Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies
<p><b>A</b> step-by-step scheme for production of lipid nanoparticles.</p> "> Figure 2
<p>Changes in pH of the cosmetic formulations stored under various temperature conditions (4, 25, 45 °C) for 60 days.</p> "> Figure 3
<p>Changes in the Turbiscan Stability Index of the cosmetic formulations ((<b>a</b>) AAN; (<b>b</b>) AAB; (<b>c</b>) ACN; (<b>d</b>) ACB) stored under various temperature conditions (4, 25, 45 °C) for 60 days.</p> "> Figure 4
<p>Changes in intensity of the backscattering light for ACN stored at 45 °C for 60 days.</p> "> Figure 5
<p>Changes in intensity of the backscattering light for ACB stored at 45 °C for 60 days.</p> "> Figure 6
<p>Changes in intensity of the backscattering light for AAN stored at 25 °C for 60 days.</p> "> Figure 7
<p>Changes in intensity of the backscattering light for AAB stored at 4 °C for 60 days.</p> "> Figure 8
<p>Changes in skin hydration (<b>a</b>) and transepidermal water loss (<b>b</b>) determined for the anti-aging (AA) cosmetic formulations during in vivo studies.</p> "> Figure 9
<p>Changes in skin hydration (<b>a</b>) and transepidermal water loss (<b>b</b>) determined for the anti-acne (AC) cosmetic formulations during in vivo studies.</p> "> Figure 10
<p>Changes in skin elasticity determined for the anti-aging (AA) cosmetic formulations during in vivo studies.</p> "> Figure 11
<p>Changes in sebum level determined for the anti-acne (AC) cosmetic formulations during in vivo studies.</p> "> Figure 12
<p>Changes in skin macrorelief parameters determined for the anti-aging (AA) cosmetic formulations (forehead and eye area) during in vivo studies (8 weeks).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Characterization of Lipid Nanoparticles
2.2. Preparation of Semi-Solid Cosmetic Formulations
- AAN (anti-aging NANO)—anti-aging night face cream containing lipid nanoparticles loaded with retinol and pentapeptide-18 (10.0 wt.%);
- AAB (anti-aging BASE)—anti-aging night face cream without lipid nanoparticles;
- ACN (anti-acne NANO)—anti-acne night face cream containing lipid nanoparticles loaded with retinol and pentapeptide-18 (5.0 wt.%);
- ACB (anti-acne BASE)—anti-acne night face cream without lipid nanoparticles.
2.3. Physicochemical Characterization of Cosmetic Products
2.3.1. pH
2.3.2. Stability Test
2.4. The Application Tests
2.4.1. Testing Panel
2.4.2. Skin Testing Equipment
- Tewameter® TM 300 (level of transepidermal water loss, TEWL)
- Corneometer® CM 825 (skin hydration level)
- Cutometer® MPA 580 (skin elasticity)
- Sebumeter® SM 815 (amount of sebum secreted by the skin’s sebaceous glands)
- Visioline® VL 650 (skin macrorelief parameters: total wrinkle area [mm2]; percentage of wrinkle area [%]; mean length [mm] and maximum depth of wrinkles [µm])
3. Results and Discussion
3.1. Lipid Nanoparticles Loaded with Retinol and Pentapeptide-18–Physicochemical Characterization
3.2. Cosmetic Products Enriched with Lipid Nanoparticles—Physicochemical Characterization
3.2.1. pH Test
3.2.2. Stability Study by Multiple Light Scattering
3.3. Cosmetic Products Enriched with Lipid Nanoparticles—Efficacy Testing (In Vivo Tests)
3.3.1. Skin Hydration and Transepidermal Water Loss Measurement
3.3.2. Skin Elasticity Measurement
3.3.3. Sebum Level Measurement
3.3.4. Skin Macrorelief Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charoenputtakhun, P.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier. Pharm. Dev. Technol. 2014, 19, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Khatak, S.; Vir, U.; Sara, S. Solid lipid nanoparticles—A review. Int. J. Appl. Pharm. 2013, 5, 8–18. [Google Scholar]
- Resende, D.I.; Ferreira, M.S.; Sousa-Lobo, J.M.; Sousa, E.; Almeida, I.F. Usage of synthetic peptides in cosmetics for sensitive skin. Pharmaceuticals 2021, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, J. Naturalne peptydy przeciwdrobnoustrojowe w zastosowaniach biomedycznych. Polimery 2014, 59, 699–707. [Google Scholar] [CrossRef]
- Olejnik, A.; Nowak, I.; Schroeder, G. Peptydy jako nowe syntetyczne składniki preparatów kosmetycznych. In Receptory molekularne—Właściwości i Zastosowanie; Cursiva: Kostrzyn, Poland, 2009; pp. 105–122. [Google Scholar]
- Lipotec®. ‘Leuphasyl®’; Lipotec®: Barcelona, Spain, 2020; pp. 1–15. [Google Scholar]
- Errante, F.; Ledwoń, P.; Latajka, R.; Rovero, P.; Papini, A.M. Cosmeceutical Peptides in the Framework of Sustainable Wellness Economy. Front. Chem. 2020, 8, 572923. [Google Scholar] [CrossRef]
- Pawłowska, M.; Marzec, M.; Nowak, I.; Jankowiak, W. Retinoids. Chemical diversity for health and beauty. Przem. Chem. 2023, 1, 78–88. [Google Scholar] [CrossRef]
- Bojarowicz, H.; Płowiec, A. Wpływ witaminy A na kondycję skóry. Probl. Hig. Epidemiol. 2010, 91, 352–356. [Google Scholar]
- Marona, H.; Gunia, A.; Pękala, E. Retinoidy—Rola w farmakoterapii w aspekcie komórkowego mechanizmu działania. Farm. Pol. 2010, 66, 187–192. [Google Scholar]
- Tratnjek, L.; Jeruc, J.; Romih, R.; Zupančič, D. Vitamin A and retinoids in bladder cancer chemoprevention and treatment: A narrative review of current evidence, challenges and future prospects. Int. J. Mol. Sci. 2021, 22, 3510. [Google Scholar] [CrossRef]
- Baumann, L. Cosmetic Dermatology, 2nd ed.; McGraw-Hill Education/Medical: Chicago, IL, USA, 2009; pp. 256–262. [Google Scholar]
- Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 2003, 254, 65–68. [Google Scholar] [CrossRef]
- Lasoń, E.; Ogonowski, J. Stałe Nanocząsteczki Lipidowe—Charakterystyka, zastosowanie i otrzymywanie. Chemik 2011, 65, 960–967. [Google Scholar]
- Hallan, S.S.; Sguizzato, M.; Esposito, E.; Cortesi, R. Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics 2021, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun. 2020, 11, 4265. [Google Scholar] [CrossRef] [PubMed]
- Anil, L.; Kannan, K. Microemulsion as drug delivery system for peptides and proteins. J. Pharm. Sci. Res. 2018, 10, 16–25. [Google Scholar]
- Almeida, A.J.; Runge, S.; Müller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm. 1997, 149, 255–265. [Google Scholar] [CrossRef]
- Kołaczek, A. Przegląd metodpielęgnacji skóry dojrzałej. Kosmetol. Estet. 2015, 4, 541–545. [Google Scholar]
- Marwicka, J.; Gałuszka, A. Use of vitamin preparations in the skin care process. Aesthetic Cosmetol. Med. 2021, 10, 181–187. [Google Scholar] [CrossRef]
- Bernat, M.; Matysek-Nawrocka, M.; Cioczek, W. Składniki aktywne w kosmetykach przeciwstarzeniowych. Aesthetic Cosmetol. Med. 2016, 5, 575–579. [Google Scholar]
- Noszczyk, M. Kosmetologia Pielęgnacyjna i Lekarska; PZWL Wydawnictwo Lekarskie: Warsaw, Poland, 2012. [Google Scholar]
- Adamski, Z.; Kaszuba, A. Dermatologia dla Kosmetologów; UM Poznan: Poznan, Poland, 2008. [Google Scholar]
- ZetaSizer Nano Series, Zetasizer Nano Series User Manual; Zeta Potential Theory; Malvern Instruments Ltd.: Worcestershire, UK, 2004.
- Courage+Khazaka. Tewameter TM 300; Manual instruction; Courage+Khazaka: Köln, Germany, 2017. [Google Scholar]
- Courage+Khazaka. Corneometer CM 825; Manual instruction; Courage+Khazaka: Köln, Germany, 2020. [Google Scholar]
- Courage+Khazaka. Cutometer MPA 580; Manual instruction; Courage+Khazaka: Köln, Germany, 2019. [Google Scholar]
- Courage+Khazaka. Sebumeter® SM 815; Manual instruction; Courage+Khazaka: Köln, Germany, 2016. [Google Scholar]
- Courage+Khazaka. Visioline VL 650-Quantiride; Manual instruction; Courage+Khazaka: Köln, Germany, 2016. [Google Scholar]
- Dąbrowska, M.; Nowak, I. Lipid nanoparticles loaded with selected iridoid glycosides as effective components of hydrogel formulations. Materials 2021, 14, 4090. [Google Scholar] [CrossRef]
- Lee, S.C.; Yuk, H.G.; Lee, D.H.; Lee, K.E.; Hwang, Y.I.; Ludescher, R.D. Stabilization of retinol through incorporation into liposomes. J. Biochem. Mol. Biol. 2002, 35, 358–363. [Google Scholar] [CrossRef]
- Dąbrowska, M.A. Optymalizacja Właściwości Fizykochemicznych Oraz Aplikacyjnych Formulacji Kosmetycznych Zawierających Wybrane Glikozydy Irydoidowe; UAM: Poznan, Poland, 2019; p. 167. [Google Scholar]
- Lab Expert, Turbiscan ®—Manual instruction. 2013.
- Gagliardi, A.; Paolino, D.; Costa, N.; Fresta, M.; Cosco, D. Zein- vs PLGA-based nanoparticles containing rutin: A comparative investigation. Mater. Sci. Eng. C 2021, 118, 111538. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Qi, X.; Ren, T.; Huang, Y.; Keller, A.A.; Wang, H.; Wu, B.; Jin, H.; Li, F. Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 533, 9–19. [Google Scholar] [CrossRef]
- Gagliardi, A.; Paolino, D.; Iannone, M.; Palma, E. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system. Int. J. Nanomed. 2018, 13, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Dong, Y.; Wang, H.; Wang, C.; Li, F. Application of Turbiscan in the homoaggregation and heteroaggregation of copper nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 535, 96–104. [Google Scholar] [CrossRef]
- Celia, C.; Trapasso, E.; Cosco, D.; Paolino, D.; Fresta, M. Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces 2009, 72, 155–160. [Google Scholar] [CrossRef]
- Kilpatric-Liverman, L. Mechanisms of Skin Hydration. In Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2014; pp. 81–92. [Google Scholar]
- Machado, M.; Salgado, T.M.; Hadgraft, J.; Lane, M.E. The relationship between transepidermal water loss and skin permeability. Int. J. Pharm. 2010, 384, 73–77. [Google Scholar] [CrossRef]
- Gardien, K.L.M.; Baas, D.C.; de Vet, H.C.W.; Middelkoop, E. Transepidermal water loss measured with the Tewameter TM300 in burn scars. Burns 2016, 42, 1455–1462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłowska, M.; Marzec, M.; Jankowiak, W.; Nowak, I. Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies. Life 2024, 14, 1212. https://doi.org/10.3390/life14101212
Pawłowska M, Marzec M, Jankowiak W, Nowak I. Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies. Life. 2024; 14(10):1212. https://doi.org/10.3390/life14101212
Chicago/Turabian StylePawłowska, Małgorzata, Marta Marzec, Waldemar Jankowiak, and Izabela Nowak. 2024. "Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies" Life 14, no. 10: 1212. https://doi.org/10.3390/life14101212
APA StylePawłowska, M., Marzec, M., Jankowiak, W., & Nowak, I. (2024). Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies. Life, 14(10), 1212. https://doi.org/10.3390/life14101212