Scholar] [CrossRef]
- Bada, J.L.; Cleaves, H.J. Ab Initio Simulations and the Miller Prebiotic Synthesis Experiment. Proc. Natl. Acad. Sci. USA 2015, 112, E342. [Google Scholar] [CrossRef]
- Atkins, J.F.; Gesteland, R. The 22nd Amino Acid. Science 2002, 296, 1409–1410. [Google Scholar] [CrossRef]
- Rao, V.; Nanjundiah, V.J.B.S. Haldane, Ernst Mayr and the Beanbag Genetics Dispute. J. Hist. Biol. 2011, 44, 233–281. [Google Scholar] [CrossRef]
- Jukes, T.H.; Kimura, M. Evolutionary Constraints and the Neutral Theory. J. Mol. Evol. 1984, 21, 90–92. [Google Scholar] [CrossRef]
- Ghosh, S.; Pal, J.; Cattani, C.; Maji, B.; Bhattacharya, D.K. Protein Sequence Comparison Based on Representation on a Finite Dimensional Unit Hypercube. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef]
- Parker, G.; Smith, J. Optimality theory in evolutionary biology. Nature 1990, 348, 27–33. [Google Scholar] [CrossRef]
- Elner, R.W. The Mechanics of Predation by the Shore Crab, Carcinus maenas (L.), on the Edible Mussel, Mytilus edulis L. Oecologia 1978, 36, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Szathmáry, E. Four Letters in the Genetic Alphabet: A Frozen Evolutionary Optimum? Proc. Biol. Sci. 1991, 245, 91–99. [Google Scholar] [CrossRef]
- Szathmáry, E. Why Are There Four Letters in the Genetic Alphabet? Nat. Rev. Genet. 2003, 4, 995–1001. [Google Scholar] [CrossRef]
- Freeland, S.J.; Hurst, L.D. The Genetic Code Is One in a Million. J. Mol. Evol. 1998, 47, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Omachi, Y.; Saito, N.; Furusawa, C. Rare-Event Sampling Analysis Uncovers the Fitness Landscape of the Genetic Code. PLoS Comput. Biol. 2023, 19, e1011034. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Bacon, C.; Freeland, S.J. A Broader Context for Understanding Amino Acid Alphabet Optimality. J. Theor. Biol. 2021, 520, 110661. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Tuknait, A.; Chaudhary, K.; Singh, B.; Kumaran, S.; Raghava, G.P.S. PEPstrMOD: Structure Prediction of Peptides Containing Natural, Non-Natural and Modified Residues. Biol. Direct. 2015, 10, 73. [Google Scholar] [CrossRef]
- Lu, Y.; Freeland, S. Testing the Potential for Computational Chemistry to Quantify Biophysical Properties of the Non-Proteinaceous Amino Acids. Astrobiology 2006, 6, 606–624. [Google Scholar] [CrossRef]
- Dobson, C.M. Chemical Space and Biology. Nature 2004, 432, 824–828. [Google Scholar] [CrossRef]
- Lipinski, C.; Hopkins, A. Navigating Chemical Space for Biology and Medicine. Nature 2004, 432, 855–861. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Lins, L.; Brasseur, R. The hydrophobic effect in protein folding. FASEB J. 1995, 9, 535–540. [Google Scholar] [CrossRef]
- Vascon, F.; Gasparotto, M.; Giacomello, M.; Cendron, L.; Bergantino, E.; Filippini, F.; Righetto, I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput. Struct. Biotechnol. J. 2020, 18, 1774–1789. [Google Scholar] [CrossRef]
- Ilardo, M.A.; Freeland, S.J. Testing for Adaptive Signatures of Amino Acid Alphabet Evolution Using Chemistry Space. J. Syst. Chem. 2014, 5, 1. [Google Scholar] [CrossRef]
- Cockell, C.S.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.P.; Lammer, H.; Landenmark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A Review. Astrobiology 2016, 16, 89–117. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Cleland, C.E.; Arend, D.; Bartlett, S.; Cleaves, H.J.; Demarest, H.; Prabhu, A.; Lunine, J.I.; Hazen, R.M. On the Roles of Function and Selection in Evolving Systems. Proc. Natl. Acad. Sci. USA 2023, 120, e2310223120. [Google Scholar] [CrossRef]
- Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, B. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718–9739. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.L.; Sindhikara, D.; Zultanski, S.L.; Schultz, D.M. Beyond 20 in the 21st Century: Prospects and Challenges of Non-Canonical Amino Acids in Peptide Drug Discovery. ACS Med. Chem. Lett. 2023, 14, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Teniola, O.R.; Laurencin, C.T. Biodegradable Polyphosphazenes for Regenerative Engineering. J. Mater. Res. 2022, 37, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
Heavy Atoms | Molecular Weight (g/mol) | Chemical Elements | |
---|---|---|---|
Coded Amino Acids (ACDEFGHIKLMNPQRSTVWY) | 5–15 | CHONS | |
‘Prebiotic’ Amino Acids (ADEGILPSTV) | 5–8 | CHONS | |
Nucleobases | 8–11 | CHONP | |
Nucleotides Nucleobase + Ribose + PO4 | 23–24 | CHONP | |
Fatty Acids | ≥5 | CHO | |
Propionic acid § | 5 | 74 | |
Decanoic acid † | 12 | 172 | |
Lipids | ≥12 | CHO | |
Triformin * | 12 | 176 | |
Sugars Monosaccharides | ≥6 | CHO | |
Triose ‡ | 6 | 90 | |
Ribose | 10 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, S.M.; Mayer-Bacon, C.; Freeland, S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life 2023, 13, 2281. https://doi.org/10.3390/life13122281
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life. 2023; 13(12):2281. https://doi.org/10.3390/life13122281
Chicago/Turabian StyleBrown, Sean M., Christopher Mayer-Bacon, and Stephen Freeland. 2023. "Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It" Life 13, no. 12: 2281. https://doi.org/10.3390/life13122281
APA StyleBrown, S. M., Mayer-Bacon, C., & Freeland, S. (2023). Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life, 13(12), 2281. https://doi.org/10.3390/life13122281