Evaluating Quality of Life Changes over 12 Months Among Opiate Users from Romania and Associated Worsening Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Inclusion and Exclusion Criteria
2.3. WHOQOL
2.4. Statistical Analysis
3. Results
Background Characteristics
4. Discussion
4.1. Literature Findings
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wakeman, S.E.; Larochelle, M.R.; Ameli, O.; Chaisson, C.E.; McPheeters, J.T.; Crown, W.H.; Azocar, F.; Sanghavi, D.M. Comparative Effectiveness of Different Treatment Pathways for Opioid Use Disorder. JAMA Netw. Open 2020, 3, e1920622, Erratum in: JAMA Netw. Open 2024, 7, e2419798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDonald, R.; Campbell, N.D.; Strang, J. Twenty years of take-home naloxone for the prevention of overdose deaths from heroin and other opioids-Conception and maturation. Drug Alcohol Depend. 2017, 178, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Samples, H.; Williams, A.R.; Olfson, M.; Crystal, S. Risk factors for discontinuation of buprenorphine treatment for opioid use disorders in a multi-state sample of Medicaid enrollees. J. Subst. Abuse Treat. 2018, 95, 9–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guadamuz, J.S.; Alexander, G.C.; Chaudhri, T.; Trotzky-Sirr, R.; Qato, D.M. Availability and Cost of Naloxone Nasal Spray at Pharmacies in Philadelphia, Pennsylvania, 2017. JAMA Netw. Open. 2019, 2, e195388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bird, S.M.; McAuley, A.; Perry, S.; Hunter, C. Effectiveness of Scotland’s National Naloxone Programme for reducing opioid-related deaths: A before (2006-10) versus after (2011-13) comparison. Addiction 2016, 111, 883–891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandler, R.K.; Villani, J.; Clarke, T.; McCance-Katz, E.F.; Volkow, N.D. Addressing opioid overdose deaths: The vision for the HEALing communities study. Drug Alcohol Depend. 2020, 217, 108329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Revol, B.; Willeman, T.; Manceau, M.; Dumestre-Toulet, V.; Gaulier, J.M.; Fouilhé Sam-Laï, N.; Eysseric-Guérin, H.; Compagnie Nationale des Biologistes et Analystes Experts (CNBAE) and the French Addictovigilance Network (FAN). Trends in Fatal Poisoning Among Drug Users in France from 2011 to 2021: An Analysis of the DRAMES Register. JAMA Netw. Open 2023, 6, e2331398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Committee on Pain Management and Regulatory Strategies to Address Prescription Opioid Abuse; Phillips, J.K.; Ford, M.A.; Bonnie, R.J. (Eds.) Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use; National Academies Press: Washington, DC, USA, 2017; Trends in Opioid Use, Harms, and Treatment. Available online: https://www.ncbi.nlm.nih.gov/books/NBK458661/ (accessed on 14 June 2024).
- van den Brink, W.; Pierce, M.; van Amsterdam, J. What lessons from Europe’s experience could be applied in the United States in response to the opioid addiction and overdose crisis? Addiction 2022, 117, 1197–1198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguemeni Tiako, M.J.; Netherland, J.; Hansen, H.; Jauffret-Roustide, M. Drug Overdose Epidemic Colliding With COVID-19: What the United States Can Learn from France. Am. J. Public Health 2022, 112, S128–S132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salmond, S.; Allread, V. A Population Health Approach to America’s Opioid Epidemic. Orthop. Nurs. 2019, 38, 95–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dembek, Z.F.; Chekol, T.; Wu, A. The Opioid Epidemic: Challenge to Military Medicine and National Security. Mil. Med. 2020, 185, e662–e667. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, D.; Margarit, S. In between Opioid Crisis and the Need to Treat Pain, where do we Stand? J. Crit. Care Med. 2022, 8, 229–231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rusu, R.N.; Ababei, D.C.; Bild, W.; Stoian, I.; Macadan, I.; Stanciu, G.D.; Ciobica, A.; Bild, V. Self-Medication in Rural Northeastern Romania: Patients’ Attitudes and Habits. Int. J. Environ. Res. Public Health 2022, 19, 14949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Judd, D.; King, C.R.; Galke, C. The Opioid Epidemic: A Review of the Contributing Factors, Negative Consequences, and Best Practices. Cureus 2023, 15, e41621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gustafsson, M.; Silva, V.; Valeiro, C.; Joaquim, J.; van Hunsel, F.; Matos, C. Misuse, Abuse and Medication Errors’ Adverse Events Associated with Opioids—A Systematic Review. Pharmaceuticals 2024, 17, 1009. [Google Scholar] [CrossRef]
- Dydyk, A.M.; Jain, N.K.; Gupta, M. Opioid Use Disorder. [Updated 2024 Jan 17]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553166/ (accessed on 14 June 2024).
- Schwetz, T.A.; Calder, T.; Rosenthal, E.; Kattakuzhy, S.; Fauci, A.S. Opioids and Infectious Diseases: A Converging Public Health Crisis. J. Infect. Dis. 2019, 220, 346–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jobski, K.; Bantel, C.; Hoffmann, F. Characteristics and completeness of spontaneous reports by reporter’s role in Germany: An analysis of the EudraVigilance database using the example of opioid-associated abuse, dependence, or withdrawal. Pharmacol. Res. Perspect. 2023, 11, e01077. [Google Scholar] [CrossRef]
- Chiappini, S.; Vickers-Smith, R.; Guirguis, A.; Corkery, J.M.; Martinotti, G.; Harris, D.R.; Schifano, F. Pharmacovigilance signals of the opioid epidemic over 10 years: Data mining methods in the analysis of pharmacovigilance datasets collecting adverse drug reactions (ADRs) Reported to EudraVigilance (EV) and the FDA Adverse Event Reporting System (FAERS). Pharmaceuticals 2022, 15, 675. [Google Scholar] [CrossRef]
- Blanco, C.; Wiley, T.R.A.; Lloyd, J.J.; Lopez, M.F.; Volkow, N.D. America’s opioid crisis: The need for an integrated public health approach. Transl. Psychiatry 2020, 10, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Regier, D.A.; Kuhl, E.A.; Kupfer, D.J. The DSM-5: Classification and criteria changes. World Psychiatry 2013, 12, 92–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bratu, M.L.; Sandesc, D.; Anghel, T.; Tudor, R.; Shaaban, L.; Ali, A.; Toma, A.O.; Bratosin, F.; Turcu, I.; Gantsa, A.; et al. Evaluating the Aspects of Quality of Life in Individuals with Substance Use Disorder: A Systematic Review Based on the WHOQOL Questionnaire. J. Multidiscip. Healthc. 2023, 16, 4265–4278. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.W.; Aden, B.; Eggman, A.A.; Hellerstein, L.; Wittenberg, E.; Nosyk, B.; Stribling, J.C.; Schackman, B.R. Quality of life as an outcome of opioid use disorder treatment: A systematic review. J. Subst. Abuse Treat. 2017, 76, 88–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jalali, A.; Ryan, D.A.; Jeng, P.J.; McCollister, K.E.; Leff, J.A.; Lee, J.D.; Nunes, E.V.; Novo, P.; Rotrosen, J.; Schackman, B.R.; et al. Health-related quality of life and opioid use disorder pharmacotherapy: A secondary analysis of a clinical trial. Drug Alcohol Depend. 2020, 215, 108221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aas, C.F.; Vold, J.H.; Skurtveit, S.; Lim, A.G.; Ruths, S.; Islam, K.; Askildsen, J.E.; Løberg, E.M.; Fadnes, L.T.; Johansson, K.A.; et al. Health-related quality of life of long-term patients receiving opioid agonist therapy: A nested prospective cohort study in Norway. Subst. Abuse Treat. Prev. Policy 2020, 15, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nosyk, B.; Bray, J.W.; Wittenberg, E.; Aden, B.; Eggman, A.A.; Weiss, R.D.; Potter, J.; Ang, A.; Hser, Y.I.; Ling, W.; et al. Short term health-related quality of life improvement during opioid agonist treatment. Drug Alcohol Depend. 2015, 157, 121–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitehurst, D.G.T.; Mah, C.; Krebs, E.; Enns, B.; Socias, M.E.; Jutras-Aswad, D.; Le Foll, B.; Nosyk, B.; OPTIMA Research Group within the Canadian Research Initiative in Substance Misuse. Sensitivity to change of generic preference-based instruments (EQ-5D-3L, EQ-5D-5L, and HUI3) in the context of treatment for people with prescription-type opioid use disorder in Canada. Qual. Life Res. 2023, 32, 2209–2221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, Q.; Bajis, S.; Cunningham, E.; Shih, S.T.F.; Schulz, M.; Marshall, A.D.; Martin, N.K.; Miners, A.; Hajarizadeh, B.; Wiseman, V.; et al. Health-related quality of life among people who inject drugs in Australia. Qual. Life Res. 2023, 32, 3195–3207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kåberg, M.; Larsson, S.; Bergström, J.; Hammarberg, A. Quality-adjusted life years among people who inject drugs in a needle syringe program in Sweden. Qual. Life Res. 2023, 32, 197–207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, Q.; Valerio, H.; Cunningham, E.B.; Shih, S.T.F.; Silk, D.; Conway, A.; Treloar, C.; Murray, C.; Henderson, C.; Amin, J.; et al. Health-Related Quality of Life of People Who Inject Drugs: The Enhancing Treatment of Hepatitis C in Opioid Substitution Settings Engage Study. Value Health 2024, 27, 216–225. [Google Scholar] [CrossRef] [PubMed]
Variables | Men (n = 45) | Women (n = 29) | p |
---|---|---|---|
Age (mean ± SD) | 35.10 ± 9.51 | 35.48 ± 9.36 | 0.866 |
Age range, n (%) | - | - | 0.335 |
18–29 years | 15 (33.33%) | 6 (20.69%) | |
30–40 years | 18 (40.00%) | 11 (37.93%) | |
>40 years | 12 (26.67%) | 12 (41.38%) | |
Education, n (%) | 0.861 | ||
No education | 4 (8.99%) | 1 (3.45%) | |
Elementary school | 7 (15.56%) | 4 (13.79%) | |
Middle school | 11 (24.44%) | 6 (20.69%) | |
High school | 14 (31.11%) | 11 (37.93%) | |
University | 9 (20.00%) | 7 (24.14%) | |
Relationship status, n (%) | 0.664 | ||
Single/Separated | 18 (40.00%) | 13 (44.83%) | |
Married | 17 (37.78%) | 12 (41.38%) | |
In a relationship/Concubine | 10 (22.22%) | 4 (13.79%) | |
Comorbidities, n (%) | 0.557 | ||
No comorbidities | 12 (26.67%) | 6 (20.69%) | |
Unknown | 13 (28.89%) | 10 (34.48%) | |
Hypertension | 9 (20.00%) | 3 (10.34%) | |
Diabetes mellitus | 11 (24.44%) | 10 (34.48%) | |
Other substance use | |||
Smoking | 30 (66.67%) | 17 (28.62%) | 0.649 |
Chronic alcohol use | 22 (48.89%) | 16 (55.17%) | 0.772 |
Methadone compliance | 0.513 | ||
Methadone compliant | 31 (68.89%) | 17 (58.62%) | |
Methadone uncompliant | 14 (31.11%) | 12 (41.38%) |
Variables (Mean ± SD) | Baseline | At 3 Months | At 6 Months | At 12 Months | p-Value * | Shapiro–Wilk | Levene’s Test |
---|---|---|---|---|---|---|---|
Physical domain (Men, No Comorbidity) | 53.12 ± 7.85 | 55.34 ± 7.32 | 57.23 ± 7.12 | 59.12 ± 6.89 | <0.001 | 0.065 | 0.125 |
Physical domain (Men, Comorbidity) | 50.76 ± 9.12 | 53.67 ± 8.12 | 55.89 ± 7.45 | 57.45 ± 6.98 | <0.001 | 0.07 | 0.13 |
Physical domain (Women, No Comorbidity) | 52.68 ± 8.41 | 54.78 ± 7.45 | 56.34 ± 7.23 | 58.34 ± 6.89 | <0.001 | 0.068 | 0.128 |
Physical domain (Women, Comorbidity) | 50.23 ± 8.85 | 52.13 ± 7.88 | 53.98 ± 7.67 | 55.45 ± 7.12 | <0.001 | 0.072 | 0.132 |
Psychological domain (Men, No Comorbidity) | 51.23 ± 9.23 | 53.67 ± 8.23 | 55.89 ± 7.98 | 57.89 ± 7.12 | <0.001 | 0.078 | 0.139 |
Psychological domain (Men, Comorbidity) | 47.84 ± 9.88 | 50.45 ± 8.92 | 52.34 ± 8.67 | 54.45 ± 7.89 | <0.001 | 0.081 | 0.142 |
Psychological domain (Women, No Comorbidity) | 50.12 ± 8.78 | 52.12 ± 8.12 | 54.12 ± 7.45 | 56.34 ± 7.23 | <0.001 | 0.08 | 0.14 |
Psychological domain (Women, Comorbidity) | 47.13 ± 9.01 | 49.67 ± 8.98 | 51.78 ± 8.45 | 53.98 ± 7.78 | <0.001 | 0.083 | 0.145 |
Social domain (Men, No Comorbidity) | 48.23 ± 10.45 | 50.23 ± 9.78 | 52.67 ± 9.23 | 54.45 ± 8.45 | <0.001 | 0.052 | 0.112 |
Social domain (Men, Comorbidity) | 45.76 ± 11.24 | 47.98 ± 10.45 | 49.67 ± 9.78 | 51.78 ± 8.98 | <0.001 | 0.054 | 0.115 |
Social domain (Women, No Comorbidity) | 47.21 ± 10.23 | 49.89 ± 9.67 | 51.78 ± 9.12 | 53.89 ± 8.12 | <0.001 | 0.055 | 0.113 |
Social domain (Women, Comorbidity) | 44.89 ± 11.13 | 46.43 ± 10.23 | 48.34 ± 9.89 | 50.45 ± 8.67 | <0.001 | 0.057 | 0.117 |
Environmental domain (Men, No Comorbidity) | 49.35 ± 10.01 | 51.12 ± 10.12 | 53.56 ± 9.89 | 55.23 ± 8.67 | <0.001 | 0.081 | 0.145 |
Environmental domain (Men, Comorbidity) | 46.56 ± 11.12 | 48.45 ± 10.56 | 50.12 ± 9.34 | 52.34 ± 8.89 | <0.001 | 0.085 | 0.148 |
Environmental domain (Women, No Comorbidity) | 48.75 ± 10.85 | 50.89 ± 9.56 | 52.45 ± 9.23 | 54.67 ± 8.23 | <0.001 | 0.083 | 0.146 |
Environmental domain (Women, Comorbidity) | 45.78 ± 10.92 | 47.78 ± 9.89 | 49.56 ± 9.45 | 51.89 ± 8.45 | <0.001 | 0.087 | 0.15 |
Methadone dose (Men) | 65.74 ± 22.35 | 57.45 ± 16.85 | 59.78 ± 18.23 | 61.89 ± 19.12 | 0.406 | 0.093 | 0.231 |
Methadone dose (Women) | 62.12 ± 23.88 | 53.89 ± 15.12 | 56.45 ± 17.89 | 59.45 ± 18.89 | 0.482 | 0.088 | 0.295 |
Domains (Mean ± SD) | Compliant (n = 48) | Uncompliant (n = 26) | Control (n = 50) | p-Value |
---|---|---|---|---|
Physical domain | 60.21 ± 7.34 | 52.47 ± 8.56 | 65.12 ± 6.45 | <0.001 |
Psychological domain | 58.32 ± 6.88 | 50.93 ± 9.29 | 63.32 ± 6.22 | <0.001 |
Social domain | 57.14 ± 7.15 | 48.36 ± 10.41 | 61.56 ± 6.98 | <0.001 |
Environmental domain | 55.79 ± 7.62 | 47.82 ± 11.07 | 60.89 ± 7.12 | <0.001 |
Predictors | Estimate | SE | t-Value | p-Value | 95%CI |
---|---|---|---|---|---|
Age range | |||||
30–40 years vs. 18–29 years | 0.86 | 0.77 | 1.12 | 0.265 | (−0.66, 2.38) |
>40 years vs. 18–29 years | −1.44 | 0.82 | −1.76 | 0.082 | (−3.06, 0.18) |
Sex | |||||
Woman vs. Men | −0.98 | 0.68 | −1.44 | 0.153 | (−2.32, 0.36) |
Education | |||||
Per level increase | 0.21 | 0.12 | 1.75 | 0.084 | (−0.03, 0.45) |
Relationship status | |||||
Married vs. Single | 2.06 | 0.74 | 2.78 | 0.006 | (0.59, 3.53) |
In a relationship vs. Single | 1.78 | 0.91 | 1.96 | 0.053 | (−0.02, 3.58) |
Comorbidities | |||||
Hypertension vs. No comorbidities | 0.63 | 0.85 | 0.74 | 0.461 | (−1.05, 2.31) |
Diabetes mellitus vs. No comorbidities | 0.97 | 0.89 | 1.09 | 0.279 | (−0.79, 2.73) |
Substance use | |||||
Smoking | −0.36 | 0.34 | −1.06 | 0.291 | (−1.03, 0.31) |
Chronic alcohol use | −0.74 | 0.59 | −1.25 | 0.214 | (−1.91, 0.43) |
Methadone compliance vs. Noncompliance | 3.17 | 0.76 | 4.17 | <0.001 | (1.67, 4.67) |
Predictors | Estimate | SE | t-Value | p-Value | 95%CI |
---|---|---|---|---|---|
Age range | |||||
30–40 years vs. 18–29 years | 0.47 | 1.03 | 0.46 | 0.648 | (−1.58, 2.52) |
>40 years vs. 18–29 years | 1.14 | 1.21 | 0.94 | 0.351 | (−1.26, 3.54) |
Sex | |||||
Woman vs. Men | 1.37 | 0.89 | 1.54 | 0.127 | (−0.39, 3.13) |
Education | |||||
Per level increase | 0.38 | 0.23 | 1.65 | 0.103 | (−0.07, 0.83) |
Relationship status | |||||
Married vs. Single | 1.84 | 0.78 | 2.36 | 0.021 | (1.30, 3.38) |
In a relationship vs. Single | 2.29 | 0.83 | 2.76 | 0.007 | (1.65, 4.43) |
Comorbidities | |||||
Hypertension vs. No comorbidities | 0.91 | 0.92 | 0.99 | 0.325 | (−0.91, 2.73) |
Diabetes mellitus vs. No comorbidities | 1.63 | 0.88 | 1.85 | 0.067 | (−0.11, 3.37) |
Substance use | |||||
Smoking | 0.29 | 0.34 | 0.85 | 0.396 | (−0.38, 0.96) |
Chronic alcohol use | −0.47 | 0.25 | −1.88 | 0.064 | (−0.97, 0.03) |
Methadone compliance vs. Noncompliance | 2.16 | 0.91 | 2.37 | 0.021 | (1.36, 3.96) |
Predictors | Estimate | SE | t-Value | p-Value | 95%CI |
---|---|---|---|---|---|
Age range | |||||
30–40 years vs. 18–29 years | 0.59 | 0.68 | 0.87 | 0.386 | (−0.75, 1.93) |
>40 years vs. 18–29 years | −0.34 | 0.73 | −0.47 | 0.64 | (−1.78, 1.10) |
Sex | |||||
Woman vs. Men | 0.82 | 0.62 | 1.32 | 0.19 | (−0.40, 2.04) |
Education | |||||
Per level increase | 0.49 | 0.15 | 3.27 | 0.001 | (0.19, 0.79) |
Relationship status | |||||
Married vs. Single | 1.3 | 0.81 | 1.6 | 0.113 | (−0.31, 2.91) |
In a relationship vs. Single | 2.14 | 0.87 | 2.46 | 0.015 | (0.42, 3.86) |
Comorbidities | |||||
Hypertension vs. No comorbidities | −0.57 | 0.78 | −0.73 | 0.467 | (−2.11, 0.97) |
Diabetes mellitus vs. No comorbidities | −0.69 | 0.84 | −0.82 | 0.415 | (−2.35, 0.97) |
Substance use | |||||
Smoking | −1.04 | 0.46 | −2.26 | 0.026 | (−1.94, −0.14) |
Chronic alcohol use | −0.92 | 0.51 | −1.8 | 0.075 | (−1.93, 0.09) |
Methadone compliance vs. Noncompliance | 1.60 | 0.89 | 2.24 | 0.008 | (1.06, 5.93) |
Predictors | Estimate | SE | t-Value | p-Value | 95%CI |
---|---|---|---|---|---|
Age range | |||||
30–40 years vs. 18–29 years | −0.25 | 0.69 | −0.36 | 0.72 | (−1.61, 1.11) |
>40 years vs. 18–29 years | 0.38 | 0.75 | 0.51 | 0.612 | (−1.10, 1.86) |
Sex | |||||
Woman vs. Men | 0.45 | 0.63 | 0.71 | 0.478 | (−0.80, 1.70) |
Education | |||||
Per level increase | 0.33 | 0.13 | 2.54 | 0.013 | (0.07, 0.59) |
Relationship status | |||||
Married vs. Single | 1.47 | 0.76 | 1.93 | 0.057 | (−0.04, 2.98) |
In a relationship vs. Single | 1.03 | 0.84 | 1.23 | 0.221 | (−0.63, 2.69) |
Comorbidities | |||||
Hypertension vs. No comorbidities | 0.62 | 0.67 | 0.92 | 0.359 | (−0.71, 1.95) |
Diabetes mellitus vs. No comorbidities | 0.89 | 0.72 | 1.24 | 0.218 | (−0.53, 2.31) |
Substance use | |||||
Smoking | −0.52 | 0.47 | −1.11 | 0.27 | (−1.44, 0.40) |
Chronic alcohol use | −0.89 | 0.54 | −1.65 | 0.102 | (−1.96, 0.18) |
Methadone compliance vs. Noncompliance | 2.41 | 0.77 | 3.13 | 0.002 | (1.89, 3.93) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratu, M.L.; Sandesc, D.; Anghel, T.; Bratosin, F.; Vlad, S.V.; Terzi, A.; Streian, C.G. Evaluating Quality of Life Changes over 12 Months Among Opiate Users from Romania and Associated Worsening Factors. Life 2024, 14, 1336. https://doi.org/10.3390/life14101336
Bratu ML, Sandesc D, Anghel T, Bratosin F, Vlad SV, Terzi A, Streian CG. Evaluating Quality of Life Changes over 12 Months Among Opiate Users from Romania and Associated Worsening Factors. Life. 2024; 14(10):1336. https://doi.org/10.3390/life14101336
Chicago/Turabian StyleBratu, Melania Lavinia, Dorel Sandesc, Teodora Anghel, Felix Bratosin, Silviu Valentin Vlad, Artiom Terzi, and Caius Glad Streian. 2024. "Evaluating Quality of Life Changes over 12 Months Among Opiate Users from Romania and Associated Worsening Factors" Life 14, no. 10: 1336. https://doi.org/10.3390/life14101336
APA StyleBratu, M. L., Sandesc, D., Anghel, T., Bratosin, F., Vlad, S. V., Terzi, A., & Streian, C. G. (2024). Evaluating Quality of Life Changes over 12 Months Among Opiate Users from Romania and Associated Worsening Factors. Life, 14(10), 1336. https://doi.org/10.3390/life14101336