Hopf Bifurcation Analysis and Optimal Control of an Infectious Disease with Awareness Campaign and Treatment
<p>Interactions between populations is shown.</p> "> Figure 2
<p>Forward bifurcation is shown. <math display="inline"><semantics> <mi>λ</mi> </semantics></math> is varied in the interval <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>0.0005</mn> <mo>)</mo> </mrow> </semantics></math> and the rest of the parameter values are taken from <a href="#axioms-12-00608-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Stability of <math display="inline"><semantics> <msub> <mi>E</mi> <mn>0</mn> </msub> </semantics></math> in (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>−</mo> <mi>ω</mi> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>−</mo> <mi>ω</mi> </mrow> </semantics></math> parameter planes. Other parameter values are taken from <a href="#axioms-12-00608-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>(<b>a</b>–<b>e</b>): Time series solution of the system (<a href="#FD1-axioms-12-00608" class="html-disp-formula">1</a>) is plotted for <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math> (red line) and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.0005</mn> </mrow> </semantics></math> (blue line). Parameter values are as given in <a href="#axioms-12-00608-t001" class="html-table">Table 1</a>. (<b>f</b>): Limit cycle is shown in <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>u</mi> </msub> <mo>−</mo> <mi>I</mi> <mo>−</mo> <mi>R</mi> </mrow> </semantics></math> plane.</p> "> Figure 5
<p>(<b>a</b>–<b>e</b>): Hopf bifurcation taking <math display="inline"><semantics> <mi>λ</mi> </semantics></math> as main parameter. Values of the parameters are same as <a href="#axioms-12-00608-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>(<b>a</b>–<b>e</b>): Hopf bifurcation taking global awareness rate <math display="inline"><semantics> <mi>ω</mi> </semantics></math> as the bifurcating parameter. Here, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math> and the rest of the parameters’ values are same as <a href="#axioms-12-00608-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>(<b>a</b>–<b>e</b>): Solution trajectories for two different values of the local awareness rate <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 8
<p>(<b>a</b>–<b>e</b>): Numerical solution of the system (<a href="#FD16-axioms-12-00608" class="html-disp-formula">16</a>) with and without control.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>): Optimal profiles of the optimal controls <math display="inline"><semantics> <msubsup> <mi>u</mi> <mn>1</mn> <mo>*</mo> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>u</mi> <mn>2</mn> <mo>*</mo> </msubsup> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Mathematical Model
2.1. Basic Properties of the Model
2.2. The Basic Reproduction Number
3. Dynamics of the System
3.1. Existence of Equilibria
3.2. Stability Analysis of
3.3. Stability of and Hopf Bifurcation
- i.
- and , where
- ii.
- , , , ,
4. The Optimal Control Problem
5. Numerical Simulation
Numerical Solution of the Optimal Control Problem
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, G.R. Tackling pneumonia and diarrhoea: The deadliest diseases for the world’s poorest children. Lancet 2012, 379, 2123–2124. [Google Scholar] [CrossRef]
- Santosham, M.; Chandran, A.; Fitzwater, S.; Fischer-Walker, C.; Baqui, A.H.; Black, R. Progress and barriers for the control of diarrhoeal disease. Lancet 2010, 376, 63–67. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 14 October 2021).
- Al Basir, F.; Abraha, T. Mathematical Modelling and Optimal Control of Malaria Using Awareness-Based Interventions. Mathematics 2023, 11, 1687. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Jin, M.; Jing, F.; Wang, H.; Chen, K. Public awareness of three major infectious diseases in rural Zhejiang province, China: A cross-sectional study. BMC Infect. Dis. 2013, 13, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakefield, M.A.; Loken, B.; Hornik, R.C. Use of mass media campaigns to change health behaviour. Lancet 2010, 376, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Basir, F.; Banerjee, A.; Ray, S. Exploring the effects of awareness and time delay in controlling malaria disease propagation. Int. J. Nonlin. Sci. Numer. Simul. 2020, 22, 665–683. [Google Scholar] [CrossRef]
- Karimi, E.; Schmitt, K.; Akgunduz, A. Effect of individual protective behaviors on influenza transmission: An agent-based model. Health Care Manag. Sci. 2015, 18, 318–333. [Google Scholar] [CrossRef]
- Abraha, T.; Basir, F.A.; Obsu, L.L.; Torres, D.F. Farming awareness based optimum interventions for crop pest control. Math. Biosci. Eng. 2021, 18, 5364–5391. [Google Scholar] [CrossRef]
- Jones, J.H.; Salathe, M. Early assessment of anxiety and behavioral response to novel swine origin influenza A (H1N1). PLoS ONE 2009, 4, e8032. [Google Scholar] [CrossRef]
- Ahorsu, D.K.; Lin, C.Y. The Effect of COVID-19 Vaccine Acceptance, Intention, and/or Hesitancy and Its Association with Our Health and/or Important Areas of Functioning. Vaccines 2023, 11, 368. [Google Scholar] [CrossRef]
- Samanta, S.; Rana, S.; Sharma, A.; Misra, A.K.; Chaattopadhyay, J. Effect of awareness programs by media on the epidemic outbreaks: A mathematical model. Appl. Math. Comput. 2013, 219, 6965–6977. [Google Scholar] [CrossRef]
- Frolich, M.; Vazquez Alvarez, R. HIV/AIDS knowledge and behaviour: Have information campaigns reduced HIV infection? The case of Kenya. Afr. Dev. Rev. 2009, 21, 86–146. [Google Scholar] [CrossRef] [Green Version]
- Maji, C.; Al Basir, F.; Mukherjee, D.; Nisar, K.S.; Ravichandran, C. COVID-19 propagation and the usefulness of awareness-based control measures: A mathematical model with delay. AIMS Math. 2022, 7, 12091–12105. [Google Scholar] [CrossRef]
- Misra, A.K.; Sharma, A.; Singh, V. Effect of awareness programs in controlling the prevalence of an epidemic with time delay. J. Biol. Syst. 2011, 19, 389–402. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, Y.; Dai, Y. An SIRS Epidemic Model Incorporating Media Coverage with Time Delay. Comput. Math. Methods Med. 2014, 2014, 680743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Sun, Y.; Zhu, H. The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 2007, 20, 31–53. [Google Scholar] [CrossRef]
- Sharma, A.; Misra, A. Modeling the impact of awareness created by media campaigns on vaccination coverage in a variable population. J. Biol. Syst. 2014, 22, 249–270. [Google Scholar] [CrossRef]
- Kiss, I.Z.; Cassell, J.; Recker, M.; Simon, P.L. The impact of information transmission on epidemic outbreaks. Math. Biosci. 2010, 225, 1–10. [Google Scholar] [CrossRef]
- Roy, P.K.; Saha, S.; Basir, F.A. Effect of awareness programs in controlling the disease HIV/AIDS: An optimal control theoretic approach. Adv. Differ. Equ. 2015, 2015, 217. [Google Scholar] [CrossRef] [Green Version]
- Agaba, G.O.; Kyrychko, Y.N.; Blyuss, K.B. Dynamics of vaccination in a time-delayed epidemic model with awareness. Math. Biosci. 2017, 294, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Basir, F.A.; Ray, S.; Venturino, E. Role of media coverage and delay in controlling infectious diseases: A mathematical model. Appl. Math. Comput. 2018, 337, 372–385. [Google Scholar] [CrossRef]
- Misra, A.K.; Sharma, A.; Shukla, J.B. Stability analysis and optimal control of an epidemic model with awareness programs by media. Biosystems 2015, 138, 53–62. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, R.; Pathak, R. Modeling of media impact with stability analysis and optimal solution of SEIRS epidemic model. J. Interdiscip. Math. 2019, 22, 1123–1156. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, N. Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness. Phys. A Stat. Mech. Appl. 2022, 603, 127804. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Heffernan, J.M.; Smith, R.J.; Wahl, L.M. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2005, 2, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Al Basir, F.; Blyuss, K.B.; Ray, S. Modelling the effects of awareness-based interventions to control the mosaic disease of Jatropha curcas. Ecol. Complex. 2018, 36, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Douskos, C.; Markellos, P. Complete coefficient criteria for five-dimensional Hopf bifurcations, with an application to economic dynamics. J. Nonlinear Dyn. 2015, 2015, 278234. [Google Scholar] [CrossRef] [Green Version]
- Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer: Berlin, Germany, 1975. [Google Scholar]
- Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J. Awareness programs control infectious disease-Multiple delay induced mathematical model. Appl. Math. Comput. 2015, 251, 539–563. [Google Scholar] [CrossRef] [Green Version]
- Hove-Musekwaa, S.D.; Nyabadza, F. The dynamics of an HIV/AIDS model with screened disease carriers. Comput. Math. Methods Med. 2009, 10, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
Parameter | Definition | Reference | Value |
---|---|---|---|
(day) | |||
b | Constant recruitment rate | [12] | 12 |
Disease transmission rate | [22,31] | 0.0005 | |
Contact rate between unaware | [12] | 0.002 | |
susceptible with media | |||
Rate of media campaigns by global sources | [21,22] | 0.03 | |
d | Susceptible class natural death rate | [12,32] | 0.01 |
Additional death rate due to infection | [32] | 0.007 | |
Rate at which aware human becomes unaware | [22] | 0.0025 | |
r | Rate of recovery of infected human | [12] | 0.01 |
Rate at which recovered class becomes | [12] | 0.0015 | |
susceptible after immunity loss | |||
p | Portion of recovered class becoming | [12] | 0.3 |
susceptible unaware class | |||
Rate of awareness programs by local sources | [12] | 0.25 | |
Depletion rate of awareness program | [12,22] | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Basir, F.; Rajak, B.; Rahman, B.; Hattaf, K. Hopf Bifurcation Analysis and Optimal Control of an Infectious Disease with Awareness Campaign and Treatment. Axioms 2023, 12, 608. https://doi.org/10.3390/axioms12060608
Al Basir F, Rajak B, Rahman B, Hattaf K. Hopf Bifurcation Analysis and Optimal Control of an Infectious Disease with Awareness Campaign and Treatment. Axioms. 2023; 12(6):608. https://doi.org/10.3390/axioms12060608
Chicago/Turabian StyleAl Basir, Fahad, Biru Rajak, Bootan Rahman, and Khalid Hattaf. 2023. "Hopf Bifurcation Analysis and Optimal Control of an Infectious Disease with Awareness Campaign and Treatment" Axioms 12, no. 6: 608. https://doi.org/10.3390/axioms12060608
APA StyleAl Basir, F., Rajak, B., Rahman, B., & Hattaf, K. (2023). Hopf Bifurcation Analysis and Optimal Control of an Infectious Disease with Awareness Campaign and Treatment. Axioms, 12(6), 608. https://doi.org/10.3390/axioms12060608