The Relativistic Rotation Transformation and the Observer Manifold
Abstract
:1. Introduction
2. The Evolution of the Manifold Concept as It Was Applied to Physics: Historical Perspective
2.1. Local Differential Geometry and Global Group-Theoretic Models
- (Op)
- (Operations are always defined.) For any two g and in G, there is an element of G called , called the composition, or product of g and (in G).
- (Id)
- (Existence of an identity.) There is an element such that for every .
- (Inv)
- (Existence of an inverse.) For every , there is an element in G, called , such that .
- (As)
- (Associativity of group law.) For every , we have .
- (Act)
- (Action is always defined.) To any g in G, one associates a mapping .
- (Id)
- (Effect of the identity.) For any , .
- (Com)
- (Compatibility with group law.) For every , we have .
2.2. Axiomatics of the Event Manifold
- (Cov)
- (Covering axiom.) For every , the set is a subset of M. Furthermore, any point of M belongs to at least one .
- (CA)
- (Coordinate axiom.) Each is an open subset of , the latter being endowed with its usual topology, and the are one-to-one. Therefore, each point P of may be written for some α, where is uniquely determined by α. These n numbers are called the local coordinates of P in the coordinate chart .
- (CC)
- (Axiom on coordinate changes.) If two coordinate charts and are such that , the map is of class on its domain of definition, as so is its inverse .
2.3. First Set of Axioms for the Observer Manifold
- (M)
- (Manifold associated with an observer A.) Each is a Lorentzian manifold (typically, consisting of only one chart) with a distinguished origin . It represents the events as recorded by A.
- (T)
- (Trace of an observer on the event manifold.) Each has a trace on the event manifold .
- (TE)
- (Transfer map to the event manifold.) If A is an observer, then there is an open set in , related by a diffeomorphism to an open set in . It is not an isometry in general.
- (TO)
- (Transfer map between observers.) If two observers A and B can represent some of the same events (), then the open sets and , in and , respectively, are related by a diffeomorphism , with .
2.4. Conformal-Equivalence as a Mathematical Expression of Einstein’s View of His Equivalence Principle
The local system of reference will be called a pseudo-inertial system.All local observers are provided with standard measuring devices (identical devices having the same behaviour at the same point when relatively at rest). Because of the presence of the field, these devices have a behaviour that varies from point to point. This may be expressed by the proportionality of the metrics on the manifold associated with observer A and the metric of an inertial observer:where the elementary squared interval between two events is according to an observer located at A, but would be according to an inertial observer. The quantity is not accessible to experiment, since cannot be measured when a nonzero field is present, but the ratio comparing the deviations from Special Relativity at two different points A and B is accessible to measurement [2,3].
- Weak equivalence;
- The identity of local descriptions of identical phenomena;
- The isotropy of local spacetime;
- The pseudo-inertial character of the local system of reference.
2.5. Second Set of Axioms for the Observer Manifold
- (M)
- (Manifold associated with s.) Each is a Lorentzian manifold (typically, consisting of only one chart) with a distinguished origin .
- (TE’)
- (Transfer map to the event manifold.) For every s, there is, for every value of the arc length parameter s, a map from to the tangent space . Here, is the origin in .
- (CM)
- (Conformally Minkowskian metric on .) For every s, the metric on differs from that of an inertial system by a conformal factor .
3. Rotation and Rigidity
3.1. Rotation in Newtonian Spacetime
- (a)
- Translational motions are time-dependent changes of the spatial origin:
- (b)
- Rotational motions leaving the origin fixed are time-dependent Euclidean rotations:The inverse transformation is given by the inverse matrix of , denoted by :
3.2. Minkowskian Spacetime and Lorentz Transformations
3.2.1. Difficulties with Rigidity in Special Relativity
- (a)
- There exists a class of privileged systems of reference, that of inertial frames, with respect to which a free particle moves with a rectilinear and uniform motion;
- (b)
- With respect to any inertial frame, light propagates isotropically with a finite, constant velocity.
3.2.2. Boosts
3.2.3. Spatial Triads and Lorentz Cycles
4. First Case Study: The Relativistic Rotation Transformation
Relativistic Rotational Tetrads
5. Second Case Study: Thomas Precession and the Relativity of Simultaneity
- (a)
- The kinematical one, which derives it from the non-commutativity of boosts (Lorentz transformations without rotation), in coordinate representations or in the spinorial formulation.
- (b)
- The dynamical one, which relies on the covariant generalisation of the equation of motion of a spinning electron in a homogeneous electromagnetic field, the Thomas precession appearing as a consequence of the orthogonality of the spin-vector and the four-velocity of the electron.
5.1. The Kinematical Approach
5.2. The Dynamical Approach
5.3. The Main Argument
5.4. Infinitesimal Transformations on the Observer Manifold and Fermi–Walker Transport
5.5. Covariant Form of the Equations
5.6. Evaluation in the Atom’s Rest Frame
6. Third Case Study: Charged Particle in a Constant Electromagnetic Field
7. Electromagnetic Field Components
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kichenassamy, S. Axiomatics of the Observer Manifold and Relativity. Axioms 2023, 12, 205. [Google Scholar] [CrossRef]
- Kichenassamy, S. Sur une tentative d’interprétation physique de la Relativité générale. Application au décalage vers le rouge des raies spectrales. Comptes-Rendus l’Acad. Des Sci. Paris 1964, 258, 470–473. [Google Scholar]
- Kichenassamy, S. Compléments à l’interprétation physique de la Relativité générale: Applications. Ann. l’Inst. Henri Poincaré Sect. A Phys. Théor. 1964, 1, 129–145. [Google Scholar]
- Kichenassamy, S. Mécanique ondulatoire et C-équivalence. Ann. Fond. Louis Broglie 2020, 45, 99–111. [Google Scholar]
- Franklin, P. The meaning of rotation in the special theory of Relativity. Proc. Natl. Acad. Sci. USA 1922, 8, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Langevin, P. Sur la théorie de la relativité et l’expérience de M. Sagnac. C. R. Acad. Sci. Paris 1921, 173, 831–835. [Google Scholar]
- Langevin, P. Sur l’expérience de Sagnac. C. R. Acad. Sci. Paris 1937, 205, 304–306. [Google Scholar]
- Post, E.J. Sagnac Effect. Rev. Mod. Phys. 1967, 39, 475–493. [Google Scholar] [CrossRef]
- Kretschmann, E. Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Ann. Phys. 1917, 358, 575–614. [Google Scholar] [CrossRef]
- Anderson, J.L. Relativity principles and the role of coordinates in physics. In Gravitation and Relativity; Chiu, H.-Y., Hoffmann, W.F., Eds.; WA Benjamin: New York, NY, USA, 1964; pp. 175–194. [Google Scholar]
- Kichenassamy, S. Relativité: Quelques problèmes anciens sous un angle nouveau. Ann. Fond. Louis Broglie 1996, 21, 271–284. [Google Scholar]
- Scholz, S. The Concept of Manifold, 1850–1950. In History of Topology; James, I.M., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; Chapter 2; pp. 25–64. [Google Scholar]
- Klein, F. Vergleichende Betrachtungen über Neuere Geometrische Forschungen; Andreas Deichert: Erlangen, Germany, 1872. [Google Scholar]
- Kichenassamy, S. Nonlinear Wave Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973; (Reprint in 1993). [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry, I; Wiley-Interscience: New York, NY, USA, 1963. [Google Scholar]
- Yano, K. The Theory of Lie Derivatives and Its Applications; North-Holland: Amsterdam, The Netherlands, 1955. [Google Scholar]
- Friedman, Y. A unifying physically meaningful relativistic action. Sci. Rep. 2022, 12, 10843. [Google Scholar] [CrossRef] [PubMed]
- Scarr, T.; Friedman, Y. A Novel Approach to Relativistic Dynamics: Integrating Gravity, Electromagnetism and Optics, Fundamental Theories of Physics; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Einstein, A. The Meaning of Relativity, 5th revised ed.; Methuen and Co., Ltd.: London, UK, 1951. [Google Scholar]
- Kichenassamy, S. La Relativité générale, extension nécessaire de la Relativité restreinte. Ann. de l’Inst. Henri Poincaré Sect. A (Nouv. Sér.) 1966, 4, 139–158. [Google Scholar]
- Ehrenfest, P. Gleichförmige Rotation stärrer Körper und Relativitätstheorie. Phys. Z. 1909, 10, 918. [Google Scholar]
- Born, M. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Ann. Phys. 1909, 335, 1–56. [Google Scholar] [CrossRef]
- Born, M. Über die Definition des starren Körpers in der Kinematik des Relativitätsprinzips. Phys. Z. 1910, 11, 233–274. [Google Scholar]
- Herglotz, G. Über den von Standpunkt des Relativitätsprinzips aus als “starr” zu bezeichnenden Körper. Ann. Phys. 1910, 31, 393–413. [Google Scholar] [CrossRef]
- Noether, F. Zur Kinematik des starren Körpers in der Relativitätstheorie. Ann. Phys. 1910, 31, 919–944. [Google Scholar] [CrossRef]
- Pirani, F.A.E.; Williams, G. Rigid motions in a gravitational field. Sémin. Janet 5ème Année 1962, 5, 1–16. [Google Scholar]
- Thirring, W. The Geometry of a Rotating Disk. Fizika èlementarnykh chastits i atomnogo yadra. Phys. Elem. At. Nucl. 1993, 24, 1319–1325. [Google Scholar]
- Trautman, A. Foundations and current problems of General Relativity. In Lectures on General Relativity; Deser, S., Ford, K.W., Eds.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1964; pp. 215–224. [Google Scholar]
- Synge, J.L. Relativity: The Special Theory, 2nd ed.; North-Holland: Amsterdam, The Netherlands, 1965; Appendix G; pp. 438–443. [Google Scholar]
- Kichenassamy, S. The relativistically rigid motion of a surface. J. Phys. Math. Gen. 1982, 15, 3759–3762. [Google Scholar] [CrossRef]
- Rosen, N. Notes on Rotation and Rigid Bodies in Relativity Theory. Phys. Rev. 1947, 71, 55–58. [Google Scholar] [CrossRef]
- von Laue, M. Relativitätstheorie, 4th ed.; Vieweg: Braunschweig, Germany, 1921; Volume 1, pp. 203–204. [Google Scholar]
- Lalan, V. Sur la rotation spatiale associée à un cycle de Lorentz. Comptes-Rendus l’Acad. Des Sci. Paris 1953, 236, 2297–2298. [Google Scholar]
- Trocheris, M.G. Electrodynamics in a rotating frame of reference. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 1143–1154. [Google Scholar] [CrossRef]
- Takeno, H. On Relativistic Theory of Rotating Disk. Prog. Theoret. Phys. 1952, 7, 367–376. [Google Scholar] [CrossRef]
- Thomas, L.H. The motion of the spinning electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Thomas, L.H. The kinematics of an electron with an axis. Philos. Mag. J. Sci. 1927, B3, 1–22. [Google Scholar] [CrossRef]
- Frenkel, I. Die Elektrodynamik des rotatierenden Elektrons. Z. Für Phys. 1926, 37, 243–262. [Google Scholar] [CrossRef]
- Lalan, V. Sur les postulats qui sont à la base des cinématiques. Bull. Soc. Math. Fr. 1937, 65, 94–110. [Google Scholar] [CrossRef]
- Poincaré, H. Sur la dynamique de l’électron. Rend. Del Circ. Mat. Palermo 1906, 21, 129–176. [Google Scholar] [CrossRef]
- Poincaré, H. Sur la dynamique de l’électron. Comptes-Rendus de l’Acad. Des Sci. Paris 1905, 140, 1504–1508. [Google Scholar] [CrossRef]
- Garnier, R. Observation sur la note précédente. Comptes-Rendus l’Acad. Des Sci. Paris 1953, 236, 2299. [Google Scholar]
- Borel, É. Introduction Géométrique à Quelques Théories Physiques; Gauthier-Villars: Paris, France, 1914. [Google Scholar]
- Fock, V. The Theory of Space, Time and Gravitation; Pergamon: Oxford, UK, 1959. [Google Scholar]
- Urbantke, H. Physical holonomy, Thomas precession and Clifford algebra. Am. J. Phys. 1990, 58, 747–750. [Google Scholar] [CrossRef]
- Furry, W. Lorentz transformations and Thomas precession. Am. J. Phys. 1955, 23, 517–525. [Google Scholar] [CrossRef]
- Misner, C.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1970. [Google Scholar]
- Hestenes, D. Proper particle mechanics. J. Math. Phys. 1974, 15, 1768–1786. [Google Scholar] [CrossRef]
- Hamilton, J. The rotation and precession of relativistic frames. Can. J. Phys. 1981, 59, 213–224. [Google Scholar] [CrossRef]
- Møller, C. Theory of Relativity; Clarendon Press: Oxford, UK, 1949. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Kramers, H.A. Quantum Mechanics; North-Holland: Amsterdam, The Netherlands, 1957. [Google Scholar]
- Bargmann, V.; Michel, L.; Telegdi, V.L. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 1959, 2, 435–436. [Google Scholar] [CrossRef]
- Pirani, F.A.E. On the definition of inertial systems in General Relativity. Helv. Phys. Acta 1955, S5, 198–203. [Google Scholar]
- Bacry, H. Thomas’ classical theory of spin. Nuovo C. 1962, 26, 1164–1172. [Google Scholar] [CrossRef]
- Eisberg, R.M. Fundamentals of Physics; Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Kichenassamy, S. The relativistic motion of charged particles in an electromagnetic field. Ann. Fond. Louis Broglie 2003, 28, 391–402, Erratum in Ann. Fond. Louis Broglie 2004, 29, 583. [Google Scholar]
- Synge, J.L. Timelike Helices in Flat Space-Time. Proc. R. Irish Acad. Sect. A 1966, 65, 27–42. [Google Scholar]
- Scarr, T.; Friedman, Y. Solutions for Uniform Acceleration in General Relativity. Gen. Rel. Grav. 2016, 48, 65. [Google Scholar] [CrossRef]
- Kichenassamy, S. Sur l’accélération uniforme en Relativité générale. Comptes-Rendus l’Acad. Des Sci. Paris 1965, 260, 3001–3004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kichenassamy, S. The Relativistic Rotation Transformation and the Observer Manifold. Axioms 2023, 12, 1066. https://doi.org/10.3390/axioms12121066
Kichenassamy S. The Relativistic Rotation Transformation and the Observer Manifold. Axioms. 2023; 12(12):1066. https://doi.org/10.3390/axioms12121066
Chicago/Turabian StyleKichenassamy, Satyanad. 2023. "The Relativistic Rotation Transformation and the Observer Manifold" Axioms 12, no. 12: 1066. https://doi.org/10.3390/axioms12121066
APA StyleKichenassamy, S. (2023). The Relativistic Rotation Transformation and the Observer Manifold. Axioms, 12(12), 1066. https://doi.org/10.3390/axioms12121066