The Intelligent Diagnosis of a Hydraulic Plunger Pump Based on the MIGLCC-DLSTM Method Using Sound Signals
<p>Cepstral feature extraction flowchart.</p> "> Figure 2
<p>Distribution of Mel filter bank.</p> "> Figure 3
<p>Distribution of inverse Mel filter bank.</p> "> Figure 4
<p>Distribution of Gammatone filter bank.</p> "> Figure 5
<p>LSTM network architecture.</p> "> Figure 6
<p>DLSTM network schematic.</p> "> Figure 7
<p>Flow chart of intelligent diagnosis method of hydraulic plunger pump based on sound signals.</p> "> Figure 8
<p>Hydraulic plunger pump fault simulation test bench.</p> "> Figure 9
<p>Hydraulic plunger pump experimental setup diagram. 1—Oil tank; 2, 24—filter; 3—vane pump; 4, 25—gate valve; 5, 13—flow meter; 6, 15—pressure gauge switch; 7, 16—pressure gauge; 8, 18—relief valve; 9—hydraulic plunger pump; 10—accelerometer; 11—sound level meter; 12—check valve; 14—pressure sensor; 17, 22—accumulator; 19—solenoid valve; 20—electro-hydraulic servo valve; 21—hydraulic cylinder; 23—check throttle valve.</p> "> Figure 10
<p>Physical images of faulty components in hydraulic plunger pump: (<b>a</b>) swash plate wear; (<b>b</b>) slipper wear; and (<b>c</b>) loose slipper.</p> "> Figure 11
<p>Time–domain waveform and power spectrum of hydraulic plunger pump sound signals: (<b>a</b>) normal; (<b>b</b>) swash plate wear; (<b>c</b>) slipper wear; and (<b>d</b>) loose slipper.</p> "> Figure 12
<p>Four types of cepstral features in different states: (<b>a</b>) normal; (<b>b</b>) swash plate wear; (<b>c</b>) slipper wear; and (<b>d</b>) loose slipper.</p> "> Figure 13
<p>Average classification accuracy of ten trials.</p> "> Figure 14
<p>Confusion matrices for different features: (<b>a</b>) MFCC; (<b>b</b>) IMFCC; (<b>c</b>) MICC; (<b>d</b>) MIGCC; (<b>e</b>) MILCC; and (<b>f</b>) MIGLCC.</p> "> Figure 15
<p>Performance comparison of different diagnostic methods.</p> "> Figure 16
<p>Principles or network structures of various methods: (<b>a</b>) SVM; (<b>b</b>) 1D-CNN; and (<b>c</b>) RNN.</p> "> Figure 17
<p>Performance comparison of LSTM networks with different layer numbers.</p> "> Figure 18
<p>t-SNE feature visualization: (<b>a</b>) original data; (<b>b</b>) MIGLCC features; (<b>c</b>) LSTM1 layer; (<b>d</b>) LSTM2 layer; (<b>e</b>) FC layer.</p> "> Figure 19
<p>CWRU bearing fault test bench.</p> "> Figure 20
<p>Time–domain waveform and power spectrum of CWRU bearing vibration signals: (<b>a</b>) normal; (<b>b</b>) inner race fault; (<b>c</b>) outer race fault; and (<b>d</b>) rolling element fault.</p> "> Figure 21
<p>Confusion matrix of CWRU bearing data diagnosis results.</p> "> Figure 22
<p>t-SNE feature visualization before and after CWRU bearing diagnosis: (<b>a</b>) original data; (<b>b</b>) MIGLCC-DLSTM classifies data.</p> "> Figure 23
<p>Servo motor fault test bench.</p> "> Figure 24
<p>Servo motor test system schematic.</p> "> Figure 25
<p>Time–domain waveform and power spectrum of servo motor pressure signals: (<b>a</b>) normal; (<b>b</b>) servo valve internal leakage; (<b>c</b>) spring breakage; (<b>d</b>) quick-closing solenoid valve throttling orifice blockage; (<b>e</b>) internal oil leakage; and (<b>f</b>) external oil leakage.</p> "> Figure 26
<p>Confusion matrix of servo motor data diagnosis results.</p> "> Figure 27
<p>t-SNE feature visualization before and after servo motor diagnosis: (<b>a</b>) original data; (<b>b</b>) MIGLCC-DLSTM classifies data.</p> ">
Abstract
:1. Introduction
2. Introduction to Basic Knowledge
2.1. Extraction of Different Cepstral Features
2.1.1. MFCC
2.1.2. IMFCC
2.1.3. GFCC
2.1.4. LPCC
2.1.5. Hybrid Cepstral Feature MIGLCC
2.2. LSTM Network
3. Hydraulic Plunger Pump Simulation Experiment
3.1. Construction of Experimental Setup and Signal Acquisition
3.2. Experimental Data Partitioning
3.3. MIGLCC Feature Extraction
3.4. Network Parameter Configuration
3.5. Analysis of Experimental Results
3.5.1. Performance Comparison of Diagnostic Models with Different Data Partition Ratios
3.5.2. Performance Comparison of Diagnostic Models with Different Cepstral Features
3.5.3. Performance Comparison of Different Diagnostic Methods
- (1)
- SVM: The penalty factor C was set to 0.1, the kernel function type was the radial basis function, and the width parameter σ was 12. The principle of SVM is illustrated in Figure 16a.
- (2)
- 1D-CNN: The network included an input layer, three convolutional layers (with 64, 128, and 256 filters; kernel size of three; and stride of one), three max-pooling layers (pooling window size of two), two fully connected layers, and an output layer. During training, the ReLU activation function was used, with an Adam optimizer, a learning rate of 0.001, a dropout rate of 0.5, a batch size of 16, and 20 epochs. The network structure is shown in Figure 16b.
- (3)
- RNN: The network comprises an input layer, hidden layers, and an output layer. During training, the Adam optimizer was used, with 32 hidden units, a learning rate of 0.001, a dropout rate of 0.2, a batch size of 16, and 20 epochs. The network structure is depicted in Figure 16c.
3.5.4. Performance Analysis of the Diagnostic Model Under Multiple Operating Conditions
3.6. Parameter Sensitivity
3.7. Visualization of Feature Representations
4. Extended Application of the MIGLCC-DLSTM Method
4.1. CWRU Bearing Dataset
4.2. Servo Motor Dataset
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
MFCC | Mel Frequency Cepstral Coefficient |
IMFCC | Inverse Mel Frequency Cepstral Coefficient |
GFCC | Gammatone Frequency Cepstral Coefficient |
LPCC | Linear Prediction Cepstral Coefficient |
MICC | MFCC and IMFCC |
MIGCC | MFCC and IMFCC and GFCC |
MILCC | MFCC and IMFCC and LPCC |
MIGLCC | MFCC and IMFCC and GFCC and LPCC |
FFT | Fast Fourier Transform |
SVM | Support Vector Machine |
1D-CNN | 1D Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long short-term memory |
DLSTM | Double layer long short-term memory |
t-SNE | t-distributed Stochastic Neighbor Embedding |
FC | Fully connected layer |
References
- Zheng, Z.; Li, X.; Zhu, Y. Feature Extraction of the Hydraulic Pump Fault Based on Improved Autogram. Measurement 2020, 163, 107908. [Google Scholar] [CrossRef]
- Tang, S.; Khoo, C.; Zhu, Y.; Lim, M.; Yuan, S. A Light Deep Adaptive Framework toward Fault Diagnosis of a Hydraulic Piston Pump. Appl. Acoust. 2024, 217, 109807. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent Fault Diagnosis of Hydraulic Piston Pump Combining Improved LeNet-5 and PSO Hyperparameter Optimization. Appl. Acoust. 2021, 183, 108336. [Google Scholar] [CrossRef]
- Chao, Q.; Shao, Y.; Liu, C.; Yang, X. Health Evaluation of Axial Piston Pumps Based on Density Weighted Support Vector Data Description. Reliab. Eng. Syst. Saf. 2023, 237, 109354. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. Intelligent Fault Identification of Hydraulic Pump using Deep Adaptive Normalized CNN and Synchrosqueezed Wavelet Transform. Reliab. Eng. Syst. Saf. 2022, 224, 108560. [Google Scholar] [CrossRef]
- Dong, C.; Tao, J.; Chao, Q.; Yu, H.; Liu, C. Subsequence Time Series Clustering-Based Unsupervised Approach for Anomaly Detection of Axial Piston Pumps. IEEE Trans. Instrum. Meas. 2023, 72, 3512212. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, L.; Zhang, P.; Zheng, Y.; Zhang, S. Anomaly Detection of Axial Piston Pump Based on the DTW-RCK-IF Composite Method Using Pressure Signals. Appl. Sci. 2023, 13, 13133. [Google Scholar] [CrossRef]
- Dong, C.; Tao, J.; Sun, H.; Chao, Q.; Liu, C. Inverse Transient Analysis Based Calibration of Surrogate Pipeline Model for Fault Simulation of Axial Piston Pumps. Mech. Syst. Signal Process. 2023, 205, 110829. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Li, Y. Vibration Signal Fusion Using Improved Empirical Wavelet Transform and Variance Contribution Rate for Weak Fault Detection of Hydraulic Pumps. ISA Trans. 2020, 107, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Fu, Z.; Huang, Y. A Fault Diagnosis Method for Loose Slipper Failure of Piston Pump in Construction Machinery under Changing Load. Appl. Acoust. 2021, 172, 107634. [Google Scholar] [CrossRef]
- Liu, S.; Yin, J.; Hao, M.; Liang, P.; Zhang, Y.; Ai, C.; Jiang, W. Fault Diagnosis Study of Hydraulic Pump Based on Improved Symplectic Geometry Reconstruction Data Enhancement Method. Adv. Eng. Inform. 2024, 61, 102459. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, H.; Mao, Y. Analysis of vibration and noise induced by unsteady flow inside a centrifugal compressor. Aerosp. Sci. Technol. 2020, 107, 106286. [Google Scholar]
- Karagiovanidis, M.; Pantazi, X.E.; Papamichail, D.; Fragos, V. Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors. Agriculture 2023, 13, 1544. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, J.; Xu, B.; Song, W.; Zhu, S. Experimental Studies of the Vibro-acoustic Characteristics of an Axial Piston Pump under Run-up and Steady-state Operating Conditions. Measurement 2019, 133, 522–531. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Tang, S.; Wang, R.; Su, H.; Wang, C. Acoustic Signal-Based Fault Detection of Hydraulic Piston Pump Using a Particle Swarm Optimization Enhancement CNN. Appl. Acoust. 2022, 192, 108718. [Google Scholar] [CrossRef]
- Ugli, O.E.M.; Lee, K.; Lee, C. Automatic Optimization of One-Dimensional CNN Architecture for Fault Diagnosis of a Hydraulic Piston Pump Using Genetic Algorithm. IEEE Access 2023, 11, 68462–68472. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, W.; Zheng, Y.; Zhang, S.; Liu, S. Hydraulic-Pump Fault-Diagnosis Method Based on Mean Spectrogram Bar Graph of Voiceprint and ResNet-50 Model Transfer. J. Mar. Sci. Eng. 2023, 11, 1678. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. A Novel Adaptive Convolutional Neural Network for Fault Diagnosis of Hydraulic Piston Pump with Acoustic Images. Adv. Eng. Inform. 2022, 52, 101554. [Google Scholar] [CrossRef]
- Ganji, M.; Ghelmani, A.; Golroo, A.; Sheikhzadeh, H. Mean Texture Depth Measurement with an Acoustical-based Apparatus Using Cepstral Signal Processing and Support Vector Machine. Appl. Acoust. 2020, 161, 107168. [Google Scholar] [CrossRef]
- Liang, G.; Guo, S.; Zou, N.; Wu, G. A Characteristic Extraction Method for VoicePrint Slice Statistics Base on Joint Time-frequency Processing. Appl. Acoust. 2024, 216, 109814. [Google Scholar] [CrossRef]
- Pu, H.; Wen, Z.; Sun, X.; Han, L.; Na, Y.; Liu, H.; Li, W. Research on the mechanical fault diagnosis method based on sound signal and IEMD-DDCNN. Int. J. Intell. Comput. Cybern. 2023, 16, 629–646. [Google Scholar] [CrossRef]
- Yan, H.; Bai, H.; Zhan, X.; Wu, Z.; Wen, L.; Jia, X. Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault Diagnosis Method of Diesel Engine. Sensors 2022, 22, 8325. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Song, D.; Liu, H. Pump Fault Detection Based on MFCC-MLCNN. Acad. J. Sci. Technol. 2023, 8, 90–97. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Huang, F.; Hu, L. A Study of Sound Recognition Algorithm for Power Plant Equipment Fusing MFCC and IMFCC Feature. In Proceedings of the Conference on Image, Signal Processing, and Pattern Recognition, Changsha, China, 24–26 February 2023; SPIE: Bellingham, WA, USA, 2023; p. 208. [Google Scholar]
- Geng, Q.; Wang, F.; Jin, X. Optimization of Mechanical Fault Acoustic Diagnosis of Dry Transformer in Random Forest Based on Gammatone Filter Cepstrum Coefficient and Whale Algorithm. Power Autom. Equip. 2020, 40, 7. [Google Scholar]
- Hu, W.; Feng, S.; Zhang, B.; Gao, Y.; Xiao, X.; Qi, H. Hybrid Feature Extraction Method of MFCC+GFCC Helicopter Noise Based on Wavelet Decomposition. J. Phys. Conf. Ser. 2023, 2478, 122008. [Google Scholar] [CrossRef]
- Yang, F.; Tian, X.; Ma, L.; Shi, X. An Optimized Variational Mode Decomposition and Symmetrized Dot Pattern Image Characteristic Information Fusion-Based Enhanced CNN Ball Screw Vibration Intelligent Fault Diagnosis Approach. Measurement 2024, 229, 114382. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; Lei, Y.; Zhang, S.; Tong, X. Fault Diagnosis and Performance Degradation Degree Recognition Method of Rolling Bearing Based on Deep Learning. J. Yanshan Univ. 2020, 44, 526–536. [Google Scholar]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. Intelligent Fault Diagnosis of Hydraulic Piston Pump Based on Deep Learning and Bayesian Optimization. ISA Trans. 2022, 129, 555–563. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, R.; Yang, C.; Zhang, S. Machine Tool Fault Classification Diagnosis Based on Sound Fusion Feature and OCSVM. Manuf. Technol. Mach. Tools 2022, 72, 13–20. [Google Scholar]
- Liu, Y.; Zhang, R.; He, Z.; Huang, Q.; Zhu, R.; Li, H.; Fu, Q. The Study of Hydraulic Machinery Condition Monitoring Based on Anomaly Detection and Fault Diagnosis. Measurement 2024, 230, 114518. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, X.; Shen, J.; Liu, W. Fault Diagnosis of Hydraulic Pumps Using PSO-VMD and Refined Composite Multiscale Fluctuation Dispersion Entropy. Shock Vib. 2020, 2020, 8840676. [Google Scholar] [CrossRef]
- Davis, S.; Mermelstein, P. Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 357–366. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Xie, J.; Zhang, Y.; Liu, P.; Liu, Z. MFCC-LSTM Framework for Leak Detection and Leak Size Identification in Gas-liquid Two-phase Flow Pipelines Based on Acoustic Emission. Measurement 2023, 219, 113238. [Google Scholar] [CrossRef]
- Jin, S.; Wang, X.; Du, L.; He, D. Evaluation and Modeling of Automotive Transmission Whine Noise Quality Based on MFCC and CNN. Appl. Acoust. 2021, 172, 107562. [Google Scholar] [CrossRef]
- Mannem, K.R.; Mengiste, E.; Hasan, S.; Soto, B.G.; Sacks, R. Smart Audio Signal Classification for Tracking of Construction Tasks. Autom. Constr. 2024, 165, 105485. [Google Scholar] [CrossRef]
- Aziz, S.; Shahnawazuddin, S. Effective Preservation of Higher-frequency Contents in the Context of Short Utterance Based Children’s Speaker Verification System. Appl. Acoust. 2023, 209, 109420. [Google Scholar] [CrossRef]
- Ramirez AD, P.; de la Rosa Vargas, J.I.; Valdez, R.R.; Becerra, A. A Comparative between Mel Frequency Cepstral Coefficients (MFCC) and Inverse Mel Frequency Cepstral Coefficients (IMFCC) Features for an Automatic Bird Species Recognition System. In Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Gudalajara, Mexico, 7–9 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Wang, Z.; Yan, J.; Wang, Y.; Wang, X. Speech Emotion Feature Extraction Method Based on Improved MFCC and IMFCC Fusion Features. In Proceedings of the 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 24–26 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1917–1924. [Google Scholar]
- Wang, Y.; Miao, C.; Liu, Y.; Meng, D. Research on a Sound-based Method for Belt Conveyor Longitudinal Tear Detection. Measurement 2022, 190, 110787. [Google Scholar] [CrossRef]
- Feng, H.; Chen, X.; Wang, R.; Wang, H.; Yao, H.; Wu, F. Underwater Acoustic Target Recognition Method based on WA-DS Decision Fusion. Appl. Acoust. 2024, 217, 109851. [Google Scholar] [CrossRef]
- Lella, K.; Pja, A. Automatic Diagnosis of COVID-19 Disease Using Deep Convolutional Neural Network with Multi-feature Channel from Respiratory Sound Data: Cough, Voice, and Breath. Alex. Eng. J. 2022, 61, 1319–1334. [Google Scholar] [CrossRef]
- Semmad, A.; Bahoura, M. Comparative Study of Respiratory Sounds Classification Methods Based on Cepstral Analysis and Artificial Neural Networks. Comput. Biol. Med. 2024, 171, 108190. [Google Scholar] [CrossRef] [PubMed]
- Ai, O.C.; Hariharan, M.; Yaacob, S.; Chee, L.S. Classification of Speech Dysfluencies with MFCC and LPCC Features. Expert Syst. Appl. 2012, 39, 2157–2165. [Google Scholar]
- Liu, F.; Li, G.; Yang, H. Application of Multi-algorithm Mixed Feature Extraction Model in Underwater Acoustic Signal. Ocean Eng. 2024, 296, 116959. [Google Scholar] [CrossRef]
- Paseddula, C.; Gangashetty, S.V. Late Fusion Framework for Acoustic Scene Classification Using LPCC, SCMC, and Log-Mel Band Energies with Deep Neural Networks. Appl. Acoust. 2021, 172, 107568. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, C.; Tian, Y.; Fang, X.; Miao, Q. Bearing Fault Diagnosis Based on Mixed Cepstrum and LSTM Network. Comb. Mach. Tools Autom. Process. Technol. 2023, 87–92. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1y4d0jq0xu5y0e10su520pq0su698496&site=xueshu_se&hitarticle=1 (accessed on 12 October 2024).
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chee, M.T.J.; Cao, Q.; Quek, C. FE-RNN: A Fuzzy Embedded Recurrent Neural Network for Improving Interpretability of Underlying Neural Network. Inf. Sci. 2024, 663, 120276. [Google Scholar] [CrossRef]
- Xiao, D.; Huang, Y.; Wang, H.; Shi, H.; Liu, C. Health Assessment for Piston Pump Using LSTM Neural Network. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 131–137. [Google Scholar]
- Zhu, Y.; Su, H.; Tang, S.; Zhang, S.; Zhou, T.; Wang, J. A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump. J. Mar. Sci. Eng. 2023, 11, 594. [Google Scholar] [CrossRef]
- Wei, X.; Chao, Q.; Tao, J.; Liu, C.; Wang, L. Fault Diagnosis of High-Speed Plunger Pump Based on LSTM and CNN. Acta Aeronaut. 2021, 42, 435–445. [Google Scholar]
- Abdul, Z.K.; Al-Talabani, A.K. Mel Frequency Cepstral Coefficient and its Applications: A Review. IEEE Access 2022, 10, 122136–122158. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data: A Benchmark Study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, Y.; Tang, J. Research on Oil Engine Fault Warning Based on Support Vector Data Description. Therm. Turbine 2022, 51, 290–294. [Google Scholar]
Name | Model | Parameters |
---|---|---|
Hydraulic Plunger Pump | MCY14-1B | Number of plungers: 7, Theoretical displacement: 10 mL/r, Rated working pressure: 31.5 MPa |
Drive Motor | Y132M4 | Rated power: 7.5 kW, Rated speed: 1480 rpm |
Data Acquisition Card | NI-USB-6221 | Maximum sampling rate: 250 kS/s |
Accelerometer | YD72D | Frequency range: 1 Hz~18 kHz |
Pressure Sensor | SYB-351 | Measurement range: 0~25 MPa, Power supply voltage: DC 24 V, Output range: 0~5 V |
Sound Level Meter | AWA5661 | Sensitivity: 40 mV/Pa, Frequency range: 10–16 kHz |
Label | State Type | Fault Injection Method |
---|---|---|
0 | Normal | - |
1 | Swash Plate Wear | Manually induce wear on the swash plate |
2 | Slipper Wear | Round the corners of the slippers |
3 | Loose Slipper | Utilize faulty loose slipper components |
Proportion of Division | Training Set | Testing Set | |
---|---|---|---|
Dataset 1 | 7:3 | 271 | 117 |
Dataset 2 | 5:5 | 194 | 194 |
Dataset 3 | 2:8 | 77 | 311 |
Number | Network Parameter | Value |
---|---|---|
1 | number of network layers | 2 |
2 | number of hidden units | 128 |
3 | learning rate | 0.001 |
4 | dropout rate | 0.2 |
5 | batch size | 32 |
6 | number of epochs | 30 |
Number | Network Layer | Input Dimension | Output Dimension |
---|---|---|---|
1 | Input | 16 × 7 × 48 | 16 × 7 × 48 |
2 | LSTM1 | 16 × 7 × 48 | 16 × 7 × 64 |
3 | Dropout | 16 × 7 × 64 | 16 × 7 × 64 |
4 | LSTM2 | 16 × 7 × 64 | 16 × 7 × 64 |
5 | FC | 16 × 64 | 16 × 4 |
6 | Output | 16 × 4 | 16 × 4 |
Overall Accuracy | Precision | Recall | F1 Score | |
---|---|---|---|---|
Dataset 1 | 99.41% | 99.39% | 99.43% | 0.9940 |
Dataset 2 | 99.15% | 99.00% | 99.26% | 0.9912 |
Dataset 3 | 98.88% | 98.98% | 99.05% | 0.9887 |
Type | Features | Overall Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
single feature | MFCC | 90.26% | 90.17% | 90.92% | 0.8938 |
IMFCC | 89.49% | 88.03% | 89.62% | 0.8824 | |
GFCC | 88.37% | 87.72% | 88.94% | 0.8699 | |
LPCC | 89.14% | 89.03% | 89.36% | 0.8817 | |
average | 89.32% | 88.74% | 89.71% | 0.8820 | |
the dual-feature fused | MICC | 92.56% | 91.56% | 92.96% | 0.9169 |
MGCC | 92.31% | 92.90% | 92.75% | 0.9143 | |
MLCC | 92.39% | 92.66% | 92.95% | 0.9213 | |
IGCC | 91.45% | 90.73% | 91.69% | 0.9040 | |
ILCC | 90.35% | 90.43% | 90.51% | 0.8973 | |
GLCC | 91.45% | 91.35% | 92.04% | 0.9073 | |
average | 91.75% | 91.60% | 92.15% | 0.9102 | |
the triple-feature fused | MIGCC | 94.62% | 93.18% | 94.98% | 0.9371 |
MILCC | 93.85% | 94.61% | 94.00% | 0.9353 | |
MGLCC | 93.59% | 93.69% | 93.80% | 0.9338 | |
IGLCC | 92.39% | 92.64% | 92.27% | 0.9180 | |
average | 93.61% | 93.53% | 93.76% | 0.9311 | |
the four-feature fused | MIGLCC | 99.41% | 99.39% | 99.43% | 0.9940 |
Pressure | Overall Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
2 MPa | 98.89% | 98.78% | 98.95% | 0.9885 |
5 MPa | 99.41% | 99.39% | 99.43% | 0.9940 |
8 MPa | 99.40% | 99.38% | 99.42% | 0.9939 |
10 MPa | 98.63% | 99.02% | 98.39% | 0.9841 |
15 MPa | 98.97% | 99.06% | 99.12% | 0.9895 |
Method | Overall Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
MIGLCC-DLSTM | 99.64% | 99.65% | 99.64% | 0.9964 |
Method | Overall Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
MIGLCC-DLSTM | 98.07% | 98.43% | 98.09% | 0.9805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Jiang, A.; Jiang, W. The Intelligent Diagnosis of a Hydraulic Plunger Pump Based on the MIGLCC-DLSTM Method Using Sound Signals. Machines 2024, 12, 869. https://doi.org/10.3390/machines12120869
Ma L, Jiang A, Jiang W. The Intelligent Diagnosis of a Hydraulic Plunger Pump Based on the MIGLCC-DLSTM Method Using Sound Signals. Machines. 2024; 12(12):869. https://doi.org/10.3390/machines12120869
Chicago/Turabian StyleMa, Liqiang, Anqi Jiang, and Wanlu Jiang. 2024. "The Intelligent Diagnosis of a Hydraulic Plunger Pump Based on the MIGLCC-DLSTM Method Using Sound Signals" Machines 12, no. 12: 869. https://doi.org/10.3390/machines12120869
APA StyleMa, L., Jiang, A., & Jiang, W. (2024). The Intelligent Diagnosis of a Hydraulic Plunger Pump Based on the MIGLCC-DLSTM Method Using Sound Signals. Machines, 12(12), 869. https://doi.org/10.3390/machines12120869