Nothing Special   »   [go: up one dir, main page]

Next Article in Journal
Modeling Data with Extreme Values Using Three-Spliced Distributions
Next Article in Special Issue
Some Classical Inequalities Associated with Generic Identity and Applications
Previous Article in Journal
Adding a Degree of Certainty to Deductions in a Fuzzy Temporal Constraint Prolog: FTCProlog
Previous Article in Special Issue
Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized Fuzzy-Valued Convexity with Ostrowski’s, and Hermite-Hadamard Type Inequalities over Inclusion Relations and Their Applications

by
Miguel Vivas Cortez
1,†,
Ali Althobaiti
2,*,†,
Abdulrahman F. Aljohani
3,† and
Saad Althobaiti
4,†
1
Escuela de Ciencias F’ısicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador
2
Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
4
Department of Sciences and Technology, Ranyah University Collage, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2024, 13(7), 471; https://doi.org/10.3390/axioms13070471
Submission received: 20 May 2024 / Revised: 15 June 2024 / Accepted: 21 June 2024 / Published: 12 July 2024
(This article belongs to the Special Issue Theory and Application of Integral Inequalities)

Abstract

:
Convex inequalities and fuzzy-valued calculus converge to form a comprehensive mathematical framework that can be employed to understand and analyze a broad spectrum of issues. This paper utilizes fuzzy Aumman’s integrals to establish integral inequalities of Hermite-Hahadard, Fejér, and Pachpatte types within up and down ( U · D ) relations and over newly defined class U · D -ħ-Godunova–Levin convex fuzzy-number mappings. To demonstrate the unique properties of U · D -relations, recent findings have been developed using fuzzy Aumman’s, as well as various other fuzzy partial order relations that have notable deficiencies outlined in the literature. Several compelling examples were constructed to validate the derived results, and multiple notes were provided to illustrate, depending on the configuration, that this type of integral operator generalizes several previously documented conclusions. This endeavor can potentially advance mathematical theory, computational techniques, and applications across various fields.

1. Introduction

In recent years, numerous scholars in analysis and various branches of mathematics have shown a growing interest in inequality theory [1,2]. Many real-world problems can be viewed as integral equations, emphasizing the importance of generalizing integral inequalities to address such issues [3].
In Moore’s renowned book, the introductory chapter provides an interactive exploration of numerical data, serving as an initiation to interval analysis in numerical analysis (refer to [4]). Over the last five decades, numerous applications have emerged across various domains, including interval differential equations, computer graphics, aero elasticity, and optimization of neural networks. Recently, several authors have extensively investigated various integral inequalities within the context of interval-valued functions (refer to [5,6,7]).
It is widely acknowledged that the convexity of functions plays a pivotal role in numerous scientific disciplines, encompassing probability theory, economics, and optimal control theory. Moreover, various inequalities have been extensively documented in the literature (refer to [8,9]). The subsequent inequality is commonly known as the classical Hermite-Hadamard inequality regarding equality:
If f : K N is a convex function defined on the interval K of real numbers, and   θ ,   λ K with θ < λ , then
f θ + λ 2 1 λ θ θ λ f б d б f θ + f λ 2 .
Both inequalities are valid in the opposite direction if f exhibits concavity.
Varosanec initially introduced the concept of ℎ-convexity in 2007 (refer to [10]), exploring various generalizations and extensions of this inequality (refer to [11]). Several authors have subsequently developed more intricate Hermite-Hadamard inequalities involving ℎ-convex functions (refer to [12,13]). Moreover, Costa proposed a Jensen-type inequality for fuzzy interval-valued functions (refer to [14]). In the realm of interval-valued functions, Zhao et al. presented a novel Hermite-Hadamard inequality for ℎ-convex functions (refer to [15]).
Using the ℎ-Godunova–Levin function (refer to [16,17]), Almutairi and Kiliman demonstrated the following inequality in 2019.
If f : K N is a convex function defined on the interval K of real numbers, and   θ ,   λ K with θ < λ , then
f κ θ + 1 κ λ f θ ħ κ + f λ ħ 1 κ ,
where, ħ : [ 0 , 1 ] K N + such that ħ 0 .
Several mathematicians have expanded upon the Ostrowski inequality in various directions. Notably, several scientific articles have delved into this topic, exploring different forms of convexity. For instance, İşcan et al. [18] investigated the concept of a harmonically s-convex function. Set [19] introduced the fractional version of the Ostrowski-type inequality using Riemann–Liouville fractional operators. Liu [20] utilized the equality established by Set to devise new refinements of the Ostrowski-type inequality for an MT-convex function. Tunç [21] examined the Ostrowski-type inequality for an ℏ-convex function. Ozdemir et al. [22] derived a fresh version of the Ostrowski-type inequality for an (α, m)-convex function. Agarwal et al. [23] explored a more generalized Ostrowski-type inequality using a Raina fractional integral operator. Sarikaya et al. [24,25] employed local fractional integrals to establish new generalizations of the Ostrowski-type inequality. Gürbuz et al. [26,27] utilized a Katugampola fractional operator for a generalized version of the Ostrowski inequality. Ahmad et al. [28,29] introduced some innovative generalizations of the Ostrowski inequality via an Atangana–Baleanu fractional operator for differentiable convex functions and for harmonical convexity, see [30,31,32,33]. For further details on recent advancements in the Ostrowski-type inequality, readers are referred to the following references (refer to [34,35,36]). Budak et al. [37] derived innovative fractional inequalities of the Ostrowski type for interval-valued functions, drawing on the definitions of gH-derivatives. Basic concepts related to fuzzy and fuzzy Aumman’s integral are in the following literature (see [38,39] and the references therein). Nanda [40] introduced the concept of convexity in fuzzy environment. For interval-valued convex mapping, see [41]. Khan et al. [42] introduced log-h-convex fuzzy-interval-valued functions as a distinct class of convex fuzzy-interval-valued functions, employing a fuzzy order relation. This class facilitated the establishment of Jensen and Hermite-Hadamard inequalities (see [43,44,45,46,47] and the references therein).
Naturally, numerous researchers have extensively explored and examined Ostrowski’s and Hermite-Hadamard inequalities in a novel context via newly defined class of U · D   ħ –Godunova–Levin convex fuzzy-number mappings. Consequently, several extensions and improvements have been developed. For example, refer to [15,39,40,47] and the references therein. In this investigation, we propose some further adjustments to Fejér, Pachpatte, and Ostrowski’s integral inequalities via U · D - ħ –Godunova–Levin convexity and fuzzy Aumman’s integrals.

2. Preliminaries

Consider E C as the set comprising all closed and bounded intervals of N , and let V belong to E C , defined as:
V = V * , V * = б N | V * б V * , V * , V * N
It is named a positive interval V * ,   V * if V * 0 . The Definition of E C + , which represents the set of all positive intervals, is
E C + = V * , V * : V * , V * E C   and   V * 0 .
Let ı N and ı V be defined by
ı V =   ı V * , ı V *   i f   ı > 0 , 0             i f   ı = 0 , ı V * , ı V *     i f   ı < 0 .  
Subsequently, the Minkowski difference Ϗ V , addition V + Ϗ , and multiplication V × Ϗ for V , Ϗ belong to E C are delineated as follows:
Ϗ * ,   Ϗ * + V * ,   V * = Ϗ * + V * ,   Ϗ * + V * ,
Ϗ * ,   Ϗ * × V * ,   V * = m i n Ϗ * V * ,   Ϗ * V * ,   Ϗ * V * ,   Ϗ * V * ,   m a x Ϗ * V * ,   Ϗ * V * ,   Ϗ * V * ,   Ϗ * V * ,
Ϗ * ,   Ϗ * V * ,   V * = Ϗ * V * ,     Ϗ * V * .
Remark 1.
(i) For given Ϗ * ,   Ϗ * ,   V * ,   V * E C ,  the relation I  defined on E C  by V * ,   V * I Ϗ * ,   Ϗ *  if and only if V * Ϗ * ,   Ϗ * V *  for all Ϗ * ,   Ϗ * ,   V * ,   V * E C  is a partial interval inclusion relation. The relation V * ,   V * I Ϗ * ,   Ϗ *  is coincident to V * ,   V * Ϗ * ,   Ϗ *  on E C .  It can be easily seen that “ I ” looks like “up and down” on the real line N ,  so we call I  “up and down” (or “ U D ” order, in short) [44]. For Ϗ * ,   Ϗ * ,   V * ,   V * E C ,  the Hausdorff–Pompeiu distance between intervals Ϗ * ,   Ϗ *  and V * ,   V *  is defined by
d H Ϗ * ,   Ϗ * ,   V * ,   V * = m a x Ϗ * V * ,   Ϗ * V * .
It is a familiar fact that  E C , d H  is a complete metric space [37,38,39].
We will briefly review some essential concepts regarding fuzzy sets and fuzzy numbers since we will rely on the standard definitions of these sets.
Please note that we refer to  F  and  F 0  as the set of all fuzzy subsets and fuzzy numbers of   N .
Given  Ϗ ~ F 0 , the level sets or cut sets are given by  Ϗ ~ ı = б N | Ϗ ~ б > ı  for all  ı 0 ,   1  and by  Ϗ ~ 0 = б N | Ϗ ~ б > 0 . These sets are known as  ı -level sets or  ı -cut sets of  Ϗ ~ , see [37].
Proposition 1 ([44]).
Let Ϗ ~ , V ~ F 0 . Then, relation F  is given on F 0  by Ϗ ~ F V ~  when and only when Ϗ ~ ı I V ~ ı , for every ı 0 ,   1 ,  which are left- and right-order relations.
Proposition 2 ([44]).
Let  Ϗ ~ , V ~ F 0 . Then, relation  F  is given on  F 0  by  Ϗ ~ F V ~  when and only when  Ϗ ~ ı I V ~ ı  for every  ı 0 ,   1 ,  which is the  U D order relation on  F 0 .
Remember the approaching notions, which are offered in the literature. If  Ϗ ~ , V ~ F 0  and  ı N , then, for every  ı 0 ,   1 ,  the arithmetic operations addition “ , multiplication “ , and scaler multiplication “  are defined by
Ϗ ~ V ~ ı = Ϗ ~ ı + V ~ ı ,
Ϗ ~ V ~ ı = Ϗ ~ ı ×   V ~ ı ,
t Ϗ ~ ı = t Ϗ ~ ı ,
over  θ ,   λ .

Aumann Integrals for Interval and Fuzzy Number Mappings

Now we define and discuss some properties of Aumann integrals for interval and F · N · M s.
Definition 1 ([37]).
If f : θ ,   λ N E C  is an interval-valued mapping ( I - V - M ) satisfying that f б = f * б ,   f * б , then f  is an Aumann integrable over θ ,   λ  when and only when f * б  and  f * б  both are lebesgue integrable over θ ,   λ ,  such that
I A θ λ f б d б = θ   λ f * б d б , θ λ f * б d б .
The literature suggests the following conclusions, see [37,38,47]:
Definition 2 ([44]).
A fuzzy-interval-valued map   f ~ : Λ N F 0  is named  F · N · V · M . For each  ı ( 0 ,   1 ] ,  its  I - V - M s are classified according to their  ı -levels  f ı : Λ N E C  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б Λ .  Here, for each  ı ( 0 ,   1 ] ,  the end point real mappings  f * . , ı ,   f * . , ı : Λ N  are called lower and upper mappings of  f ~ ( б ) .
Definition 3.
Let  f ~ : θ ,   λ N F 0  be an  F · N · V · M . Then, fuzzy integral of  f ~  over  θ ,   λ ,  denoted by  F A θ λ f ~ б d б , is given level-wise by
F A θ λ f ~ б d б   ı = I A θ λ f ı б d б = θ λ f б , ı d б : f б , ı R θ ,   λ ,   ı ,
for all  ı ( 0 ,   1 ] ,  where  R θ ,   λ ,   ı  denotes the collection of Riemannian integrable mappings of  I - V - M s. The  F · N · V · M   f ~  is  F A -integrable over  θ ,   λ  if  F A θ λ f ~ б d б F 0 .  Note that, if  f * б , ı ,   f * б , ı  are Lebesgue-integrable, then  f  is fuzzy Aumann-integrable mapping over  θ ,   λ , see [44].
Theorem 1 ([39]).
Let  f ~ : θ ,   λ N F 0  be an  F · N · V · M , it’s  I - V - M s are classified according to their  ı -levels  f ı : θ ,   λ N E C  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б θ ,   λ  and for all  ı ( 0 ,   1 ] .  Then,  f ~  is  F A -integrable over  θ ,   λ  if and only if,  f * б , ı  and  f * б , ı  are both  A -integrable over  θ ,   λ . Moreover, if  f ~  is  F A -integrable over  θ ,   λ ,  then 
F A θ λ f ~ б d б ı = A θ λ f * б , ı d б ,   A θ λ f * б , ı d б = I A θ λ f ı б d б ,
for all  ı ( 0 ,   1 ] .  For all  ı 0 ,   1 ,   F R θ ,   λ ,   ı  denotes the collection of all  F A -integrable  F · N · V · M s
The family of all  F A -integrable  F · N · M s over θ ,   λ  are denoted by  F A θ ,   λ ,   ı .
Breckner discussed the coming emerging idea of interval-valued convexity in [41].
I · V · M   f : I = θ ,   λ E I  is called convex  I · V · M  if
f κ б + 1 κ s κ f б + ( 1 κ ) f s ,
for all  б ,   y θ ,   λ ,   κ 0 ,   1 , where  E I  is the collection of all real valued intervals. If (16) is reversed, then  f  is called concave.
Definition 4 ([40]).
The  F · N · M   f : θ ,   λ F 0  is called convex  F · N · M  on    θ ,   λ  if
f ~ κ б + 1 κ s F κ f ~ б ( 1 κ ) f ~ s ,
for all  б , s θ ,   λ ,   κ 0 ,   1 ,  where  f ~ б F 0 ~  for all  б θ ,   λ .  If (17) is reversed then,  f ~  is called concave  F · N · M  on  θ ,   λ . f ~  is affine if and only if it is both convex and concave  F · N · M .

3. Hermite-Hadamard Inequalities over U · D - ħ -Godunova–Levin Convex F · N · M

In this section, we start with the main Definition of U · D - ħ -Godunova–Levin convexity over fuzzy domain that will be helpful for the upcoming results. The fuzzy valued Hermite-Hadamard inequalities for U · D - ħ -Godunova–Levin convex F · N · M s are established in this section. Additionally, several instances are provided to support the theory produced in this study’s application.
Definition 5.
Let  K  be convex set and  ħ : 0 ,   1 K N +  such that  ħ 0 . Then  F · N · M   f ~ : K F 0  is said to be  U · D - ħ -Godunova–Levin convex on    K  if
f ~ κ б + 1 κ s F f ~ б ħ κ f ~ s ħ 1 κ ,
for all  б , s K ,   κ 0 ,   1 ,  where  f ~ б F 0 ~ .  The  F · N · M   f ~ : K F 0  is said to be  U · D - ħ -Godunova–Levin concave on  K  if inequality (21) is reversed. Moreover,    f ~  is known as  U · D - ħ -Godunova–Levin affine  F · N · M  on    K  if
f ~ κ б + 1 κ s = f ~ б ħ κ f ~ s ħ 1 κ ,
for all  б , s K ,   κ 0 ,   1 ,  where  f ~ б F 0 ~ .
Remark 2.
The  U · D - ħ -Godunova–Levin convex  F · N · M s have some very nice properties similar to convex F · N · M .
(1)
if  f ~  is  U · D - ħ -Godunova–Levin convex  F · N · M , then  α f ~  is also  U · D - ħ -Godunova–Levin convex for  α 0 .
(2)
if  f ~  and  T ~  both are  U · D - ħ -Godunova–Levin convex  F · N · M s, then  m a x f ~ ( б ) , T ~ ( б )  is also  U · D - ħ -Godunova–Levin convex  F · N · M .
Here, we will go through a few unique exceptional cases of  U · D   ħ -Godunova–Levin convex  F · N · M s:
(i)
If  ħ κ = κ s ,  then  U · D - ħ -Godunova–Levin convex  F · N · M  becomes  U · D - s -Godunova–Levin convex  F · N · M , that is 
f ~ κ б + 1 κ s F f ~ б κ s f ~ s 1 κ s , б , s K ,   κ 0 ,   1 .
(ii)
If  ħ κ = κ ,  then  U · D - ħ -Godunova–Levin convex  F · N · M  becomes  U · D -Godunova–Levin convex  F · N · M , see [46], that is
f ~ κ б + 1 κ s F f ~ б κ f ~ s 1 κ , б , s K ,   κ 0 ,   1 .
(iii)
If  ħ κ 1 ,  then  U · D - ħ -Godunova–Levin convex  F · N · M  becomes  U · D -Godunova–Levin  P   F · N · M , that is
f ~ κ б + 1 κ s F f ~ б f ~ s , б , s K ,   κ 0 ,   1 .
Note that, there are also new special cases (i) and (iii) as well.
Theorem 2.
Let  K  be convex set, non-negative real valued function  ħ : 0 ,   1 K N  such that  ħ 0  and let  f ~ : K F 0  be a  F · N · M , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : K N E I + E I  are given by
f ı б = f * б , ı ,   f * б , ı ,  
for all  б K  and for all  ı 0 ,   1 . Then  f ~  is  U · D - ħ -Godunova–Levin convex on  K ,  if and only if, for all  ı 0 ,   1 ,   f * б ,   ı  is  ħ -Godunova–Levin convex and  f * б ,   ı  is  ħ -Godunova–Levin concave.
Proof. 
Assume that for each ı 0 ,   1 ,   f * б ,   ı and f * б ,   ı are ħ -Godunova–Levin convex and ħ -Godunova–Levin concave on K , respectively. Then, we have
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ ,   б , s K ,   κ 0 ,   1 ,
and
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ , б , s K ,   κ 0 ,   1 .
Then by (18), (5) and (6), we obtain
f ı κ б + 1 κ s = f * κ б + 1 κ s , ı ,   f * κ б + 1 κ s , ı ,
I f * s , ı ħ κ ,   f * s , ı ħ κ + f * s , ı ħ 1 κ ,   f * s , ı ħ 1 κ ,
that is
f ~ κ б + 1 κ s F f ~ б ħ κ f ~ s ħ 1 κ , б , s K ,   κ 0 ,   1 .
Hence, f ~ is U · D - ħ -Godunova–Levin convex F · N · M on K .
Conversely, let f ~ is U · D - ħ -Godunova–Levin convex F · N · M on K . Then, for all б , s K and κ 0 ,   1 , we have f ~ κ б + 1 κ s F f ~ б ħ κ f ~ s ħ 1 κ . Therefore, from (23), we have
f ı κ б + 1 κ s = f * κ б + 1 κ s , ı ,   f * κ б + 1 κ s , ı .
Again, from (18), (5) and (6), we obtain
f ı б ħ κ + f ı б ħ 1 κ = f * s , ı ħ κ ,   f * s , ı ħ κ + f * s , ı ħ 1 κ ,   f * s , ı ħ 1 κ ,
for all б , s K and κ 0 ,   1 . Then by U · D - ħ -Godunova–Levin convexity of f ~ , we have for all б , s K and κ 0 ,   1 such that
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ ,
and
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ ,
for each ı 0 ,   1 . Hence, the result follows. □
Remark 3.
If  f * б ,   ı = f * б ,   ı  with  ı = 1 ,  then  U · D - ħ -Godunova–Levin convex  F · N · M  reduces to the  U · D - ħ -Godunova–Levin convex function.
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ = κ s  with  s ( 0 ,   1 ) , then  U · D - ħ -Godunova–Levin convex  F · N · M  reduces to the  s -Godunova–Levin convex function.
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ = κ , then  U · D - ħ -Godunova–Levin convex  F · N · M  reduces to the  ħ -Godunova–Levin convex function.
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ = 1 , then  U · D - ħ -Godunova–Levin convex  F · N · M  reduces to the  P -convex function.
Example 1.
We consider  ħ κ = κ ,    for  κ 0 ,   1  and the  F · N · M   f ~ : 0 ,   1 F 0  defined by
f ~ б σ = σ 2 б 2               σ 0 ,   2 б 2 4 б 2 σ 2 б 2         σ ( 2 б 2 ,   4 б 2 ]   0                     otherwise ,
Then, for each  ı 0 ,   1 ,  we have  f ı б = 2 ı б 2 , ( 4 2 ı ) б 2   . Since end point functions  f * б , ı ,   f * б , ı  are  ħ -Godunova–Levin convex and  ħ -Godunova–Levin concave functions for each  ı 0 ,   1 , respectively. Hence  f ~ б  is  U · D - ħ -Godunova–Levin convex  F · N · M .
Definition 6.
Let  f ~ : θ ,   λ F 0  be a  F · N · M , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ E C + E C  are given by
f ı б = f * б , ı ,   f * б , ı ,  
for all  ϰ θ ,   λ  and for all  ı 0 ,   1 . Then,  f ~  is lower  ħ -Godunova–Levin convex (upper  ħ -Godunova–Levin concave)  F · N · M  o n θ ,   λ ,  if and only if, for all  ı 0 ,   1 ,   f * ϰ ,   ı  is a  ħ -Godunova–Levin convex ( ħ -Godunova–Levin concave) mapping and  f * ϰ ,   ı  is a  ħ -Godunova–Levin affine mapping.
Definition 7.
Let  f ~ : θ ,   λ F 0  be a  F · N · M , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ E C + E C  are given by
f ı б = f * б , ı ,   f * б , ı ,  
for all  ϰ θ ,   λ  and for all  ı 0 ,   1 . Then,  f ~  is an upper  ħ -Godunova–Levin convex ( ħ -Godunova–Levin concave)  F · N · M  on  θ ,   λ ,  if and only if, for all  ı 0 ,   1 ,   f * ϰ ,   ı  is an  ħ -Godunova–Levin affine mapping and  f * ϰ ,   ı  is a  ħ -Godunova–Levin convex ( ħ -Godunova–Levin concave) mapping.
Remark 4.
If  ħ κ = κ , then both concepts “ U · D - ħ -Godunova–Levin convex  F · N · M ” and “ ħ -Godunova–Levin convex  F · N · M ”, are behave alike when  f  is lower  U · D - ħ -Godunova–Levin convex  F · N · M .
Both concepts “ U · D - ħ -Godunova–Levin convex fuzzy number mapping”, and “ ħ -Godunova–Levinconvex interval-valued mapping” are coincident when  f  is lower  ħ -Godunova–Levin convex  F · N · M  with  ı = 1 .
The following result discuss the Hermite-Hadamard inequality over  U · D - ħ -Godunova–Levin convex  F · N · M .
Theorem 3.
Let  f ~ : θ ,   λ F 0  be a  U · D - ħ -Godunova–Levin convex  F · N · M  with non-negative real valued function  ħ : 0 ,   1 N +  and  ħ 1 2 0 , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ N E I +  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If  f ~ F A θ ,   λ ,   ı , then
ħ 1 2 2   f ~ θ + λ 2 F 1 λ θ   F A θ λ f ~ б d б F f ~ θ f ~ λ 0 1 1 ħ κ d κ .
If  f ~  is  ħ -Godunova–Levin concave  F · N · M , then (25) is reversed.
ħ 1 2 2   f ~ θ + λ 2 F 1 λ θ   F A θ λ f ~ б d б F f ~ θ f ~ λ 0 1 1 ħ κ d κ .
Proof. 
Let f ~ : θ ,   λ F 0 be a U · D - ħ -Godunova–Levin convex F · N · M . Then, for a , b θ ,   λ , we have
f ~ κ a + 1 κ b F f ~ a ħ κ f ~ b ħ 1 κ
If κ = 1 2 , then we have
f ~ a + b 2 F f ~ a ħ 1 2 f ~ b ħ 1 2 .
Let a = κ θ + 1 κ λ and b = 1 κ θ + κ λ . Then, above inequality we have
ħ 1 2 f ~ θ + λ 2 F f ~ κ θ + 1 κ λ f ~ 1 κ θ + κ λ .
Therefore, for every ı 0 , 1 , we have
ħ 1 2 f * θ + λ 2 ,   ı f * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı , ħ 1 2 f * θ + λ 2 ,   ı f * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ , ı .
Then
ħ 1 2 0 1 f * θ + λ 2 ,   ı d κ 0 1 f * κ θ + 1 κ λ , ı d κ + 0 1 f * 1 κ θ + κ λ ,   ı d κ , ħ 1 2 0 1 f * θ + λ 2 , ı d κ 0 1 f * κ θ + 1 κ λ ,   ı d κ + 0 1 f * 1 κ θ + κ λ , ı d κ .
It follows that
ħ 1 2 f * θ + λ 2 ,   ı 2 λ θ θ λ f * б ,   ı d б , ħ 1 2 f * θ + λ 2 ,   ı 2 λ θ θ λ f * б ,   ı d б .
That is
ħ 1 2 f * θ + λ 2 ,   ı ,   f * θ + λ 2 ,   ı I 2 λ θ θ λ f * б ,   ı d б ,   θ λ f * б ,   ı d б .
Thus,
ħ 1 2 2 f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б .
In a similar way as above, we have
1 λ θ F A θ λ f ~ б d б F f ~ θ f ~ λ 0 1 1 ħ κ d κ .
Combining (27) and (28), we have
ħ 1 2 2 f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б F f ~ θ f ~ λ 0 1 1 ħ κ d κ .
Hence, the required result.
Note that, by using same steps, the Formula (26) can be proved with the help of ħ -Godunova–Levin concave F · N · M . □
Remark 5.
If  ħ κ = 1 κ s , then Theorem 3 simplifies to the outcome for  U · D - s -convex  F · N · M which is also new one:
2 s 1 f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б F 1 s + 1 f ~ θ f ~ λ .
If  ħ κ = 1 κ , then Theorem 3 simplifies to the outcome for  U · D -convex  F · N · M  which is also new one:
f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б F f ~ θ f ~ λ 2 .
If  ħ κ 1  then Theorem 3 simplifies to the outcome for  U · D - P - F · N · M  which is also new one:
1 2 f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б F f ~ θ f ~ λ .
If  f * б ,   ı f * б ,   ı  with  ı = 1  and  ħ κ = 1 κ , then Theorem 3 simplifies to the outcome for classical convex function, see [15]:
f θ + λ 2 1 λ θ I A θ λ f б d б f θ + f λ 2 .
If  f * б ,   ı = f * б ,   ı  with  ı = 1 , then Theorem 3 simplifies to the outcome for classical  ħ -convex function, see [46]:
ħ 1 2 2 f θ + λ 2 1 λ θ θ λ f б d б f θ + f λ 0 1 1 ħ κ d κ .
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ = 1 κ s , then Theorem 3 simplifies to the outcome for classical  s -convex function, see [46]:
2 s 1 f θ + λ 2 1 λ θ θ λ f б d б 1 s + 1 f θ + f λ .
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ = 1 κ , then Theorem 3 simplifies to the outcome for classical convex function:
f θ + λ 2 1 λ θ θ λ f б d б f θ + f λ 2 .
If  f * б ,   ı = f * б ,   ı  with  ı = 1  and  ħ κ 1 , then Theorem 3 simplifies to the outcome for classical  P -convex function:
1 2 f θ + λ 2 1 λ θ θ λ f б d б f θ + f λ .
Example 2.
We consider  ħ κ = 1 κ ,    for  κ 0 ,   1 , and the  F · N · M   f ~ : θ ,   λ = 2 ,   3 F 0  defined by,
f ~ б θ = θ 2 + б 1 2 1 б 1 2         θ 2 б 1 2 ,   3   2 + б 1 2 θ б 1 2 1         θ ( 3 ,   2 + б 1 2 ] 0                 otherwise .
Then, for each  ı 0 ,   1 ,  we have  f ı б = 1 ı 2 б 1 2 + 3 ı , 1 ı 2 + б 1 2 + 3 ı . Since left and right end point mappings  f * б , ı = 1 ı 2 б 1 2 + 3 ı ,   f * б ,   ı = 1 ı 2 + б 1 2 + 3 ı , are  U · D - ħ -Godunova–Levin convex mappings for each  ı 0 ,   1 , then  f ~ б  is  ħ -Godunova–Levin convex  F · N · M . We clearly see that  f ~ L θ ,   λ , F 0 . Now computing the following
ħ 1 2 2 f * θ + λ 2 ,   ı 1 λ θ θ λ f * б ,   ı d б f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ .
ħ 1 2 2 f * θ + λ 2 ,   ı = f * 5 2 ,   ı = 4 10 2 1 ı + 3 ı ,
1 λ θ θ λ f * б ,   ı d б = 2 3 1 ı 2 б 1 2 + 3 ı d б = 6 + 4 2 6 3 3 1 ı + 3 ı ,  
f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ = 4 2 3 2 1 ı + 3 ı ,
for all  ı 0 ,   1 . That means
4 10 2 1 ı + 3 ı 6 + 4 2 6 3 3 1 ı + 3 ı 4 2 3 2 1 ı + 3 ı .
Similarly, it can be easily show that
ħ 1 2 2 f * θ + λ 2 ,   ı 1 λ θ   θ λ f * б ,   ı d б f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ .
for all  ı 0 ,   1 ,  such that
ħ 1 2 2 f * θ + λ 2 ,   ı = f * 5 2 ,   ı = 4 + 10 2 1 ı + 3 ı ,
1 λ θ θ λ f * б ,   ı d б = 2 3 1 ı 2 + б 1 2 + 3 ı d б = 6 4 2 + 6 3 3 1 ı + 3 ı ,  
f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ = 4 + 2 + 3 2 1 ı + 3 ı .
From which, we have
4 + 10 2 1 ı + 3 ı 6 4 2 + 6 3 3 1 ı + 3 ı 4 + 2 + 3 2 1 ı + 3 ı ,
that is
4 10 2 1 ı + 3 ı , 4 + 10 2 1 ı + 3 ı I 6 + 4 2 6 3 3 1 ı + 3 ı , 6 4 2 + 6 3 3 1 ı + 3 ı  
I 4 2 3 2 1 ı , 4 + 2 + 3 2 1 ı + 3 ı
for all  ı 0 ,   1 .
Hence,
ħ 1 2 2 f ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б d б F f ~ θ f ~ λ 0 1 1 ħ κ d κ .
Theorem 4.
Let  f ~ : θ ,   λ F 0  be a  U · D - ħ -Godunova–Levin convex  F · N · M  with non-negative real valued function  ħ : 0 ,   1 N +  and  ħ 1 2 0 ,  it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ N E I +  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If  f ~ F A θ ,   λ ,   ı , then
ħ 1 2 2 4 f ~ θ + λ 2 F   2 F 1 λ θ F A θ λ f ~ б d б F 1 F f ~ θ f ~ λ 1 2 + 1 ħ 1 2 0 1 ħ κ d κ ,
If  f ~  is a  ħ -Godunova–Levin concave  F · N · M , then (38) is reversed.
ħ 1 2 2 4 f ~ θ + λ 2 F   2 F 1 λ θ F A θ λ f ~ б d б F 1 F f ~ θ f ~ λ 1 2 + 1 ħ 1 2 0 1 ħ κ d κ ,
where
1 = f ~ θ f ~ λ 2 f ~ θ + λ 2 0 1 1 ħ κ d κ ,
2 = ħ 1 2 4 f ~ 3 θ + λ 4 f ~ θ + 3 λ 4 ,
and  1 = 1 * ,   1 * , 2 = 2 * ,   2 * .
Proof. 
Take θ ,   θ + λ 2 , we have
ħ 1 2 f ~ κ θ + 1 κ θ + λ 2 2 + 1 κ θ + κ θ + λ 2 2 F f ~ κ θ + 1 κ θ + λ 2   f ~ 1 κ θ + κ θ + λ 2 .  
Therefore, for every ı 0 , 1 , we have
ħ 1 2 f * κ θ + 1 κ θ + λ 2 2 + 1 κ θ + κ θ + λ 2 2 ,   ı                                                                             f * κ θ + 1 κ θ + λ 2 ,   ı + f * 1 κ θ + κ θ + λ 2 ,   ı , ħ 1 2 f * κ θ + 1 κ θ + λ 2 2 + 1 κ θ + κ θ + λ 2 2 ,   ı                                                                       f * κ θ + 1 κ θ + λ 2 ,   ı + f * 1 κ θ + κ θ + λ 2 , ı .
In consequence, we obtain
ħ 1 2 4 f * 3 θ + λ 4 ,   ı 1 λ θ θ θ + λ 2 f * б ,   ı d б , ħ 1 2 4 f * 3 θ + λ 4 ,   ı 1 λ θ θ θ + λ 2 f * б ,   ı d б .
That is
ħ 1 2 4 f * 3 θ + λ 4 ,   ı ,   f * 3 θ + λ 4 ,   ı I 1 λ θ θ θ + λ 2 f * б ,   ı d б ,   θ θ + λ 2 f * б ,   ı d б .
It follows that
ħ 1 2 4 f ~ 3 θ + λ 4 F 1 λ θ θ θ + λ 2 f ~ б d б .
In a similar way as above, we have
ħ 1 2 4 f ~ θ + 3 λ 4 F 1 λ θ θ + λ 2 λ f ~ б d б .
Combining (40) and (41), we have
ħ 1 2 4 f ~ 3 θ + λ 4 f ~ θ + 3 λ 4 F 1 λ θ θ λ f ~ б d б .
By using Theorem 3, we have
ħ 1 2 4 f ~ θ + λ 2 = ħ 1 2 4 f ~ 1 2 . 3 θ + λ 4 + 1 2 . θ + 3 λ 4 .
Therefore, for every ı 0 , 1 , we have
ħ 1 2 2 4 f * θ + λ 2 ,   ı = ħ 1 2 2 4 f * 1 2 . 3 θ + λ 4 + 1 2 . θ + 3 λ 4 ,   ı , ħ 1 2 2 4 f * θ + λ 2 ,   ı = ħ 1 2 2 4 f * 1 2 . 3 θ + λ 4 + 1 2 . θ + 3 λ 4 ,   ı ,
ħ 1 2 2 4 f * 3 θ + λ 4 ,   ı ħ 1 2 + f * θ + 3 λ 4 ,   ı ħ 1 2 , ħ 1 2 2 4 f * 3 θ + λ 4 ,   ı ħ 1 2 + f * θ + 3 λ 4 ,   ı ħ 1 2 ,
= 2 * , = 2 * ,
1 λ θ θ λ f * б ,   ı d б ,     1 λ θ θ λ f * б ,   ı d б ,
f * θ ,   ı + f * λ ,   ı 2 + f * θ + λ 2 ,   ı 0 1 ħ κ d κ ,     f * θ ,   ı + f * λ ,   ı 2 + f * θ + λ 2 ,   ı 0 1 ħ κ d κ ,
= 1 * , = 1 * ,
f * θ ,   ı + f * λ ,   ı 2 + 1 ħ 1 2 f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ ,     f * θ ,   ı + f * λ ,   ı 2 + 1 ħ 1 2 f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ d κ ,
= f * θ ,   ı + f * λ ,   ı 1 2 + 1 ħ 1 2 0 1 1 ħ κ d κ ,     = f * θ ,   ı + f * λ ,   ı 1 2 + 1 ħ 1 2 0 1 1 ħ κ d κ ,
that is
ħ 1 2 4 f ~ θ + λ 2 F 2 F 1 λ θ F A θ λ f ~ б d б F 1 F f ~ θ f ~ λ 1 2 + 1 ħ 1 2 0 1 1 ħ κ d κ ,
hence, the result follows. □
Example 3.
We consider  ħ κ = κ ,    for  κ 0 ,   1 , and the  F · N · M   f ~ : θ ,   λ = 2 ,   3 F 0  defined by,  f ı б = 1 ı 2 б 1 2 + 3 ı , 1 ı 2 + б 1 2 + 3 ı ,  as in Example 2, then  f ~ ( б )  is  U · D - ħ -Godunova–Levin convex  F · N · M . We have  f * б ,   ı = 1 ı 2 б 1 2 + 3 ı  and  f * б ,   ı = 1 ı 2 + б 1 2 + 3 ı . We now compute the following:
ħ 1 2 2 4 f * θ + λ 2 ,   ı = f * 5 2 ,   ı = 4 10 2 1 ı + 3 ı ,     ħ 1 2 2 4 f * θ + λ 2 ,   ı = f * 5 2 ,   ı = 4 + 10 2 1 ı + 3 ı ,
2 * = ħ 1 2 4 f * 3 θ + λ 4 ,   ı + f * θ + 3 λ 4 ,   ı = 5 11 4 1 ı + 3 ı ,     2 * = ħ 1 2 4 f * 3 θ + λ 4 ,   ı + f * θ + 3 λ 4 ,   ı = 7 + 11 4 1 ı + 3 ı .
1 * = f * θ ,   ı + f * λ ,   ı 2 + f * θ + λ 2 ,   ı 0 1 1 ħ κ d κ = 8 2 3 10 4 1 ı + 3 ı ,     1 * = f * θ ,   ı + f * λ ,   ı 2 + f * θ + λ 2 ,   ı 0 1 1 ħ κ d κ = 8 + 2 + 3 + 10 4 1 ı + 3 ı ,
f * θ ,   ı + f * λ ,   ı 1 2 + 1 ħ 1 2 0 1 1 ħ κ d κ = 4 2 3 2 1 ı + 3 ı ,     f * θ ,   ı + f * λ ,   ı 1 2 + 1 ħ 1 2 0 1 1 ħ κ d κ = 4 + 2 + 3 2 1 ı + 3 ı .
Then we obtain that
1 ı 4 10 2 + 3 ı 5 11 4 1 ı + 3 ı 6 + 4 2 6 3 3 1 ı + 3 ı                           8 2 3 10 4 1 ı + 3 ı 1 ı 4 2 3 2 + 3 ı 1 ı 4 + 10 2 + 3 ı 7 + 11 4 1 ı + 3 ı 6 4 2 + 6 3 3 1 ı + 3 ı                   8 + 2 + 3 + 10 4 1 ı + 3 ı 1 ı 4 + 2 + 3 2 + 3 ı .
Hence, Theorem 4 is verified.
The novel fuzzy Hermite-Hadamard inequalities for the product of two  U · D - ħ -Godunova–Levin convex  F · N · M s are found in the results.
Theorem 5.
Let  f ~ , J ~   : θ ,   λ F 0  be two  U · D - ħ -Godunova–Levin convex  F · N · M s with non-negative real valued functions  ħ 1 ,   ħ 2 : 0 ,   1 N +  and  ħ 1 1 2 ħ 2 1 2 0 ,  it’s  I - V - M s are classified according to their  ı -levels such that,  f ı ,   J ı : θ ,   λ N E I +  are given by  f ı б = f * б , ı ,   f * б , ı  and  J ı б = J * б , ı ,   J * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If f ~ ,   J ~  and  f ~ J ~ F A θ ,   λ ,   ı , then
1 λ θ F A θ λ f ~ б J ~ б d б F M ~ θ , λ 0 1 1 ħ 1 κ ħ 2 κ d κ N ~ θ , λ 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,
If  f ~  is  ħ -Godunova–Levin concave  F · N · M , then (42) is reversed.
1 λ θ F A θ λ f ~ б J ~ б d б F M ~ θ , λ 0 1 1 ħ 1 κ ħ 2 κ d κ N ~ θ , λ 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,
where  M ~ θ , λ = f ~ θ J ~ θ f ~ λ J ~ λ ,   N ~ θ , λ = f ~ θ J ~ λ f ~ λ J ~ θ ,  and  M ı θ , λ = M * θ , λ ,   ı ,   M * θ , λ ,   ı  and  N ı θ , λ = N * θ , λ ,   ı ,   N * θ , λ ,   ı .
Proof. 
Let f ~ , J ~   : θ ,   λ F 0 be two U · D - ħ 1 -Godunova–Levin convex and U · D - ħ 2 -Godunova–Levin convex F · N · M s. Then, we have
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ ,
and
f * κ б + 1 κ s , ı f * б ,   ı ħ κ + f * s , ı ħ 1 κ ,
    f * κ θ + 1 κ λ ,   ı f * б ,   ı ħ 1 κ + f * s , ı ħ 1 1 κ   f * κ θ + 1 κ λ ,   ı f * б ,   ı ħ 1 κ + f * s , ı ħ 1 1 κ ,  
and
    J * κ θ + 1 κ λ , ı J * б ,   ı ħ 2 κ + J * s , ı ħ 2 1 κ ,   J * κ θ + 1 κ λ , ı J * б ,   ı ħ 2 κ + J * s , ı ħ 2 1 κ .  
From the Definition of U · D - ħ -Godunova–Levin convex F · N · M it follows that f ~ x F 0 and J ~ x F 0 , so
    f * κ θ + 1 κ λ , ı J * κ θ + 1 κ λ , ı                                                                                   f * б ,   ı ħ 1 κ + f * s , ı ħ 1 1 κ J * б ,   ı ħ 2 κ + J * s , ı ħ 2 1 κ   = f * θ , ı J * θ , ı 1 ħ 1 κ ħ 2 κ + f * λ , ı J * λ , ı 1 ħ 1 1 κ ħ 2 1 κ         + f * θ , ı J * λ , ı 1 ħ 1 κ ħ 2 1 κ + f * λ , ı J * θ , ı 1 ħ 1 1 κ ħ 2 κ , f * κ θ + 1 κ λ , ı J * κ θ + 1 κ λ , ı                                                                                         f * б ,   ı ħ 1 κ + f * s , ı ħ 1 1 κ J * б ,   ı ħ 2 κ + J * s , ı ħ 2 1 κ       = f * θ , ı J * θ , ı 1 ħ 1 κ ħ 2 κ + f * λ , ı J * λ , ı 1 ħ 1 1 κ ħ 2 1 κ   + f * θ , ı J * λ , ı 1 ħ 1 κ ħ 2 1 κ + f * λ , ı J * θ , ı 1 ħ 1 1 κ ħ 2 κ .  
Integrating both sides of above inequality over 0 , 1 we get
    0 1 f * κ θ + 1 κ λ , ı J * κ θ + 1 κ λ , ı = 1 λ θ θ λ f * x , ı J * x , ı d x                                     f * θ , ı J * θ , ı + f * λ , ı J * λ , ı 0 1 1 ħ 1 κ ħ 2 κ d κ                                           + f * θ , ı J * λ , ı + f * λ , ı J * θ , ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,   0 1 f * κ θ + 1 κ λ , ı J * κ θ + 1 κ λ , ı = 1 λ θ   θ λ f * x , ı J * x , ı d x                                     f * θ , ı J * θ , ı + f * λ , ı J * λ , ı 0 1 1 ħ 1 κ ħ 2 κ d κ                                         + f * θ , ı J * λ , ı + f * λ , ı J * θ , ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ .
It follows that,
    1 λ θ θ λ f * x , ı J * x , ı d x M * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 κ d κ                                                 + N * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,   1 λ θ   θ λ f * x , ı J * x , ı d x M * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 κ d κ                                                     + N * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,
that is
1 λ θ θ λ f * x , ı J * x , ı d x ,   θ λ f * x , ı J * x , ı d x I M * θ , λ , ı ,   M * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 κ d κ + N * θ , λ , ı ,   N * θ , λ , ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ .
Thus,
1 λ θ F A θ λ f ~ x J ~ x d x F M ~ θ , λ 0 1 1 ħ 1 κ ħ 2 κ d κ N ~ θ , λ 0 1 1 ħ 1 κ ħ 2 1 κ d κ ,
and Theorem 5 has been established. □
Example 4.
We consider  ħ 1 κ = 1 κ ,   ħ 2 κ = 1 κ ,  for    κ 0 ,   1 , and the  F · N · M s f ~ ,   J ~ : θ ,   λ = 0 ,   1 F 0  defined by,
f ~ б σ = θ б                   θ 0 ,   б   2 б θ б                 θ ( б ,   2 б ] 0                   otherwise ,
J ~ б σ = θ б 2 б                   θ б ,   2   8 e б θ 8 e б 2       θ ( 2 ,   8 e б ] 0                 otherwise .
Then, for each  ı 0 ,   1 ,  we have  f ı б = ı б , ( 2 ı ) б  and  J ı б = 1 ı б + 2 ı , 1 ı 8 e б + 2 ı .  Since end point functions  f * б , ı = ı б ,   f * б ,   ı = ( 2 ı ) б  and  J * б , ı = 1 ı б + 2 ı , J * б ,   ı = 1 ı 8 e б + 2 ı   ħ 1 , ħ 2 -Godunova–Levin convex functions for each  ı 0 ,   1 . Hence  f ~ ,   J ~  both are  U · D - ħ 1 , U · D - ħ 2 -Godunova–Levin convex  F · N · M s, respectively. We now computing the following
1 λ θ   θ λ f * б , ı × J * б , ı d б = 1 2 0 2   ı 1 ı б 2 + 2 ı 2 б d б = 2 3 ı 2 + ı                   1 λ θ   θ λ f * б , ı × J * б , ı d б = 1 2 0 2 1 ı 2 ı б 8 e б + 2 ı 2 ı б d б 2 ı 2 1903 250 903 250 ı ,
M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ = 4 ı 3                           M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ = 2 2 ı 1 ı 8 e 2 + 2 ı 3 ,
N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ = 2 ı 2 3   N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ = 2 ı 7 5 ı 3 ,
for each  ı 0 ,   1 , that means
2 3 ı 1 + 2 ı , 2 ı 2 1903 250 903 250 ı I 1 3 2 ı 2 + ı , 2 ı 2 1 ı 8 e 2 ı + 7
Hence, Theorem 5 is demonstrated.
Theorem 6.
Let  f ~ , J ~   : θ ,   λ F 0  be two  U · D - ħ 1 -Godunova–Levin convex and  U · D - ħ 2 - Godunova–Levin convex  F · N · M s with non-negative real valued functions  ħ 1 ,   ħ 2 : [ 0 ,   1 ] N + , respectively and  ħ 1 1 2 ħ 2 1 2 0 ,  respectively, it’s  I - V - M s are classified according to their  ı -levels such that,  f ı ,   J ı : θ ,   λ N E I +  are given, respectively, by  f ı б = f * б , ı ,   f * б , ı  and  J ı б = J * б , ı ,   J * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If  f ~ J ~ F A θ ,   λ ,   ı , then
ħ 1 1 2 ħ 2 1 2 2 f ~ θ + λ 2 J ~ θ + λ 2 F 1 λ θ F A θ λ f ~ б J ~ б d б   M ~ θ , λ 0 1 1 ħ 1 κ ħ 2 1 κ d κ N ~ θ , λ 0 1 1 ħ 1 κ ħ 2 κ d κ ,
where    M ~ θ , λ = f ~ θ J ~ θ f ~ λ J ~ λ ,   N ~ θ , λ = f ~ θ J ~ λ f ~ λ J ~ θ ,  and  M ı θ , λ = M * θ , λ ,   ı ,   M * θ , λ ,   ı  and  N ı θ , λ = N * θ , λ ,   ı ,   N * θ , λ ,   ı .
Proof. 
By hypothesis, for each ı 0 ,   1 , we have
f * θ + λ 2 , ı × J * θ + λ 2 , ı   f * θ + λ 2 , ı × J * θ + λ 2 , ı
1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * κ θ + 1 κ λ ,   ı × J * 1 κ θ + κ λ ,   ı       + 1 ħ 1 1 2 ħ 2 1 2 f * 1 κ θ + κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı ,       1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * κ θ + 1 κ λ ,   ı × J * 1 κ θ + κ λ ,   ı     + 1 ħ 1 1 2 ħ 2 1 2 f * 1 κ θ + κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı ,    
1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı         + 1 ħ 1 1 2 ħ 2 1 2 ħ 1 κ f * θ ,   ı + ħ 1 1 κ f * λ ,   ı × ħ 2 1 κ J * θ ,   ı + ħ 2 κ J * λ ,   ı + ħ 1 1 κ f * θ ,   ı + ħ 1 κ f * λ ,   ı × ħ 2 κ J * θ ,   ı + ħ 2 1 κ J * λ ,   ı ,                   1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı     + 1 ħ 1 1 2 ħ 2 1 2 ħ 1 κ f * θ ,   ı + ħ 1 1 κ f * λ ,   ı × ħ 2 1 κ J * θ ,   ı + ħ 2 κ J * λ ,   ı + ħ 1 1 κ f * θ ,   ı + ħ 1 κ f * λ ,   ı × ħ 2 κ J * θ ,   ı + ħ 2 1 κ J * λ ,   ı ,              
= 1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı             + 2 ħ 1 1 2 ħ 2 1 2 ħ 1 κ ħ 2 κ + ħ 1 1 κ ħ 2 1 κ N * θ , λ ,   ı + ħ 1 κ ħ 2 1 κ + ħ 1 1 κ ħ 2 κ M * θ , λ ,   ı ,     = 1 ħ 1 1 2 ħ 2 1 2 f * κ θ + 1 κ λ ,   ı × J * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı × J * 1 κ θ + κ λ ,   ı             + 2 ħ 1 1 2 ħ 2 1 2 ħ 1 κ ħ 2 κ + ħ 1 1 κ ħ 2 1 κ N * θ , λ ,   ı + ħ 1 κ ħ 2 1 κ + ħ 1 1 κ ħ 2 κ M * θ , λ ,   ı ,
Integrating over 0 ,   1 , we have
    ħ 1 1 2 ħ 2 1 2 2 f * θ + λ 2 , ı × J * θ + λ 2 , ı 1 λ θ R θ λ f * б , ı × J * б , ı d б               + M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ                                   + N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ ,                               ħ 1 1 2 ħ 2 1 2 2 f * θ + λ 2 , ı × J * θ + λ 2 , ı 1 λ θ R θ λ f * б , ı × J * б , ı d б                 + M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ         + N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ ,  
that is
ħ 1 1 2 ħ 2 1 2 2   f ~ θ + λ 2 J ~ θ + λ 2 F 1 λ θ   F A θ λ f ~ б J ~ б d б  
M ~ θ , λ 0 1 1 ħ 1 κ ħ 2 1 κ d κ N ~ θ , λ 0 1 1 ħ 1 κ ħ 2 κ d κ ,
Hence, the required result. □
Example 5.
We consider  ħ 1 κ = 1 κ ,   ħ 2 κ = 1 κ ,  for  κ 0 ,   1 , and the  F · N · M s f ~ ,   J ~ : θ ,   λ = 0 ,   1 F 0 ,  as in Example 4. Then, for each  ı 0 ,   1 ,  we have  f ı б = ı б , ( 2 ı ) б  and  J ı б = 1 ı б + 2 ı , 1 ı 8 e б + 2 ı  and,  f ~ б ,   J ~ ( б )  are  U · D - ħ 1 -Godunova–Levin convex and  U · D - ħ 2 -Godunova–Levin convex  F · N · M s, respectively. We have  f * б , ı = ı б ,   f * б ,   ı = ( 2 ı ) б  and  J * б , ı = 1 ı б + 2 ı , J * б ,   ı = 1 ı 8 e б + 2 ı . We now computing the following
  ħ 1 1 2 ħ 2 1 2 2   f * θ + λ 2 , ı × J * θ + λ 2 , ı = 2 ı 1 + ı ,                   ħ 1 1 2 ħ 2 1 2 2   f * θ + λ 2 , ı × J * θ + λ 2 , ı = 2 16 20 ı + 6 ı 2 + 2 3 ı + ı 2 e .
  1 λ θ θ λ f * б , ı × J * б , ı d б = 1 2 0 2 ı 1 ı б 2 + 2 ı 2 б d б = 4 3 ı 3 ı ,           1 λ θ   θ λ f * б , ı × J * б , ı d б = 1 2 0 2 1 ı 2 ı б 8 e б + 2 ı 2 ı б d б   2 ı 2 1903 250 903 250 ı .
  M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ = 2 ı 3 ,                       M * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 1 κ d κ = 2 ı 1 ı 8 e 2 + 2 ı 3 ,
N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ = 4 ı 2 3 ,   N * θ , λ ,   ı 0 1 1 ħ 1 κ ħ 2 κ d κ = 2 2 ı 7 5 ı 3 ,
for each  ı 0 ,   1 ,  that means
2 ı 1 + ı , 16 20 ı + 6 ı 2 + 2 3 ı + ı 2 e I 2 3 ı 2 + ı , 2 ı 2 1903 250 903 250 ı + 1 3 2 ı 1 + 2 ı , 2 ı 1 ı 8 e 2 8 ı + 14 ,
hence, Theorem 6 is demonstrated.
The H-H Fejér inequalities for U · D - ħ -Godunova–Levin convex F · N · M s are now presented. The second H-H Fejér inequality for U · D - ħ -Godunova–Levin convex F · N · M is first obtained.
Theorem 7.
Let  f ~ : θ ,   λ F 0  be an  U · D - ħ -Godunova–Levin convex  F · N · M  with  ħ : 0 ,   1 N + , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ N E I +  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If  f ~ F R θ ,   λ ,   ı  and  B : θ ,   λ N , B ( б ) 0 ,  symmetric with respect to  θ + λ 2 , then 
1 λ θ F A θ λ f б B ( б ) d б F f θ   f λ 0 1 B 1 κ θ + κ λ ħ κ d κ .
Proof. 
Let f ~ be an U · D - ħ -Godunova–Levin convex F · N · M . Then, for each ı 0 ,   1 , we have
    f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ                   f * θ ,   ı ħ κ + f * λ ,   ı ħ 1 κ B κ θ + 1 κ λ , f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ                     f * θ ,   ı ħ κ + f * λ ,   ı ħ 1 κ B κ θ + 1 κ λ .
And
                                f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ                           f * θ ,   ı ħ 1 κ + f * λ ,   ı ħ κ B 1 κ θ + κ λ , f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ                           f * θ ,   ı ħ 1 κ + f * λ ,   ı ħ κ B 1 κ θ + κ λ .
After adding (46) and (47), and integrating over 0 ,   1 , we get
      0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ                                     + 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ     0 1 f * θ ,   ı 1 ħ κ B κ θ + 1 κ λ + 1 ħ 1 κ B 1 κ θ + κ λ + f * λ ,   ı 1 ħ 1 κ B κ θ + 1 κ λ + 1 ħ κ B 1 κ θ + κ λ d κ , 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ                                           + 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ   0 1 f * θ ,   ı 1 ħ κ B κ θ + 1 κ λ + 1 ħ 1 κ B 1 κ θ + κ λ + f * λ ,   ı 1 ħ 1 κ B κ θ + 1 κ λ + 1 ħ κ B 1 κ θ + κ λ d κ ,
    = 2 f * θ ,   ı 0 1 1 ħ κ B κ θ + 1 κ λ d κ + 2 f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ , = 2 f * θ ,   ı 0 1 1 ħ κ B κ θ + 1 κ λ d κ + 2 f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ .
Since B is symmetric, then
    0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ                                         + 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ             2 f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ , 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ                                     + 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ             2 f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ .
Since
    0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ                                                         = 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ = 1 λ θ θ λ f * б , ı B ( б ) d б   0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ                                                         = 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ = 1 λ θ θ λ f * б ,   ı B ( б ) d б
Then from (49), (48) we have
    1 λ θ θ λ f * б , ı B ( б ) d б f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ ,       1 λ θ θ λ f * б , ı B ( б ) d б f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ ,
that is
1 λ θ θ λ f * б , ı B б d б ,   1 λ θ θ λ f * б , ı B б d б
I f * θ ,   ı + f * λ ,   ı ,   f * θ ,   ı + f * λ ,   ı 0 1 1 ħ κ B 1 κ θ + κ λ d κ
hence
1 λ θ F A θ λ f ~ б B ( б ) d б F f ~ θ f ~ λ 0 1 B 1 κ θ + κ λ ħ κ d κ .
Now, generalizing the first H-H Fejér inequalities for classical Godunova–Levin convex functions and we build the first H-H Fejér inequality for U · D - ħ -Godunova–Levin convex F · N · M . □
Theorem 8.
Let  f ~ : θ ,   λ F 0  be an  U · D - ħ -Godunova–Levin convex  F · N · M  with  ħ : 0 ,   1 N + , it’s  I - V - M s are classified according to their  ı -levels such that,  f ı : θ ,   λ N E I +  are given by  f ı б = f * б , ı ,   f * б , ı  for all  б θ ,   λ  and for all  ı 0 ,   1 . If  f ~ F R θ ,   λ ,   ı  and  B : θ ,   λ N , B ( б ) 0 ,  symmetric with respect to  θ + λ 2 ,  and  θ λ B ( б ) d б > 0 , then
  f ~ θ + λ 2 F 2 ħ 1 2 θ λ B ( б ) d б F A θ λ f ~ б B ( б ) d б .
Proof. 
Since f ~ is an U · D - ħ -Godunova–Levin convex, then for ı 0 ,   1 , we have
    f * θ + λ 2 ,   ı 1 ħ 1 2 f * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı , f * θ + λ 2 ,   ı 1 ħ 1 2 f * κ θ + 1 κ λ ,   ı + f * 1 κ θ + κ λ ,   ı ,
Since B κ θ + 1 κ λ = B 1 κ θ + κ λ , then by multiplying (51) by B 1 κ θ + κ λ and integrate it with respect to κ over 0 ,   1 , we obtain
    f * θ + λ 2 ,   ı 0 1 B 1 κ θ + κ λ d κ                                                     1 ħ 1 2 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ + 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ , f * θ + λ 2 ,   ı 0 1 B 1 κ θ + κ λ d κ                                                         1 ħ 1 2 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ + 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ .
Since
    0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ                                                       = 0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ = 1 λ θ θ λ f * б , ı B ( б ) d б                                     0 1 f * 1 κ θ + κ λ ,   ı B 1 κ θ + κ λ d κ                                                 = 0 1 f * κ θ + 1 κ λ ,   ı B κ θ + 1 κ λ d κ = 1 λ θ θ λ f * б , ı B ( б ) d б .                                    
And
0 1 B 1 κ θ + κ λ d κ = 1 λ θ θ λ B ( б ) d б
Then from (53) and (54), (52) we have
    f * θ + λ 2 ,   ı 2 ħ 1 2 θ λ B б d б θ λ f * б , ı B б d б ,     f * θ + λ 2 ,   ı 2 ħ 1 2 θ λ B б d б θ λ f * б , ı B б d б ,
from which, we have
    f * θ + λ 2 ,   ı ,     f * θ + λ 2 ,   ı                                                                                                               I 2 ħ 1 2 θ λ B б d б θ λ f * б , ı B б d б ,     θ λ f * б , ı B б d б ,      
that is
f ~ θ + λ 2 F 2 ħ 1 2 θ λ B ( б ) d б F A θ λ f ~ б B ( б ) d б .
This completes the proof. □
Remark 6.
From Theorem 7 and 8, we clearly see that:
If  B ( б ) = 1 , then we acquire the inequality (25).
Let  ı = 1  and  ħ κ = 1 κ . Then from (45) and (50), we acquire the following inequality, see [45]:
f θ + λ 2 1 θ λ B ( б ) d б ( I A ) θ λ f б B ( б ) d б f θ + f λ 2
If  f ~  is lower Godunova–Levin convex  F · N · M  on  θ ,   λ  and  ħ κ = 1 κ ,    then we derive the following subsequent inequality, see [33]:
f ~ θ + λ 2 F 1 θ λ B ( б ) d б ( F A ) θ λ f ~ б B ( б ) d б F f ~ θ f ~ λ 2
If  f ~  is lower Godunova–Levin convex  F · N · M  on  θ ,   λ  with  ı = 1  and  ħ κ = 1 κ ,   then from (45) and (50) we derive the following subsequent inequality, see [15]:
f θ + λ 2 I 1 λ θ ( I A ) θ λ f б d б I f θ + f λ 2
If  f ~  is lower Godunova–Levin convex  F · N · M  on  θ ,   λ  with  ı = 1  and  ħ κ = 1 κ , then from (45) and (50) we derive the following subsequent inequality, see [15]:
f θ + λ 2 I 1 θ λ B ( б ) d б ( I A ) θ λ f б B ( б ) d б I f θ + f λ 2
Let  ħ κ = 1 κ ,    and  f * ( б ,   ı ) = f * ( б ,   ı )  with  ı = 1 . Then from (45) and (50), we obtain following classical Fejér inequality.
f θ + λ 2 1 θ λ B ( б ) d б θ λ f б B ( б ) d б f θ + f λ 2
Example 6.
We consider  ħ κ = 1 κ ,    for  κ 0 ,   1 , and the  F · N · M   f : 0 ,   2 F 0  defined by,
f ~ б θ = θ 2 + б 1 2 3 2 2 б 1 2           θ 2 б 1 2 ,   3 2   2 + б 1 2 θ 2 + б 1 2 3 2       θ ( 3 2 ,   2 + б 1 2 ]   0                 otherwise ,
Then, for each  ı 0 ,   1 ,  we have  f ı б = 1 ı 2 б 1 2 + 3 2 ı , 1 ı 2 + б 1 2 + 3 2 ı . Since end point mappings  f * б , ı ,   f * б , ı  are  ħ -Godunova–Levin convex mappings for each  ı 0 ,   1 , then  f ~ б  is  U · D - ħ -Godunova–Levin convex  F · N · M . If
B б = б ,           σ 0 , 1 , 2 б ,       σ 1 ,   2 ,  
then  B 2 б = B б 0 , for all  б 0 ,   2 . Since  f * б , ı = 1 ı 2 б 1 2 + 3 2 ı  and  f * б , ı = 1 ı 2 + б 1 2 + 3 2 ı . Now we compute the following:
  1 λ θ θ λ f * б , ı B б d б = 1 2 0 2 f * б , ı B б d б = 1 2 0 1 f * б , ı B б d б + 1 2 1 2 f * б , ı B б d б , 1 λ θ θ λ f * б , ı B б d б = 1 2 0 2 f * б , ı B б d б = 1 2 0 1 f * б , ı B б d б + 1 2 1 2 f * б , ı B б d б ,
= 1 2 0 1 1 ı 2 б 1 2 + 3 2 ı б d б + 1 2 1 2 1 ı 2 б 1 2 + 3 2 ı 2 б d б = ı + 5 12 + 1 24 3 π ı 1 4 ı 4 ,                                                                                 = 1 2 0 1 1 ı 2 + б 1 2 + 3 2 ı б d б + 1 2 1 2 1 ı 2 + б 1 2 + 3 2 ı 2 б d б = 1 12 11 5 ı + 1 24 3 π ı 4 ı + 3 π + 16 .                                                                
And  
f * θ ,   ı + f * λ ,   ı 0 1 B 1 κ θ + κ λ ħ κ d κ                                                 = 4 1 ı 2 1 ı + 3 ı 0 1 2 κ 2 κ d κ + 1 2 1 κ 2 1 κ d κ = 1 3 4 1 ı 2 1 ı + 3 ı ,                                                   f * θ ,   ı + f * λ ,   ı 0 1 B 1 κ θ + κ λ ħ κ d κ                                                   = 4 1 ı + 2 1 ı + 3 ı 0 1 2 κ 2 κ d κ + 1 2 1 κ 2 1 κ d κ = 1 3 4 1 ı + 2 1 ı + 3 ı .                                                  
From (61) and (62), we have
ı + 5 12 + 1 24 3 π ı 1 4 ı 4 , 1 12 11 5 ı + 1 24 3 π ı 4 ı + 3 π + 16 I 1 3 4 1 ı 2 1 ı + 3 ı ,   1 3 4 1 ı + 2 1 ı + 3 ı ,
for all  ı 0 ,   1 .  Hence, Theorem 7 is verified.
For Theorem 8, we have
f * θ + λ 2 ,   ı = f * 1 ,   ı = 2 + ı 2 ,       f * θ + λ 2 ,   ı = f * 1 ,   ı = 3 2 ı 2 ,
θ λ B б d б = 0   1 б d б + 1 2 2 б d б = 4 3 ,
    2 ħ 1 2 θ λ B б d б θ λ f * б , ı B б d б = 3 4 13 ı 6 + π ı 1 4 ,   2 ħ 1 2 θ λ B б d б θ λ f * б , ı B б d б = 3 24 11 5 ı + 1 2 3 π ı 4 ı + 3 π + 16 .                            
From (63) and (64), we have
2 + ı 2 ,   3 2 ı 2 I 3 4 13 ı 6 + π ı 1 4 ,   3 24 11 5 ı + 1 2 3 π ı 4 ı + 3 π + 16 .
Hence, Theorem 8 has been verified.

4. Fuzzy Version of Ostrowski’s Type Inequality via U · D - ħ -Godunova–Levin F · N · M s

Here, an Ostrowski-type inequality was formulated in conjunction with several illustrations for Godunova-Levin functions within a broader category.
First, recalling some basic notations that will be helpful in this section such that:
Gamma and Beta functions are respectively characterized as
Γ y = 0 κ y 1 e κ d κ
for R y > 0
ß y , ʑ = 0 1 κ y 1 1 κ ʑ 1 d κ = Γ y Γ ʑ Γ y + ʑ
for R y > 0 , R ʑ > 0 .
The integral representation of the hypergeometric function is
F 1 2   y , ʑ ; c ; б = 1 ß ʑ , c ʑ 0 1 κ ʑ 1 1 κ c ʑ 1 1 x κ y d κ
for x < 1 , R c > 0 , R ʑ > 0 .
The subsequent lemma aids in achieving our goal.
Lemma 1.
Let  f * . , i , f * . , i : θ ,   λ N +  be a differentiable function on  I 0  with  θ , λ , where  i 0 ,   1 . If  f ~  is integrable over  θ ,   λ , then
f * б , ı 1 λ θ θ λ f * φ , ı d φ , f * б , ı 1 λ θ θ λ f * φ , ı d φ = б θ 2 λ θ 0 1 κ f * κ б + 1 κ θ , ı , f * κ б + 1 κ θ , ı   d κ + λ б 2 λ θ 0 1 κ f * κ λ + 1 κ б , ı , f * κ λ + 1 κ б , ı   d κ .
Proof. 
Integration by parts finalizes the proof. □
Now, employing Lemma 1, we derive the principal outcomes.
Theorem 9.
Let  f ~ : θ ,   λ F 0 +  be a differentiable function on  I 0  with  б θ , λ , where  i 0 ,   1  and let  f ~  be a integrable over  θ ,   λ . If  f ~  is  ħ -Godunova–Levin  F · N · M s, with  f ~ F 0 ~ . If  M = m 1 , m 2 ,  then 
f * б , ı 1 λ θ θ λ f * φ , ı d φ , f * б , ı 1 λ θ θ λ f * φ , ı d φ I M б θ 2 + λ б 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ ,
for all  б θ ,   λ ,  where  m 2 f * б , ı  and  f * б , ı m 1 .
Proof. 
In accordance with Lemma 1 and f is ħ -Godunova–Levin F · N · M , for ı 0 ,   1 we have
          f * б , ı 1 λ θ θ λ f * φ , ı d φ = б θ 2 λ θ 0 1 κ f * κ б + 1 κ θ , ı d κ + λ б 2 λ θ 0 1 κ f * κ λ + 1 κ б , ı d κ
and
f * б , ı 1 λ θ θ λ f * φ , ı d φ = б θ 2 λ θ 0 1 κ f * κ б + 1 κ θ , ı d κ + λ б 2 λ θ 0 1 κ f * κ λ + 1 κ б , ı d κ
From above equations, we have
f * б , ı 1 λ θ θ λ f * φ , ı d φ б θ 2 λ θ 0 1 κ f * б , ı ħ κ + f * θ , ı ħ 1 κ d κ + λ б 2 λ θ 0 1 κ f * λ , ı ħ κ + f * б , ı ħ 1 κ d κ ,
and
f * б , ı 1 λ θ θ λ f * φ , ı d φ б θ 2 λ θ 0 1 κ f * б , ı ħ κ + f * θ , ı ħ 1 κ d κ + λ б 2 λ θ 0 1 κ f * λ , ı ħ κ + f * б , ı ħ 1 κ d κ .
As a result, we obtain
f * б , ı 1 λ θ θ λ f * φ , ı d φ б θ 2 λ θ 0 1 f * б , ı ƛ κ ħ κ + f * θ , ı ƛ κ ħ 1 κ d κ + λ б 2 λ θ 0 1 f * λ , ı ƛ κ ħ κ + f * б , ı ƛ κ ħ 1 κ d κ , M б θ 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ + M λ б 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ ,
and
f * б , ı 1 λ θ θ λ f * φ , ı d φ б θ 2 λ θ 0 1 f * б , ı ƛ κ ħ κ + f * θ , ı ƛ κ ħ 1 κ d κ + λ б 2 λ θ 0 1 f * λ , ı ƛ κ ħ κ + f * б , ı ƛ κ ħ 1 κ d κ , M б θ 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ + M λ б 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ .
That is,
f * б , ı 1 λ θ θ λ f * φ , ı d φ , f * б , ı 1 λ θ θ λ f * φ , ı d φ I M б θ 2 + λ б 2 λ θ 0 1 1 ƛ κ ħ κ + 1 ƛ κ ħ 1 κ d κ ,
this completes the proof. □

5. Conclusions

Our principal objective entails applying classical integral operators and U · D -relations to recent findings elucidated by the authors of the referenced works [39,41,47]. Various forms of U · D -relations, and classical integral operators, along with fuzzy Aumman’s integral operators, have been applied to derive several novel outcomes. Our primary contributions encompass the establishment of fuzzy integral inequalities of the H.H., Fejér, Pachpatte and Ostrowski’s inequalities via newly defined class U · D - ħ -Godunova–Levin convex F · N · M s. Furthermore, we provided initial clarifications on concepts related to up and down, and pseudo order relations to underscore their differences and offer commentary on key revelations. The outcomes of this research are poised to significantly influence the realms of inequality and optimization theory.

Author Contributions

Conceptualization, A.A. and A.F.A.; validation, S.A. and A.F.A.; formal analysis, S.A. and A.F.A.; investigation, A.A. and M.V.C.; resources, A.A. and M.V.C.; writing—original draft, A.A. and M.V.C.; writing—review and editing, A.A., A.F.A. and S.A.; visualization, M.V.C. and A.A.; supervision, M.V.C. and A.A.; project administration, M.V.C. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Taif University, Saudi Arabia, project No (TU-DSPP-2024-87).

Data Availability Statement

There is no data availability statement to be declared.

Conflicts of Interest

The authors claim to have no conflicts of interest.

References

  1. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  2. Furuichi, S. Inequalities; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020. [Google Scholar]
  3. Kamenskii, M.; Petrosyan, G.A.R.I.K.; Wen, C.F. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space. J. Nonlinear Var. Anal. 2021, 5, 155–177. [Google Scholar]
  4. Dwyer, P.S. Interval Analysis: By Ramon E. Moore. 145 Pages, Diagrams, 6x 9 in. New Jersey, Englewood Cliffs, Prentice-Hall, 1966. Price, 9.00. J. Frankl. Inst. 1967, 284, 148–149. [Google Scholar] [CrossRef]
  5. Zhang, Z.; Ali, M.A.; Budak, H.; Sarikaya, M.Z. On Hermite-Hadamard type inequalities for interval-valued multiplicative integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 1428–1448. [Google Scholar] [CrossRef]
  6. Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 1–20. [Google Scholar] [CrossRef]
  7. Roman-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  8. Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of self-adjoint operators and matrices. J. Math. Inequal. 2017, 11, 241–259. [Google Scholar] [CrossRef]
  9. Almutairi, A.; Kilicman, A. New refinements of the Hadamard inequality on coordinated convex function. J. Inequal. Appl. 2019, 2019, 192–199. [Google Scholar] [CrossRef]
  10. Varoşanec, S. On ℎ-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
  11. Dragomir, S.S. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
  12. Bombardelli, M.; Varoşanec, S. Properties of ℎ-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef]
  13. Dragomir, S.S. Inequalities of hermite-hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta) 2015, 34, 323–341. [Google Scholar] [CrossRef]
  14. Costa, T.M. Jensen’s inequality type integral for fuzzy-in terval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  15. Zhao, D.; An, T.; Ye, G.; Liu, W. New jensen and hermite–hadamard-type-inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  16. Almutairi, O.; Kilicman, A. Some integral inequalities for h-godunova-levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
  17. Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
  18. İŞCAN, I. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
  19. Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
  20. Liu, W. Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Math. Notes 2015, 16, 249–256. [Google Scholar] [CrossRef]
  21. Tunç, M. Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013, 1. [Google Scholar] [CrossRef]
  22. Ozdemir, M.E.; Kavurmaci, H.; Set, E. Ostrowski’s type inequalities for (α,m)-convex function. Kyungpook Math. J. 2010, 50, 371–378. [Google Scholar] [CrossRef]
  23. Agarwal, R.P.; Luo, M.J.; Rainan, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
  24. Sarikaya, M.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
  25. Shi, S.; Han, D.; Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci. 2023, 35, 2227780. [Google Scholar] [CrossRef]
  26. Gürbüz, M.; Tasdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
  27. Chen, C.; Han, D.; Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowl.-Based Syst. 2023, 275, 110706. [Google Scholar] [CrossRef]
  28. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator. Symmetry 2021, 13, 2059. [Google Scholar] [CrossRef]
  29. Chen, C.; Han, D.; Chang, C.C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer. Pattern Recognit. 2024, 147, 110084. [Google Scholar] [CrossRef]
  30. Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  31. Wang, K.; Liu, Z.; Wu, M.; Wang, C.; Shen, W.; Shao, J. Experimental study of mechanical properties of hot dry granite under thermal-mechanical couplings. Geothermics 2024, 119, 102974. [Google Scholar] [CrossRef]
  32. Dong, X.; Chen, T.; Zhou, G. Design high performance field-effect, strain/gas sensors of novel 2D penta-like Pd2P2SeX (X = O, S, Te) pin-junction nanodevices: A study of transport properties. J. Alloys Compd. 2024, 977, 173417. [Google Scholar] [CrossRef]
  33. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  34. Yu, Y.; Wan, M.; Qian, J.; Miao, D.; Zhang, Z.; Zhao, P. Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets. Int. J. Approx. Reason. 2024, 169, 109181. [Google Scholar] [CrossRef]
  35. Hong, J.; Gui, L.; Cao, J. Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor. IEEE Trans. Energy Convers. 2023, F. [Google Scholar] [CrossRef]
  36. Zhao, Y.; Wang, J.; Cao, G.; Yuan, Y.; Yao, X.; Qi, L. Intelligent control of multilegged robot smooth motion: A review. IEEE Access 2023, 11, 86645–86685. [Google Scholar] [CrossRef]
  37. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  38. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  39. Kaleva, O. Fuzzy Differential Equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  40. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  41. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Revue D’analyse Numérique et de Théorie de L’approximation 1993, 22, 39–51. [Google Scholar]
  42. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  43. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  44. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  45. Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Feje’r fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
  46. Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef]
  47. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cortez, M.V.; Althobaiti, A.; Aljohani, A.F.; Althobaiti, S. Generalized Fuzzy-Valued Convexity with Ostrowski’s, and Hermite-Hadamard Type Inequalities over Inclusion Relations and Their Applications. Axioms 2024, 13, 471. https://doi.org/10.3390/axioms13070471

AMA Style

Cortez MV, Althobaiti A, Aljohani AF, Althobaiti S. Generalized Fuzzy-Valued Convexity with Ostrowski’s, and Hermite-Hadamard Type Inequalities over Inclusion Relations and Their Applications. Axioms. 2024; 13(7):471. https://doi.org/10.3390/axioms13070471

Chicago/Turabian Style

Cortez, Miguel Vivas, Ali Althobaiti, Abdulrahman F. Aljohani, and Saad Althobaiti. 2024. "Generalized Fuzzy-Valued Convexity with Ostrowski’s, and Hermite-Hadamard Type Inequalities over Inclusion Relations and Their Applications" Axioms 13, no. 7: 471. https://doi.org/10.3390/axioms13070471

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop