A Physics-Informed Neural Network Based on the Boltzmann Equation with Multiple-Relaxation-Time Collision Operators
<p>Network architecture. <math display="inline"><semantics> <mi mathvariant="bold">x</mi> </semantics></math> is spatial space and t is time, which all are the inputs of the network. The Monte Carlo method is used to create a dataset. Multiscale modeling and canonical polyadic decomposition are adopted in the neural network.</p> "> Figure 2
<p>Compositions of the loss function. <math display="inline"><semantics> <mi mathvariant="bold">x</mi> </semantics></math> is spatial space and t is time, which are inputs to the network. The Monte Carlo method is used to create a dataset. The loss function is made up of three parts: IC loss, BC loss, and PDE loss. The problem-dependent weights for the three loss parts are adopted.</p> "> Figure 3
<p>Numerical solution of advection–diffusion problem using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>1.0</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.1</mn> </mrow> </semantics></math>. The numerical solution of NMRT is the solid line, and the reference solution is the dashed line. (<b>a</b>) s = 0.01, t = 0; (<b>b</b>) s = 0.01, t = 0.1; (<b>c</b>) s = 0.1, t = 0; (<b>d</b>) s = 0.1, t = 0.1; (<b>e</b>) s = 1.0, t = 0; (<b>f</b>) s = 1.0, t = 0.1.</p> "> Figure 3 Cont.
<p>Numerical solution of advection–diffusion problem using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>1.0</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.1</mn> </mrow> </semantics></math>. The numerical solution of NMRT is the solid line, and the reference solution is the dashed line. (<b>a</b>) s = 0.01, t = 0; (<b>b</b>) s = 0.01, t = 0.1; (<b>c</b>) s = 0.1, t = 0; (<b>d</b>) s = 0.1, t = 0.1; (<b>e</b>) s = 1.0, t = 0; (<b>f</b>) s = 1.0, t = 0.1.</p> "> Figure 4
<p>Numerical solution of wave propagation problem using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>1.0</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.1</mn> </mrow> </semantics></math>. The numerical solution of NMRT is the solid line, and the reference solution is the dashed line. (<b>a</b>) s = 0.01, t = 0; (<b>b</b>) s = 0.01, t = 0.1; (<b>c</b>) s = 0.1, t = 0; (<b>d</b>) s = 0.1, t = 0.1; (<b>e</b>) s = 1.0, t = 0; (<b>f</b>) s = 1.0, t = 0.1.</p> "> Figure 5
<p>Numerical solution of the wave propagation problem in two-dimensional scenarios using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The first row corresponds to the density <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>, the second column corresponds to the macroscopic velocity <span class="html-italic">u</span>, and the last column corresponds to the temperature <span class="html-italic">T</span>. The numerical solution of NMRT is the solid line, and the result of FSM is the dashed line. (<b>a</b>) <span class="html-italic">s</span> = 0.01, <span class="html-italic">t</span> = 0.1; (<b>b</b>) <span class="html-italic">s</span> = 0.01, <span class="html-italic">t</span> = 0.1; (<b>c</b>) <span class="html-italic">s</span> = 0.01, <span class="html-italic">t</span> = 0.1.</p> "> Figure 6
<p>Numerical solution of wave propagation problem in two-dimensional scenarios using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The first row corresponds to the density <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>, the second column corresponds to the macroscopic velocity <span class="html-italic">u</span>, and the last column corresponds to the temperature <span class="html-italic">T</span>. The numerical solution of NMRT is the solid line, and the result of FSM is the dashed line. (<b>a</b>) <span class="html-italic">s</span> = 0.1, <span class="html-italic">t</span> = 0.1; (<b>b</b>) <span class="html-italic">s</span> = 0.1, <span class="html-italic">t</span> = 0.1; (<b>c</b>) <span class="html-italic">s</span> = 0.1, <span class="html-italic">t</span> = 0.1.</p> "> Figure 7
<p>Numerical solution of the wave propagation problem in two-dimensional scenarios using NMRT for <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The first row corresponds to the density <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>, the second column corresponds to the macroscopic velocity <span class="html-italic">u</span>, and the last column corresponds to the temperature <span class="html-italic">T</span>. The numerical solution of NMRT is the solid line, and the result of FSM is the dashed line. (<b>a</b>) <span class="html-italic">s</span> = 1.0, <span class="html-italic">t</span> = 0.1; (<b>b</b>) <span class="html-italic">s</span> = 1.0, <span class="html-italic">t</span> = 0.1; (<b>c</b>) <span class="html-italic">s</span> = 1.0, <span class="html-italic">t</span> = 0.1.</p> ">
Abstract
:1. Introduction
2. Boltzmann Equation
3. Network for Boltzmann-MRT Equation
3.1. Discrete Velocity Model
3.2. Framework of Neural Network
3.2.1. Multiscale Modeling
3.2.2. Micro–Macro Decomposition
3.2.3. Approximation of MRT Collision Term
3.3. Loss Function
Problem-Dependent Weight Loss
4. Numerical Experiment
4.1. Advection Diffusion
4.2. Wave Propagation
4.3. Wave Propagation in Two-Dimensional Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep learning vs. traditional computer vision. In Advances in Computer Vision, Proceedings of the 2019 Computer Vision Conference (CVC), Las Vegas, NV, USA, 25–26 April 2019; Arai, K., Kapoor, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 943, pp. 128–144. [Google Scholar]
- Chowdhary, K.; Chowdhary, K. Natural language processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2022; pp. 603–649. [Google Scholar]
- Sejnowski, T.J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl. Acad. Sci. USA 2020, 117, 30033–30038. [Google Scholar] [CrossRef]
- Koppe, G.; Meyer-Lindenberg, A.; Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021, 46, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.x.; Haidn, O.J.; Thuerey, N.; Hu, X.y. Supervised learning mixing characteristics of film cooling in a rocket combustor using convolutional neural networks. Acta Astronaut. 2020, 175, 11–18. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 2020, 10, 5917. [Google Scholar] [CrossRef]
- Meng, X.; Li, Z.; Zhang, D.; Karniadakis, G.E. PPINN: Parareal physics-informed neural network for time-dependent PDEs. Comput. Methods Appl. Mech. Eng. 2020, 370, 113250. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, D.; Chang, H.; Li, H. Deep learning of subsurface flow via theory-guided neural network. J. Hydrol. 2020, 584, 124700. [Google Scholar] [CrossRef]
- Cho, J.; Nam, S.; Yang, H.; Yun, S.B.; Hong, Y.; Park, E. Separable physics-informed neural networks. Adv. Neural Inf. Process. Syst. 2024, 36, 23761–23788. [Google Scholar]
- Succi, S.; Benzi, R.; Higuera, F. The lattice Boltzmann equation: A new tool for computational fluid-dynamics. Phys. Nonlinear Phenom. 1991, 47, 219–230. [Google Scholar] [CrossRef]
- Li, J. Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation; Applications to Porous Media and MEMS; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Simonis, S. Lattice Boltzmann Methods for Partial Differential Equations. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2023. [Google Scholar]
- Xu, K. A generalized Bhatnagar–Gross–Krook model for nonequilibrium flows. Phys. Fluids 2008, 20, 026101. [Google Scholar] [CrossRef]
- Shi, Y.; Shan, X. A multiple-relaxation-time collision model for nonequilibrium flows. Phys. Fluids 2021, 33, 037134. [Google Scholar] [CrossRef]
- Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Liu, C.; Xu, K. A unified gas-kinetic scheme for micro flow simulation based on linearized kinetic equation. Adv. Aerodyn. 2020, 2, 21. [Google Scholar] [CrossRef]
- Gamba, I.M.; Haack, J.R.; Hauck, C.D.; Hu, J. A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 2017, 39, B658–B674. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Xiao, W.; Song, W.; Li, Y. Large-Scale Cluster Parallel Strategy for Regularized Lattice Boltzmann Method with Sub-Grid Scale Model in Large Eddy Simulation. Appl. Sci. 2023, 13, 11078. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Huang, D.; Zhou, L. The Immersed Boundary-Lattice boltzmann method parallel model for fluid-structure interaction on heterogeneous platforms. Math. Probl. Eng. 2020, 2020, 3913968. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Ruan, J.; Zhang, W.; Zhou, L.; Huang, D.; Xu, J. A New Multi-Level Grid Multiple-Relaxation-Time Lattice Boltzmann Method with Spatial Interpolation. Mathematics 2023, 11, 1089. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, H.; Wang, Z.; Dong, B. Solving Boltzmann equation with neural sparse representation. arXiv 2023, arXiv:2302.09233. [Google Scholar] [CrossRef]
- Oh, J.; Cho, S.Y.; Yun, S.B.; Park, E.; Hong, Y. Separable Physics-informed Neural Networks for Solving the BGK Model of the Boltzmann Equation. arXiv 2024, arXiv:2403.06342. [Google Scholar]
- Lou, Q.; Meng, X.; Karniadakis, G.E. Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. J. Comput. Phys. 2021, 447, 110676. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, N.; Shi, B.; Chai, Z. Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme for one-dimensional diffusion equations. Phys. Rev. E 2021, 104, 015312. [Google Scholar] [CrossRef]
- Maxwell, J. Illustrations of the dynamical theory of gases. Philos. Mag. 1867, 19, 19–32. [Google Scholar] [CrossRef]
- Choe, Y.S.; Kim, Y.J.; Ri, T.N.; Kim, T.K. One-dimensional lattice Boltzmann simulation of parallel plate dielectric barrier discharge plasma in atmospheric argon. Math. Comput. Simul. 2023, 213, 115–126. [Google Scholar] [CrossRef]
- Ba, Y.; Liu, H.; Li, Q.; Kang, Q.; Sun, J. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 2016, 94, 023310. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Shi, B.; Wang, Z.; Yang, K.; Li, Y.; Weng, B.; Wang, M.; Chu, H.; Zhou, J.; et al. Solving partial differential equations with point source based on physics-informed neural networks. arXiv 2021, arXiv:2111.01394. [Google Scholar]
- Zhang, K.; Feng, X.F.; Jing, H.F.; Jiang, Y.L. An improved MRT-LBM and investigation to the transition and periodicity of 2D lid-driven cavity flow with high Reynolds numbers. Chin. J. Phys. 2023, 84, 51–65. [Google Scholar] [CrossRef]
- Sitzmann, V.; Martel, J.; Bergman, A.; Lindell, D.; Wetzstein, G. Implicit neural representations with periodic activation functions. Adv. Neural Inf. Process. Syst. 2020, 33, 7462–7473. [Google Scholar]
- Xu, Z.Q.J.; Zhang, Y.; Luo, T.; Xiao, Y.; Ma, Z. Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv 2019, arXiv:1901.06523. [Google Scholar] [CrossRef]
- Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2019, 2, 115. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, W.; Xu, Z.Q.J. Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains. arXiv 2020, arXiv:2007.11207. [Google Scholar] [CrossRef]
- Edwards, T. Discrete Wavelet Transforms: Theory and Implementation. 1991. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f7efbe4055f84612ec0851f6ccd11d2d4999141b (accessed on 11 June 2024).
- Jin, S.; Shi, Y. A micro-macro decomposition-based asymptotic-preserving scheme for the multispecies Boltzmann equation. SIAM J. Sci. Comput. 2010, 31, 4580–4606. [Google Scholar] [CrossRef]
- Gamba, I.M.; Jin, S.; Liu, L. Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations. J. Comput. Phys. 2019, 382, 264–290. [Google Scholar] [CrossRef]
- Shlezinger, N.; Eldar, Y.C.; Boyd, S.P. Model-based deep learning: On the intersection of deep learning and optimization. IEEE Access 2022, 10, 115384–115398. [Google Scholar] [CrossRef]
- Boelens, A.M.; Venturi, D.; Tartakovsky, D.M. Parallel tensor methods for high-dimensional linear PDEs. J. Comput. Phys. 2018, 375, 519–539. [Google Scholar] [CrossRef]
- Reynolds, M.J.; Doostan, A.; Beylkin, G. Randomized alternating least squares for canonical tensor decompositions: Application to a PDE with random data. SIAM J. Sci. Comput. 2016, 38, A2634–A2664. [Google Scholar] [CrossRef]
- Lange, K. Singular value decomposition. In Numerical Analysis for Statisticians; Statistics and Computing; Springer: New York, NY, USA, 2010; pp. 129–142. [Google Scholar]
- Evert, E.; Vandecappelle, M.; De Lathauwer, L. Canonical Polyadic Decomposition via the generalized Schur decomposition. IEEE Signal Process. Lett. 2022, 29, 937–941. [Google Scholar] [CrossRef]
- Peng, W.; Zhou, W.; Zhang, J.; Yao, W. Accelerating physics-informed neural network training with prior dictionaries. arXiv 2020, arXiv:2004.08151. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Adeyemo, O.D.; Motsepa, T.; Khalique, C.M. A study of the generalized nonlinear advection-diffusion equation arising in engineering sciences. Alex. Eng. J. 2022, 61, 185–194. [Google Scholar] [CrossRef]
- Maragkos, G.; Beji, T. Review of convective heat transfer modelling in cfd simulations of fire-driven flows. Appl. Sci. 2021, 11, 5240. [Google Scholar] [CrossRef]
- Wu, L.; Reese, J.M.; Zhang, Y. Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows. J. Fluid Mech. 2014, 746, 53–84. [Google Scholar] [CrossRef]
- Schäfer, V. Generalization of Physics-Informed Neural Networks for Various Boundary and Initial Conditions. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2022. [Google Scholar]
Layer number | 5 | |
Neural Network | Neurons | 80 |
Steps | 10,000 | |
100 | ||
Sampling Points | 100 | |
700 | ||
Computational Parameters | Time | |
Relaxation parameter s | 0.01, 0.1, 1.0 | |
Microscopic velocity space | ||
Grid numbers | 72 | |
Optimizer | Method | Adam |
Max learning rate | 0.001 | |
Min learning rate | 0.00005 | |
Decay algorithm | Cosine annealing |
s = 0.01 | s = 0.1 | s = 1.0 | |||||||
---|---|---|---|---|---|---|---|---|---|
0.0 | |||||||||
0.1 |
Layer number | 5 | |
Neural Network | Neurons | 80 |
Steps | 10,000 | |
100 | ||
Sampling Points | 100 | |
700 | ||
Computational Parameters | Time | |
Relaxation parameter s | 0.01, 0.1, 1.0 | |
Microscopic velocity space | ||
Grid numbers | 24 | |
Optimizer | Method | Adam |
Max learning rate | 0.001 | |
Min learning rate | 0.00005 | |
Decay algorithm | Cosine annealing |
s = 0.01 | s = 0.1 | s = 1.0 | |||||||
---|---|---|---|---|---|---|---|---|---|
0.0 | |||||||||
0.1 |
Layer number | 5 | |
Neural Network | Neurons | 80 |
Steps | 12,000 | |
500 | ||
Sampling Points | 500 | |
2000 | ||
Computational Parameters | Time | |
Relaxation parameter s | 0.01, 0.1, 1.0 | |
Microscopic velocity space | ||
Grid numbers | 24 | |
Optimizer | Method | Adam |
Max learning rate | 0.002 | |
Min learning rate | 0.00005 | |
Decay algorithm | Cosine annealing |
s = 0.01 | s = 0.1 | s = 1.0 | |||||||
---|---|---|---|---|---|---|---|---|---|
0.0 | |||||||||
0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, C.; Zhu, W.; Huang, D. A Physics-Informed Neural Network Based on the Boltzmann Equation with Multiple-Relaxation-Time Collision Operators. Axioms 2024, 13, 588. https://doi.org/10.3390/axioms13090588
Liu Z, Zhang C, Zhu W, Huang D. A Physics-Informed Neural Network Based on the Boltzmann Equation with Multiple-Relaxation-Time Collision Operators. Axioms. 2024; 13(9):588. https://doi.org/10.3390/axioms13090588
Chicago/Turabian StyleLiu, Zhixiang, Chenkai Zhang, Wenhao Zhu, and Dongmei Huang. 2024. "A Physics-Informed Neural Network Based on the Boltzmann Equation with Multiple-Relaxation-Time Collision Operators" Axioms 13, no. 9: 588. https://doi.org/10.3390/axioms13090588
APA StyleLiu, Z., Zhang, C., Zhu, W., & Huang, D. (2024). A Physics-Informed Neural Network Based on the Boltzmann Equation with Multiple-Relaxation-Time Collision Operators. Axioms, 13(9), 588. https://doi.org/10.3390/axioms13090588