Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras
Abstract
:1. Introduction
2. Preliminaries
- (i)
- A representation over the differential Leibniz conformal algebra is a pair , where , and V is a representation over the Leibniz conformal algebra R, such that for all the following equalities hold:
- (ii)
- Given two representations over , a conformal linear map is called a homomorphism of representations, if and
3. Crossed Modules and Two-Term Differential -Conformal Algebras
- a -linear conformal sesquilinear map , for ,
- a -linear conformal sesquilinear map
- (i)
- Skeletal if ,
- (ii)
- Strict if and .
4. Non-Abelian Extension of Differential Leibniz Conformal Algebras
- (i)
- Let and be two differential Leibniz conformal algebras. A non-Abelian 2-cocycle of with values in is a quadruple of conformal linear maps and satisfying the conditions (4)–(13).
- (ii)
- Let and be two non-Abelian 2-cocycles of with values in . They are said to be equivalent if there exists a conformal linear map that satisfies
5. Automorphisms of Differential Leibniz Conformal Algebras and the Wells Map
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kac, V. Vertex Algebras for Beginners; American Mathematical Soc.: Providence, RI, USA, 1998. [Google Scholar]
- Hong, Y.; Li, F. Left-symmetric conformal algebras and vertex algebras. J. Pure Appl. Algebra 2015, 219, 3543–3567. [Google Scholar] [CrossRef]
- Hong, Y.; Bai, C. On antisymmetric infinitesimal conformal bialgebras. J. Algebra 2021, 586, 325–356. [Google Scholar] [CrossRef]
- Hong, Y.; Li, F. On left-symmetric conformal bialgebras. J. Algebra Appl. 2015, 14, 1450079. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Yuan, L. Conformal r-matrix-Nijenhuis structures, symplectic-Nijenhuis structures, and ON-structures. J. Math. Phys. 2022, 63, 101701. [Google Scholar] [CrossRef]
- Xu, M.; Hong, Y.; Wu, Z. Finite irreducible conformal modules of rank two Lie conformal algebras. J. Algebra Appl. 2021, 20, 2150145. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, J. Twisting theory, relative Rota–Baxter type operators and L∞-algebras on Lie conformal algebras. J. Algebra 2023, 636, 88–122. [Google Scholar] [CrossRef]
- Bakalov, B.; Kac, V.; Voronov, A. Cohomology of conformal algebras. Commun. Math. Phys. 1999, 200, 561–598. [Google Scholar] [CrossRef]
- Bakalov, B.; Kac, V. Field algebras. Int. Math. Res. Not. 2003, 3, 123–159. [Google Scholar] [CrossRef]
- Kolesnikov, P. Conformal representations of Leibniz algebras. Siberian Math. J. 2008, 49, 429–435. [Google Scholar] [CrossRef]
- Zhang, J. On the cohomology of Leibniz conformal algebras. J. Math. Phys. 2015, 56, 041703. [Google Scholar] [CrossRef]
- Wu, Z. Leibniz H-pseudoalgebras. J. Algebra 2015, 437, 1–33. [Google Scholar] [CrossRef]
- Feng, T.; Chen, L. Cohomology and deformations of -operators on Leibniz conformal algebras. 2023; in press. [Google Scholar]
- Guo, S.; Wang, S. Twisted relative Rota–Baxter operators on Leibniz conformal algebras. Commun. Algebra 2024, 52, 3946–3959. [Google Scholar] [CrossRef]
- Hong, Y.; Yuan, L. Unified products of Leibniz conformal algebras. Commun. Algebra 2021, 49, 2074–2090. [Google Scholar] [CrossRef]
- Zhou, J.; Hong, Y. Quadratic Leibniz conformal algebras. J. Algebra Appl. 2019, 18, 1950195. [Google Scholar] [CrossRef]
- Das, A.; Sahoo, A. Homotopification and categorification of Leibniz conformal algebras. arXiv 2023, arXiv:2309.02116. [Google Scholar]
- Khudaverdyan, D.; Poncin, N.; Qiu, J. On the infinity category of homotopy Leibniz algebras. Theory Appl. Categ. 2014, 29, 332–370. [Google Scholar]
- Eilenberg, S.; Maclane, S. Cohomology theory in abstract groups. II. Group extensions with non-Abelian kernel. Ann. Math. 1947, 48, 326–341. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Y.; Wang, Q. On non-Abelian extensions of Leibniz algebras. Commun. Algebra 2018, 46, 574–587. [Google Scholar] [CrossRef]
- Das, A.; Sen, S. 2-term averaging L∞-algebras and non-Abelian extensions of averaging Lie algebras. J. Algebra 2024, 644, 126–151. [Google Scholar] [CrossRef]
- Wells, C. Automorphisms of group extensions. Trans. Amer. Math. Soc. 1971, 155, 189–194. [Google Scholar] [CrossRef]
- Passi, S.; Singh, M.; Yadav, K. Automorphisms of Abelian group extensions. J. Algebra 2010, 324, 820–830. [Google Scholar] [CrossRef]
- Bardakov, V.; Singh, M. Extensions and automorphisms of Lie algebras. J. Algebra Appl. 2017, 16, 1750162. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, B. Crossed modules and non-Abelian extensions of Rota–Baxter Leibniz algebras. J. Geom. Phys. 2023, 191, 104906. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, X. Cohomology of differential Leibniz conformal algebras and applications. 2024; in press. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Guo, S.; Zhang, X. Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras. Axioms 2024, 13, 685. https://doi.org/10.3390/axioms13100685
Wu H, Guo S, Zhang X. Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras. Axioms. 2024; 13(10):685. https://doi.org/10.3390/axioms13100685
Chicago/Turabian StyleWu, Hui, Shuangjian Guo, and Xiaohui Zhang. 2024. "Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras" Axioms 13, no. 10: 685. https://doi.org/10.3390/axioms13100685
APA StyleWu, H., Guo, S., & Zhang, X. (2024). Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras. Axioms, 13(10), 685. https://doi.org/10.3390/axioms13100685