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Abstract: Galactic swarm optimization (GSO) is a recently created metaheuristic which is inspired by
the motion of galaxies and stars in the universe. This algorithm gives us the possibility of finding
the global optimum with greater precision since it uses multiple exploration and exploitation cycles.
In this paper we present a modification to galactic swarm optimization using type-1 (T1) and interval
type-2 (IT2) fuzzy systems for the dynamic adjustment of the c3 and c4 parameters in the algorithm.
In addition, the modification is used for the optimization of the fuzzy controller of an autonomous
mobile robot. First, the galactic swarm optimization is tested for fuzzy controller optimization.
Second, the GSO algorithm with the dynamic adjustment of parameters using T1 fuzzy systems is
used for the optimization of the fuzzy controller of an autonomous mobile robot. Finally, the GSO
algorithm with the dynamic adjustment of parameters using the IT2 fuzzy systems is applied to the
optimization of the fuzzy controller. In the proposed approaches, perturbation (noise) was added to
the plant in order to find out if our approach behaves well under perturbation to the autonomous
mobile robot plant; additionally, we consider our ability to compare the results obtained with the
approaches when no perturbation is considered.

Keywords: galactic swarm optimization; fuzzy systems; fuzzy controller optimization

1. Introduction

The main goal of the optimization methods is to find the best solution of a set of possible solutions
to a problem; for some cases, the search space is very extensive, which leads to a computational cost
that is too high. To solve this problem there are different computational intelligence techniques that
provide tools to solve these optimization problems [1].

Nowadays, control is one of the most important applications of fuzzy logic because it provides a
greater robustness in the design of fuzzy controllers and a higher performance than classically used
control tools [2].

Due to this, fuzzy controllers are used to deal with complex plants; however, the advantages
offered by fuzzy logic and fuzzy sets, along with the appearance of the type-2 fuzzy logic, amplifies
the probability of designing better fuzzy controllers [3,4].

Fuzzy control helps us combine expert knowledge with measurements and processes based on
mathematical models. Fuzzy systems convert a knowledge base into a mathematical model that has
been shown to be effective in many applications in industry and real life [5,6].

Fuzzy logic can adapt to the real world, it can work and it can understand everyday expressions
like “it’s very cold”, “it’s very low”, etc. The key lies in its adaptation to natural language, each fuzzy
set having a membership function associated with each element that represents the fact that both
elements are part of the set [7].
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A fuzzy set is an extension of the traditional sets; its main difference is that in the traditional one
an element may or may not belong to that set, while in the fuzzy sets each element may belong to more
than one set with a certain membership degree [8].

Fuzzy logic tries to imitate human thought in the computer, whereas classical computation can
only handle dual values like false or true, or yes or no. Fuzzy logic uses mathematical models to
represent subjective notions such as “big, small” or “hot, cold” for values that can be manipulated by
the computer [9].

In recent years, there has been an increase in research on type-1 and type-2 fuzzy logic; published
works can been found on parameters adjustment in metaheuristic algorithms, and control that is
based on fuzzy logic has been investigated in order to improve performance, as is shown in the
following works:

In an improved evolutionary method with fuzzy logic for combining particle swarm optimization
and genetic algorithms [10], a hybrid approach is described for the optimization of particle swarm
optimization (PSO) and ant colony optimization (ACO) using fuzzy logic for the dynamic adjustment
of the parameters of both algorithms.

In the gravitational search algorithm-based design of fuzzy control systems with a reduced
parametric sensitivity [11], the design of the fuzzy control systems is proposed using the Gravitational
Search Algorithm; the Takagi-Sugeno fuzzy controller, characterized by linear models of the second
order with an integral component, are obtained.

Also in model-free sliding mode fuzzy controllers for reverse osmosis desalination plants [12].
In this case, Takagi-Sugeno fuzzy controllers are proposed for flow control and conductivity in
desalination plants. The controllers are designed in view of the inequalities of the linear matrix as
constraints using the gray wolf algorithm for their optimization.

Muthiah-Nakarajan and Noel proposed the galactic swarm optimization (GSO) as an algorithm
that has proven to have a good performance dealing with multimodal problems or with a high
number of dimensions; because it presents multiple exploration and exploitation cycles, it offers us the
possibility of finding the best solutions without getting stuck [13,14].

This paper presents a modification to the GSO metaheuristic with the use of type-1 fuzzy systems
for the adjustment of the c3 and c4 parameters in the GSO algorithm [15]. In addition to a type-1 fuzzy
system extension, we are also using type-2 fuzzy logic to give rise to an interval type-2 fuzzy system
(IT2), and this proposal was used for the optimization of the membership functions of the controller
of the autonomous mobile robot [16]. Experiments were carried out optimizing the fuzzy controller
for the aforementioned study case, and the optimization was initially carried out with the original
galactic swarm optimization, after which the T1 and IT2 fuzzy systems were used to perform the fuzzy
controller optimization, in the same way that the original GSO algorithm was experimented with by
adding noise to the plant and without noise in order to compare the proposed approach.

The organization of this paper is as follows: Section 2 explains the operation and equations
present in the original GSO algorithm. In Section 3 the development of the proposed approach for
the fuzzy controller optimization of the autonomous mobile robot is presented. In Section 4 the case
study of the autonomous mobile robot is presented. Section 5 shows the results obtained from the
experiments developed with the proposed approach and the autonomous mobile robot plant, and
finally in Section 6 the conclusions are presented.

2. Galactic Swarm Optimization

The original galactic swarm optimization algorithm mimics the motion of stars and galaxies in
the universe. The stars are not evenly distributed in the cosmos, and they are concentrated in galaxies
that in turn are not evenly distributed. The attraction of the stars and galaxies in the GSO algorithm is
emulated in the following way [13,15].

First, the initial population is divided into subpopulations which will be called sub-swarms;
all the individuals of the sub-swarms begin their movement according to the PSO algorithm by a
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determined number of iterations, and all the individuals in each subpopulation will be attracted
towards the individual with better fitness; at the end of the iterations each of the subpopulations will
be represented by the best individual of each of the subpopulations.

The best individuals of all the subpopulations will pass into a second phase, where they will form
a new super swarm, and (in the same way they will move according to the PSO algorithm at the end
of the iterations) the GSO algorithm will return us the best individual of the super swarm which will
represent the best solution found in the entire initial population.

All the necessary steps to perform the operation of the GSO algorithm are summarized in the
following pseudocode, where the two necessary phases of the GSO algorithm are presented [13]:

1. Start GSO.
2. The population is divided into M subpopulations.

Xi ⊂ X : i = 1, 2, . . . , M (1)

3. The population is initialized randomly.

X(i)
j ∈ Xi : j = 1, 2, . . . , N (2)

4. Begin Level 1.
Begin PSO for each of the M subpopulations, and calculate the position and velocity of
the particles.

v(i)j ←W1v(i) + c1r1

(
p(i)j − x(i)j

)
+ c2r2

(
g(i) − x(i)j

)
(3)

x(i)j ← x(i)j + v(i)j (4)

End PSO.
End Level 1.

5. Begin Level 2.
Initialization of the super swarm.

Y(i) ∈ Y : i = 1, 2, . . . , M (5)

Begin PSO.
Calculate the position and velocity of the particles.

v(i) ←W2v(i) + c3r3

(
p(i) −Y(i)

)
+ c4r4

(
g−Y(i)

)
(6)

Y(i) ← Y(i) + v(i) (7)

End PSO.
End Level 2.

6. Return the best position g and fitness value f (g).
7. End GSO.

Given that the PSO algorithm is used as a basis in galactic swarm optimization, the algorithm
consists of exploration and exploitation phases for which it uses parameters in the calculation of the
velocity that reduces or increases as time passes to control the exploration phase and move on to the
exploitation phase.
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By linearly decreasing, the PSO algorithm tends to have a global search capability when starting
the execution and a local search when approaching the end of the execution.

These parameters are the constants of acceleration that make the solutions approach the best
local and global solutions, and for this they initially take fixed values and change their values on a
mathematical form.

Dynamic optimization problems, where the environment changes dynamically, require that the
search algorithm has the ability to search non-linearly to follow the changing environment. Therefore,
it must be changed dynamically for a better balance between the local and global search.

3. Proposed Approach (FGSO)

This paper presents a modification to the GSO metaheuristic with the use of type-1 (T1) and
interval type-2 (IT2) fuzzy logic for the parameter adjustment of the GSO algorithm.

The use of parameter adjustment in metaheuristic algorithms has become a widely used strategy in
recent years. The results published by some authors show significant improvements when the dynamic
adjustment of parameters in metaheuristic algorithms is used. The use of fuzzy logic in metaheuristic
algorithms is a technique that allows algorithms to perform an automatic search for the optimal values
of the parameters that play an important role in the performance of metaheuristic algorithms.

The use of non-linear plants for fuzzy control can turn out to be a complex task because the exact
knowledge of each of the components or characteristics that make up the plant is very rarely obtained,
so fuzzy sets and fuzzy logic principles are used to model the operation of the plant.

The main contribution of this document is the use of T1 and IT2 fuzzy systems for the dynamic
adjustment of the c3 and c4 parameters as the iterations pass, which will be used for the optimization
of the membership functions of the controller of the autonomous mobile robot. The proposed method
can be found in Figure 1.
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Figure 1. Proposed method.

The optimization of the fuzzy controller of the autonomous mobile robot (AMR) consists in
finding the appropriate parameters for the membership functions of the fuzzy controller. Here, each
individual used in our proposal will contain the necessary parameters to generate a fuzzy controller,
which will be tested in the hopes of obtaining better results than those that can be obtained so far by
establishing the parameters of the membership functions based on experience. In Figure 2 we can find
the composition of the individuals used in our proposed methodology [10,17,18].
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The type-1 fuzzy set is characterized by having a membership function that can take values
between 0 and 1, and is represented as a set of ordered pairs of a certain element; its degree of
belonging to said set is defined by the following expression [19,20]:

A = {(x, µA(x))|x ∈ X} (8)

where µA(x) is the membership degree of each element.
T1 fuzzy logic was proposed as an imprecision of human language, where the degree of belonging

in a range of 0 to 1 is considered.
The appearance of IT2 fuzzy logic provides a more complete model that considers the vagueness

and uncertainty, which increases the robustness and improves the performance of your applications [21–23].
An IT2 fuzzy set is represented by two membership functions, a lower and an upper; the area

that lies between these membership functions is called a footprint of uncertainty. The mathematical
expression is as follows [24,25]:

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (9)

where µÃ(x, u) represents the membership degree of each element, X is the primary domain and Jx is
the secondary domain.

The design of the IT2 fuzzy system is based on a T1 fuzzy system previously used [15], these fuzzy
systems have an iteration as an input variable that is formed by three triangular membership functions;
the c3 and c4 parameters represent the output variables that likewise have 3 triangular membership
functions. The design of these fuzzy systems is shown in Figures 3 and 4.
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The variable iteration is obtained by means of a percentage of the current iterations and the total
of the iterations with which the algorithm works; the expression used for the calculation is presented
below [26,27]:

Iteration =
Current Iteration
Total Iterations

(10)
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The representation of the triangular membership functions of the T1 fuzzy system consists of 3
parameters a, b and c, where a < b < c is shown as follows [20]:

triangle(x; a, b, c) =



0,x ≤ a
x− a
b− a

a ≤ x ≤ b

c− x
c− b

b ≤ x ≤ c

0,c ≤ x

(11)

where a and c are the parameters that represent the edges of the triangle, and the parameter b is the
center for forming the triangular membership function, as shown in Figure 5.
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In the design of the T1 fuzzy system, input and output variables are used: in this case, one input
and two outputs. The variables as mentioned above are the iterations representing the input variables,
and the c3 and c4 parameters are the iterations representing the output variables. The knowledge
representation of the variables is shown in the following equations [28]:

µLow(x) =



0, x ≤ −0.5
x + 0.5
0 + 0.5

−0.5 ≤ x ≤ 0

0.5− x
0.5− 0

0 ≤ x ≤ 0.5

0, 0.5 ≤ x

µMedium(x) =



0, x ≤ 0
x− 0

0.5− 0
0 ≤ x ≤ 0.5

1− x
1− 0.5

0.5 ≤ x ≤ 1

0, 1 ≤ x

µHigh(x) =



0, x ≤ 0.5
x− 0.5
1− 0.5

0.5 ≤ x ≤ 1

1.5− x
1.5− 1

1 ≤ x ≤ 1.5

0, 1.5 ≤ x

(12)
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The representation of the triangular membership functions of the IT2 fuzzy system consists of 6
parameters a1, b1, c1, a2, b2 and c2, where a1 < a2, b1 < b2 and c1 < c2 is shown as follows [29]:

µ(x) = itritype2(x, [a1, b1, c1, a2, b2, c2])

µ1(x) =



0, x ≤ a1
x− a1

b1 − a1
a1 ≤ x ≤ b1

c1 − x
c1 − b1

b1 ≤ x ≤ c1

0, c1 ≤ x

µ2(x) =



0, x ≤ a2
x− a2

b2 − a2
a2 ≤ x ≤ b2

c2 − x
c2 − b2

b2 ≤ x ≤ c2

0, c2 ≤ x

(13)

where a1, a2, c1 and c2 are the parameters that represent the edges of the triangle, and the parameters b1

and b2 are the center for forming the IT2 triangular membership function, as shown in Figure 6 [30,31].
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For the design of the IT2 fuzzy system, the T1 fuzzy system presented above is used as a base,
where the iteration represents the input variable and the c3 and c4 parameters the output variables.
The knowledge representation of the IT2 fuzzy system variables is presented in the following equations:
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Low µ1(x) =



0, x ≤ −0.375
x + 0.375

−0.125 + 0.375
−0.375 ≤ x ≤ −0.125

0.125− x
0.125 + 0.125

−0.125 ≤ x ≤ 0.125

0, 0.125 ≤ x

Low µ2(x) =



0, x ≤ −0.125
x + 0.125

0.125 + 0.125
−0.125 ≤ x ≤ 0.125

0.375− x
0.375− 0.125

0.125 ≤ x ≤ 0.375

0, 0.375 ≤ x

Medium µ1(x) =



0, x ≤ 0.125
x− 0.125

0.375− 0.125
0.125 ≤ x ≤ 0.375

0.625− x
0.625− 0.375

0.375 ≤ x ≤ 0.625

0, 0.625 ≤ x

Medium µ2(x) =



0, x ≤ 0.375
x− 0.375

0.625− 0.375
0.375 ≤ x ≤ 0.625

0.875− x
0.875− 0.625

0.625 ≤ x ≤ 0.875

0, 0.875 ≤ x

High µ1(x) =


0, x ≤ 0.625

x−0.625
0.875−0.625 0.625 ≤ x ≤ 0.875

1.125−x
1.125−0.875 0.875 ≤ x ≤ 1.125

0, 1.125 ≤ x

High µ2(x) =



0, x ≤ 0.875
x− 0.875

1.125− 0.875
0.875 ≤ x ≤ 1.125

1.25− x
1.25− 1.125

1.125 ≤ x ≤ 1.25

0, 1.25 ≤ x

(14)

The design of the fuzzy rules is the same, given that the IT2 fuzzy system is an extension of the T1
fuzzy system; both are of the Mamdani type, the first using the T1 fuzzy logic and the second using
the T2 fuzzy logic. These fuzzy systems have 3 fuzzy rules, where the idea is that, as the algorithm
begins to work, they explore; and as the iterations pass, they explore, as shown in Figure 7 [15].Axioms 2019, 8, x FOR PEER REVIEW 10 of 22 

 

 
Figure 7. Rules for FGSO1 and FGSO1T2. 

4. Autonomous Mobile Robot 

To test the proposed methodology with the dynamic adjustment of the parameters using the T1 
and IT2 fuzzy systems, we consider the case of an autonomous mobile robot. For this particular case 
the fuzzy controller design is optimized to control an autonomous mobile robot, and the main 
function of the fuzzy controller is to provide a control of the motors to minimize the error in a 
pre-established trajectory [5,32]. 

The design of the robot is presented in Figure 8, which has 2 wheels with motors and a passive 
wheel for the stabilization of the same. The operation of the autonomous mobile robot model is 
determined by the following equations [33–35]: (ݍ)ܯ	ݒ + ,ݍ)ܥ ݒ(ݍ + ௩ܦ = ߬ + ܲ(߬), (15) 

ሶݍ = cos ߠ 0sin ߠ 00 1൩ ቂݓݒቃ (16) 

where	ݍ=(x,	 y,	 θ)T	 is the coordinate vector, which describes the position of the robot, (,ݒ	ݓ)T	
represents the linear and angular velocity vector,	߬=(߬1,	߬2) is the torque vector applied to the wheels 
of the robot, 	߬ 1 and 	߬ 2 represent the right and left wheels, 	ܲ ∈ 	ܴଶ	 is the uniform disturbance 
vector, (ݍ)ܯ	 ∈ 	ܴଶ௫మ	 is a symmetric and positive inertial matrix, ,ݍ)ܥ	 ሶݍ 	ݒ( is the vector of the 
centripetal and Coriolis forces, and	ܦ ∈ 	ܴଶ௫మ	is a diagonal positive defined damping matrix [36,37]. 

 
Figure 8. Autonomous mobile robot model. 

Fuzzy Controller 

The fuzzy system of the mobile robot controller consists of two input variables and two output 
variables; the first input variable is ev (error in linear velocity), the second input variable is ew (error 

Figure 7. Rules for FGSO1 and FGSO1T2.

4. Autonomous Mobile Robot

To test the proposed methodology with the dynamic adjustment of the parameters using the T1
and IT2 fuzzy systems, we consider the case of an autonomous mobile robot. For this particular case
the fuzzy controller design is optimized to control an autonomous mobile robot, and the main function
of the fuzzy controller is to provide a control of the motors to minimize the error in a pre-established
trajectory [5,32].
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The design of the robot is presented in Figure 8, which has 2 wheels with motors and a passive
wheel for the stabilization of the same. The operation of the autonomous mobile robot model is
determined by the following equations [33–35]:

M(q)v + C(q, q)v + Dv = τ + P(τ), (15)

.
q =

 cos θ 0
sin θ 0

0 1

[ v
w

]
(16)

where q = (x, y, θ)T is the coordinate vector, which describes the position of the robot, (v, w)T represents
the linear and angular velocity vector, τ = (τ1, τ2) is the torque vector applied to the wheels of the robot,
τ1 and τ2 represent the right and left wheels, P ∈ R2 is the uniform disturbance vector, M(q) ∈ R2x2 is
a symmetric and positive inertial matrix, C

(
q,

.
q
)
v is the vector of the centripetal and Coriolis forces,

and D ∈ R2x2 is a diagonal positive defined damping matrix [36,37].
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Fuzzy Controller

The fuzzy system of the mobile robot controller consists of two input variables and two output
variables; the first input variable is ev (error in linear velocity), the second input variable is ew (error
in angular velocity), and both input variables have two trapezoidal membership functions at the ends
and a triangle at the center labeled N (negative), Z (zero) and P (positive) [1,38].

The first output variable is τ1 (torque 1), the second output variable is τ2 (torque 2); for the output
variables, three triangular membership functions labeled N, Z and P are used. The design of the fuzzy
controller of the autonomous mobile robot can be found in Figure 9 [4,33].
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The fuzzy controller rules used to control the dynamics of the plant, in this case the autonomous
mobile robot, are shown in Figure 10.
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Figure 10. Fuzzy rules for the autonomous mobile robot.

The desired trajectory for the robot to follow begins at the point (0, 0) and turns in order to
generate a “U” shaped trajectory; furthermore, to create a more complex problem, the trajectory is
repeated on several occasions, as shown in Figure 11.
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With the intention of providing better comparison tools between type-1 and interval type-2 fuzzy
systems, a modification is made to the autonomous mobile robot, where random number generators
are added to simulate the noise in the plant with a level of 5% [40].

After adding noise to the plant, the trajectory of the desired reference varies slightly with respect
to the original, as can be seen in Figure 12.
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5. Experimental Results

The study case of the autonomous mobile robot is used to test the proposal described in Section 3,
where the T1 and IT2 fuzzy systems are used for the dynamic adjustment of the c3 and c4 parameters
used in the galactic swarm optimization.

The galactic swarm optimization was applied to the optimization of the parameter values of the
membership functions of the autonomous mobile robot controller, and the GSO parameters used to
perform the optimization are shown in Table 1.
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Table 1. Parameters for the optimization in GSO, FGSO1 and FGSO1T2.

Parameter GSO FGSO1 FGSO1T2

Population 10 10 10
Subpopulation 5 5 5

Iteration 1 15 15 15
Iteration 2 50 50 50
c1 and c2 2 Dynamic Dynamic
c3 and c4 2 Dynamic Dynamic

To evaluate the performance of our proposal and the original galactic swarm optimization, a series
of performance indices are used, such as the mean square error (MSE), which is described in the below
equation [32,41]:

MSE =
1
n

n

∑
i=1

(Xi −Yi)
2 (17)

where Xi is the reference value at time i, Yi is the value produced by the system at time i and N is the
number of samples considered.

In order to perform a comparison with the GSO algorithm some variants of the original GSO
algorithm were used: the first is the fuzzy galactic swarm optimization (FGSO1) using the T1 fuzzy
systems, the second is the FGSO1T2 using the IT2 fuzzy systems. The results obtained with the variants
and the original GSO algorithm are presented in Tables 2 and 3.

Table 2. Results without noise for GSO.

Autonomous Mobile Robot

MSE GSO FGSO1 FGSO1T2

Best 4.55× 10−6 1.92× 10−6 6.48× 10−4

Worst 9.67× 10−2 9.15× 10−3 1.60× 10−1

Average 1.14× 10−2 1.09× 10−3 2.19× 10−2

Standard Deviation 2.25× 10−2 2.57× 10−3 3.56× 10−2

Table 3. Results with noise for GSO.

Autonomous Mobile Robot

MSE GSO FGSO1 FGSO1T2

Best 1.45× 10−1 2.14× 10−1 7.14× 10−4

Worst 1.1565 7.84× 10−1 9.37× 10−1

Average 7.28× 10−1 4.70× 10−1 4.61× 10−1

Standard deviation 2.68× 10−1 1.29× 10−1 2.22× 10−1

In Table 2 we find the average, the best, the worst and the standard deviation of the results obtained
after 30 simulations of the mobile autonomous robot plant without adding noise or disturbances.
The results show that our proposal FGSO1, using the T1 fuzzy systems, is where better results are
obtained on average, followed by the GSO algorithm and finally the proposed FGSO1T2 using the IT2
fuzzy systems. The averages of the results for each of the proposed methods are illustrated in Figure 13.
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In Table 3 we find the mean, the best, the worst and the standard deviation of the results obtained
after 30 simulations of the mobile autonomous robot plant adding a noise level of 5%. The results show
that our proposal FGSO1T2 using the IT2 fuzzy systems is where we obtain better results on average,
followed by the proposal FGSO1 using the T1 fuzzy and finally the GSO algorithm. The averages of
the results for each of the proposed methods are illustrated in Figure 14.
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The figures shown below represent the best trajectories found after performing the simulations of
the autonomous mobile robot plant. Figure 15 shows the best simulation obtained with the proposed
method FGSO1 in the experiments carried out without noise. In Figure 16, we find the best simulation
with noise in the autonomous mobile robot plant with the proposed method FGSO1T2.
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The best controllers found with our proposed approach and the original GSO algorithm are shown
below, where we can note the arrangement of the points of the membership functions after having
performed the optimization of the fuzzy controller with each one of the proposals presented in the
previous section. The first controller is shown in Figure 17, obtained by performing the optimization
with the original GSO algorithm; the second controller is shown in Figure 18, found using our proposal
FGSO1 using the T1 fuzzy systems, and finally the controller shown in Figure 19 is obtained after
performing the optimization of the controller with the proposal FGSO1T2 using the IT2 fuzzy systems.
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Statistical Comparison

In order to validate the performance of our proposed method using the T1 and IT2 fuzzy systems
for the optimization of the membership functions of the autonomous mobile robot, a statistical
comparison is made to find evidence that our proposed method yields competitive results for the case
study of the autonomous mobile robot plant.

First, the statistical comparison is made between the original GSO and our proposed method that
uses the T1 and IT2 fuzzy systems for the adjustment of the c3 and c4 parameters. Then a comparison
is made with the PSO algorithm. All comparisons are made by experimenting with the autonomous
mobile robot plant without adding noise or disturbances to the simulations and adding 5% noise in
the simulations of the autonomous mobile robot plant.

The statistical test used to perform the statistical comparison between the methods mentioned
above is the z test. In Table 4, we can find the parameters used [17,28].

Table 4. Parameters z test.

Parameter Value

H0 µ1 ≥ µ2
Ha µ1 < µ2 (Claim)

Level of Significance 95%
A 0.05

Critical Value −1.645

H0 is the null hypothesis; it establishes that the average of the proposals FGSO1 and FGSO1T2
(µ1) is greater than or equal to the average of the original GSO algorithm (µ2); furthermore, Ha is the
alternative hypothesis (claim) that establishes that the average of the proposals FGSO1 and FGSO1T2
(µ1) is less than the average of the original GSO algorithm (µ2).

In Table 5, the results with a 95% level of significance and a rejection zone for values lower
than −1.645 are presented. The results of the statistical test for the experiments of the simulations
without adding noise to the plant of the autonomous mobile robot give values of −2.4936 for the
first comparison, rejecting H0 and accepting Ha; there is therefore enough evidence to affirm that the
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average of the proposal FGSO1 is lower than the average of the original GSO algorithm; there is a z
value of 1.3656 for the second comparison, accepting H0, so that the average of the proposal FGSO1T2
is greater than or equal to the average of the original GSO algorithm.

Table 5. Results for the z test with FGSO1, FGSO1T2 and the GSO without noise.

Autonomous Mobile Robot

Methods Average Standard Deviation z Value

FGSO1 (µ1) 1.09× 10−3 2.57× 10−3
−2.4936GSO (µ2) 1.14× 10−2 2.25× 10−2

FGSO1T2 (µ1) 2.19× 10−2 3.56× 10−2
1.3656GSO (µ2) 1.14× 10−2 2.25× 10−2

Table 6 show the results with a 95% level of significance and a rejection zone for values lower than
−1.645. The results of the statistical test for the experiments of the simulations with a 5% noise level
in the signal of the plant of the autonomous mobile robot give values of −4.7511 and −4.2023. As a
result, the H0 is rejected and the Ha is accepted; there is significant evidence to affirm that the average
of the proposals FGSO1 and FGSO1T2 is lower than the average of the original GSO algorithm.

Table 6. Results for the z test with FGSO1, FGSO1T2 and the GSO with noise.

Autonomous Mobile Robot

Methods Average Standard Deviation z Value

FGSO1 (µ1) 0.4700 0.1290 −4.7511GSO (µ2) 0.7280 0.2680

FGSO1T2 (µ1) 0.4610 0.2220 −4.2023GSO (µ2) 0.7280 0.2680

The H0 null hypothesis establishes that the average of the original GSO algorithm and the
proposals FGSO1 and FGSO1T2 (µ1) is greater than or equal to the average of the original PSO
algorithm, and the variants PSO + T1FS and PSO + IT2FS (µ2); furthermore, the Ha alternative
hypothesis (claim) establishes that the average of the original GSO algorithm and the proposals FGSO1
and FGSO1T2 (µ1) is less than the average of the original PSO algorithm, and the variants PSO + T1FS
and PSO + IT2FS (µ2).

Table 7 shows the results with a 95% level of significance and a rejection zone for values lower
than −1.645. The results of the statistical test for the experiments of the simulations without adding
noise to the plant of the autonomous mobile robot give values of −4.4229 and −5.1972, rejecting
H0 and accepting Ha. There is therefore enough evidence to affirm that the average of the original
GSO algorithm and the proposal FGSO1 is lower than the average of the original PSO algorithm and
the variant PSO + T1FS. Finally, with a z value of −0.7116 for the comparison between the proposal
FGSO1T2 and the variant PSO + IT2FS, H0 is accepted; so the average of the proposal FGSO1T2 is
greater than or equal to the average of the variant PSO + IT2FS.

Table 8 shows the results with a 95% level of significance and a rejection zone for values lower
than −1.645. The results of the statistical test for the experiments of the simulations with a 5% noise
level in the signal of the plant of the autonomous mobile robot give values of −11.3293, −29.3360 and
−26.0009, so H0 is rejected and the Ha is accepted; there is significant evidence to affirm the average of
the original.

The GSO algorithm and the proposals FGSO1 and FGSO1T2 are lower than the average of the
original PSO algorithm, and of the variants PSO + T1FS and PSO + IT2FS.
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Table 7. Results for the z test between the proposal and PSO [4] without noise.

Autonomous Mobile Robot

Methods Average Standard Deviation z Value

GSO (µ1) 1.14× 10−2 2.25× 10−2
−4.4229PSO (µ2) 2.4166 2.9784

FGSO1 (µ1) 1.09× 10−3 2.57× 10−3
−5.1972PSO + T1FS (µ2) 0.3042 0.3194

FGSO1T2 (µ1) 2.19× 10−2 3.56× 10−2
−0.7116PSO + IT2FS (µ2) 3.22× 10−2 7.11× 10−2

Table 8. Results for the z test between the proposal and PSO [4] with noise.

Autonomous Mobile Robot

Methods Average Standard Deviation z Value

GSO (µ1) 0.7280 0.2680 −11.3293PSO (µ2) 6.4302 2.7437

FGSO1 (µ1) 0.4700 0.1290 −29.3360PSO + T1FS (µ2) 3.1108 0.4759

FGSO1T2 (µ1) 0.4610 0.2220 −26.0009PSO + IT2FS (µ2) 2.3630 0.3335

6. Conclusions

The main contribution in this paper is the study of the original galactic swarm optimization: of
the variants FGSO1 using type-1 fuzzy systems and the variants FGSO1T2 using type-2 fuzzy systems,
applied in the optimization controller of the mobile robot. Type-1 and interval type-2 fuzzy logic show
a good management of the uncertainty in complex problems where disturbances or noise are present
in the plant, and fuzzy controllers maintain stability in the simulation results.

For the results obtained without using noise or disturbances, the variant using type-1 fuzzy
logic FGSO1 was the one with better results, thus obtaining a better controller than the original GSO.
With the use of noise in the plant signal, the variants FGSO1 and FGSO1T2 manage to improve the
obtained results with respect to the original GSO algorithm. The best overall fuzzy controller design
was found with FGSO1T2, even if on average it could not show a statistical advantage.

In order to compare the performance of our proposal against other metaheuristics, a comparison
was made with respect to the PSO algorithm. For the simulations carried out without adding noise to
the mobile autonomous robot plant; our variants GSO, FGSO1 and FGSO1T2 managed to overcome
the results obtained by the PSO algorithm, as well as its variants PSO + T1FS and PSO + IT2FS.

In the comparison made by adding noise to the plant in the same way, our proposal offered more
competitive results than those obtained with PSO and its variants, and all this is based on the results
presented in Section 5.

We can conclude that the GSO algorithm and the proposed variants fuzzy galactic swarm
optimization (FGSO1) and FGSO1T2 using the IT2 fuzzy systems show competitive results when
applied to the optimization of the membership functions from the study case of the autonomous robot
mobile. As a result, we will continue to investigate this area to even further explore the behavior of the
GSO algorithm and the use of the type-1 and type-2 fuzzy logic, since good results have been presented
in control problems and in the optimization of the benchmark mathematical functions according to the
current study and previous publications.
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