The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature
<p>Main sources of anthocyanin dyes.</p> "> Figure 2
<p>Anthocyanin structure.</p> "> Figure 3
<p>(<b>a</b>) Representative models of tetrahedral and octahedral sheets forming the 1:1 (TO) and 2:1 (TOT) layer structures and (<b>b</b>) 2:1 layer with hydrated interlayer cations.</p> "> Figure 4
<p>(<b>A</b>) Incorporation of anthocyanin in the surfactant–clay mineral (<b>B</b>) Stability of anthocyanin in the surfactant–clay mineral–anthocyanin hybrid under visible light.</p> "> Figure 5
<p>Impact on the coloration of anthocyanins derivatives at different pH.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
Ref. | Keywords | Anthocyanin Source | Extractant Solvent | Separation Method |
---|---|---|---|---|
[74] | T; V; P; pH; AA | Purple carrot | - | - |
[75] | pH; L; AA | Purple carrot | - | - |
[76] | V; P; AA | Purple carrot extract | - | - |
[83] | pH; O; L | - | - | |
[84] | P; pH | Grape skin | 5 mL of 1% formic acid (v/v) in methanol and sonicated for 3 min | Liquid Chromatography HPLC |
[80] | T; L | Vanda ‘Sansai Blue’ orchid flower petals | Acidified methanol (containing 0.01% HCl) and acidified water (containing 0.01% HCl) | C18 cartridge (Water Sep-Pak) |
[77] | V; pH; AA | Black carrots, grape juice, and purple sweet potatoes | - | - |
[12] | T; pH | Purple carrot | - | - |
[78] | L | Narcissus pseudonarcissus plant | - | - |
[81] | pH | Purple sweet potato from Vietnam | Ethanol solution | - |
[85] | pH | Purple sweet potato | Methanol containing 0.01% HCl | Liquid Chromatography HPLC |
[86] | L | Crabapple flowers (Malus orientalis) | Phenolic extraction solution Containing 70% methanol and 2% formic acid | Liquid Chromatography HPLC |
[79] | L; G | Jujuba fruit (Ziziphus jujuba Mill.) | - | - |
[87] | T; pH; L | Strawberry juice | Citric acid | - |
[88] | P; L | ‘Red Bartlett’ and ‘Starkrimson’ pears | HCl-methanol solution | - |
[89] | P; L | Pear leaves and fruits | 1% HCl-methanol solution (5 mL) | - |
[36] | T | Chili paprika | Acetic Acid 10% (v/v) | Liquid Chromatography HPLC |
3.1. Anthocyanin Degradation Mechanisms
3.2. Strategies for Stability of Anthocyanins Using Clays and Clay Minerals
3.3. The Importance of the Increase in Stability
4. Final Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinopoli, A.; Calogero, G.; Bartolotta, A. Computational Aspects of Anthocyanidins and Anthocyanins: A Review. Food Chem. 2019, 297, 124898. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.S.-L.; Celli, G.B. (Eds.) Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Fernandes, A.; Brás, N.F.; Mateus, N.; De Freitas, V. A Study of Anthocyanin Self-Association by NMR Spectroscopy. New J. Chem. 2015, 39, 2602–2611. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins—Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 2019, 8, 550. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.B.; Da Peña Hamparsomian, M.J.; Gonzalez, R.E.; Denoya, G.I.; Dominguez, D.L.E.; Barboza, K.; Iorizzo, M.; Simon, P.W.; Vaudagna, S.R.; Cavagnaro, P.F. Physicochemical Properties, Degradation Kinetics, and Antioxidant Capacity of Aqueous Anthocyanin-Based Extracts from Purple Carrots Compared to Synthetic and Natural Food Colorants. Food Chem. 2022, 387, 132893. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging Impact on Cardiovascular Health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of Cranberry Juice Consumption on Vascular Function in Patients with Coronary Artery Disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Agregán, R.; Munekata, P.E.S.; Feng, X.; Astray, G.; Gullón, B.; Lorenzo, J.M. Recent Advances in the Extraction of Polyphenols from Eggplant and Their Application in Foods. LWT 2021, 146, 111381. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.; Zhou, H.; Muriel Mundo, J.L.; McClements, D.J. Protection of Anthocyanin-Rich Extract from PH-Induced Color Changes Using Water-in-Oil-in-Water Emulsions. J. Food Eng. 2019, 254, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef] [PubMed]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Denish, P.R.; Fenger, J.A.; Powers, R.; Sigurdson, G.T.; Grisanti, L.; Guggenheim, K.G.; Laporte, S.; Li, J.; Kondo, T.; Magistrato, A.; et al. Discovery of a Natural Cyan Blue: A Unique Food-Sourced Anthocyanin Could Replace Synthetic Brilliant Blue. Sci. Adv. 2021, 7, eabe7871. [Google Scholar] [CrossRef] [PubMed]
- Torres Vargas, O.L.; Galeano Loaiza, Y.V.; González, M.L. Effect of Incorporating Extracts from Natural Pigments in Alginate/Starch Films. J. Mater. Res. Technol. 2021, 13, 2239–2250. [Google Scholar] [CrossRef]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-Inflammatory Effect of Purified Dietary Anthocyanin in Adults with Hypercholesterolemia: A Randomized Controlled Trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, T.; Wei, C.; Lan, W.; Zhao, Y.; Pan, Y.; Wu, V.C.H. Antibacterial Effect and Mechanism of Anthocyanin Rich Chinese Wild Blueberry Extract on Various Foodborne Pathogens. Food Control 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Hui, C.; Bin, Y.; Xiaoping, Y.; Long, Y.; Chunye, C.; Mantian, M.; Wenhua, L. Anticancer Activities of an Anthocyanin-Rich Extract from Black Rice against Breast Cancer Cells in Vitro and in Vivo. Nutr. Cancer 2010, 62, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef]
- Cassidy, A. Berry Anthocyanin Intake and Cardiovascular Health. Mol. Asp. Med. 2018, 61, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Kay, C.D. Bioactivity, Absorption and Metabolism of Anthocyanins; Daayf, F., Lattanzio, V., Eds.; John Wiley: Blackwell, UK, 2009; ISBN 1444302418. [Google Scholar]
- de Pascual-Teresa, S.; Moreno, D.A.; García-Viguera, C. Flavanols and Anthocyanins in Cardiovascular Health: A Review of Current Evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase Inhibitory and Antioxidant Cyanidin Glycosides in Cherries and Berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Anthocyanins: Antioxidant and/or Anti-Inflammatory Activities. J. Appl. Pharm. Sci. 2011, 1, 7–15. [Google Scholar]
- Bakowska-Barczak, A. Acylated Anthocyanins as Stable, Natural Food Colorants : A Review. Polish J. food Nutr. Sci. 2005, 14, 107–116. [Google Scholar]
- Barnard, H.; Dooley, A.N.; Areshian, G.; Gasparyan, B.; Faull, K.F. Chemical Evidence for Wine Production around 4000 BCE in the Late Chalcolithic Near Eastern Highlands. J. Archaeol. Sci. 2011, 38, 977–984. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Stoichiometric and Kinetic Studies of Phenolic Antioxidants from Andean Purple Corn and Red-Fleshed Sweetpotato. J. Agric. Food Chem. 2003, 51, 3313–3319. [Google Scholar] [CrossRef]
- Robinson, G.M.; Robinson, R. A Survey of Anthocyanins. II. Biochem. J. 1932, 26, 1647–1664. [Google Scholar] [CrossRef]
- Jaakola, L. New Insights into the Regulation of Anthocyanin Biosynthesis in Fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef]
- Katsumoto, Y.; Fukuchi-Mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.A.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; et al. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin. Plant Cell Physiol. 2007, 48, 1589–1600. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins in Grapes and Grape Products. Crit. Rev. Food Sci. Nutr. 1995, 35, 341–371. [Google Scholar] [CrossRef]
- Slimestad, R.; Solheim, H. Anthocyanins from Black Currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Tsuda, S.; Kusumi, T. Metabolic Engineering to Modify Flower Color. Plant Cell Physiol. 1998, 39, 1119–1126. [Google Scholar] [CrossRef]
- Yabuya, T.; Nakamura, M.; Iwashina, T.; Yamaguchi, M.; Takehara, T. Anthocyanin-Flavone Copigmentation in Bluish Purple Flowers of Japanese Garden Iris (Iris ensata Thunb.). Euphytica 1997, 98, 163–167. [Google Scholar] [CrossRef]
- Kiumarsi, A.; Parvinzadeh Gashti, M.; Salehi, P.; Dayeni, M. Extraction of Dyes from Delphinium Zalil Flowers and Dyeing Silk Yarns. J. Text. Inst. 2017, 108, 66–70. [Google Scholar] [CrossRef]
- Li, S.; Mu, B.; Wang, X.; Wang, A. Recent Researches on Natural Pigments Stabilized by Clay Minerals: A Review. Dyes Pigments 2021, 190, 109322. [Google Scholar] [CrossRef]
- Cao, S.; Liu, L.; Lu, Q.; Xu, Y.; Pan, S.; Wang, K. Integrated Effects of Ascorbic Acid, Flavonoids and Sugars on Thermal Degradation of Anthocyanins in Blood Orange Juice. Eur. Food Res. Technol. 2009, 228, 975–983. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of Acids, Salt, Sugars and Hydrocolloids on the Colour Stability of Anthocyanin Rich Black Currant and Elderberry Concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Buchweitz, M.; Speth, M.; Kammerer, D.R.; Carle, R. Stabilisation of Strawberry (Fragaria × Ananassa Duch.) Anthocyanins by Different Pectins. Food Chem. 2013, 141, 2998–3006. [Google Scholar] [CrossRef]
- Buchweitz, M.; Speth, M.; Kammerer, D.R.; Carle, R. Impact of Pectin Type on the Storage Stability of Black Currant (Ribes nigrum L.) Anthocyanins in Pectic Model Solutions. Food Chem. 2013, 139, 1168–1178. [Google Scholar] [CrossRef]
- Teixeira-Neto, Â.A.; Izumi, C.M.S.; Temperini, M.L.A.; Ferreira, A.M.D.C.; Constantino, V.R.L. Hybrid Materials Based on Smectite Clays and Nutraceutical Anthocyanins from the Açaí Fruit. Eur. J. Inorg. Chem. 2012, 32, 5411–5420. [Google Scholar] [CrossRef]
- Brandão Lima, L.C.; Castro-Silva, F.; Silva-Filho, E.C.; Fonseca, M.G.; Jaber, M. Saponite-Anthocyanin Pigments: Slipping between the Sheets. Microporous Mesoporous Mater. 2020, 300, 110148. [Google Scholar] [CrossRef]
- Silva, G.T.M.; Silva, K.M.; Silva, C.P.; Gonçalves, J.M.; Quina, F.H. Hybrid Pigments from Anthocyanin Analogues and Synthetic Clay Minerals. ACS Omega 2020, 5, 26592–26600. [Google Scholar] [CrossRef]
- Silva, G.T.M.T.M.; Da Silva, K.M.M.; Silva, C.P.P.; Rodrigues, A.C.B.C.B.; Oake, J.; Gehlen, M.H.H.; Bohne, C.; Quina, F.H.H. Highly Fluorescent Hybrid Pigments from Anthocyanin- and Red Wine Pyranoanthocyanin-Analogs Adsorbed on Sepiolite Clay. Photochem. Photobiol. Sci. 2019, 18, 1750–1760. [Google Scholar] [CrossRef]
- Li, S.; Mu, B.; Wang, X.; Kang, Y.; Wang, A. A Comparative Study on Color Stability of Anthocyanin Hybrid Pigments Derived from 1D and 2D Clay Minerals. Materials 2019, 12, 3287. [Google Scholar] [CrossRef]
- Kohno, Y.; Kinoshita, R.; Ikoma, S.; Yoda, K.; Shibata, M.; MatsushimA, R.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Stabilization of Natural Anthocyanin by Intercalation into Montmorillonite. Appl. Clay Sci. 2009, 42, 519–523. [Google Scholar] [CrossRef]
- Bergaya, F.; Jaber, M.; Lambert, J. Clays and Clay Minerals. In Rubber-Clay Nanocomposites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 1–44. [Google Scholar]
- Bergaya, F.; Lagaly, G. General Introduction: Clays, Clay Minerals, and Clay Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9780080982588. [Google Scholar]
- Tournassat, C.; Bourg, I.C.; Steefel, C.I.; Bergaya, F. Surface Properties of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6, pp. 5–31. ISBN 9780081000274. [Google Scholar]
- Brigatti, M.F.; Galán, E.; Theng, B.K.G. Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 21–81. ISBN 9780080982588. [Google Scholar]
- Schoonheydt, R.A.; Johnston, C.T.; Bergaya, F. Clay Minerals and Their Surfaces. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2018; Volume 9, pp. 1–21. ISBN 9780081024324. [Google Scholar]
- Lagaly, G.; Ogawa, M.; Dékány, I. Clay Mineral-Organic Interactions. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9780080982588. [Google Scholar]
- Cavalcanti, G.R.S.; Souprayen, C.; Guillermin, D.; Rodrigues, F.; Fonseca, M.G.; Jaber, M. Designing Photochromatic Pigments Based on Clay Minerals and Spiropyran. Dyes Pigments 2022, 204, 110358. [Google Scholar] [CrossRef]
- Fournier, F.; de Viguerie, L.; Balme, S.; Janot, J.M.; Walter, P.; Jaber, M. Physico-Chemical Characterization of Lake Pigments Based on Montmorillonite and Carminic Acid. Appl. Clay Sci. 2016, 130, 12–17. [Google Scholar] [CrossRef]
- Guillermin, D.; Debroise, T.; Trigueiro, P.; de Viguerie, L.; Rigaud, B.; Morlet-Savary, F.; Balme, S.; Janot, J.-M.; Tielens, F.; Michot, L.; et al. New Pigments Based on Carminic Acid and Smectites: A Molecular Investigation. Dyes Pigments 2019, 160, 971–982. [Google Scholar] [CrossRef]
- Alcântara, A.C.S.; Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Effective Intercalation of Zein into Na-Montmorillonite: Role of the Protein Components and Use of the Developed Biointerfaces. Beilstein J. Nanotechnol. 2016, 7, 1772–1782. [Google Scholar] [CrossRef]
- Kohno, Y.; Kato, Y.; Shibata, M.; Fukuhara, C.; Maeda, Y.; Tomita, Y.; Kobayashi, K. Fixation and Stability Enhancement of Beta-Carotene by Organo-Modified Mesoporous Silica. Microporous Mesoporous Mater. 2016, 220, 1–6. [Google Scholar] [CrossRef]
- Santos, S.S.G.; França, D.B.; Castellano, L.R.C.; Trigueiro, P.; Silva Filho, E.C.; Santos, I.M.G.; Fonseca, M.G. Novel Modified Bentonites Applied to the Removal of an Anionic Azo-Dye from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124152. [Google Scholar] [CrossRef]
- da Silva, J.C.S.S.; França, D.B.; Rodrigues, F.; Oliveira, D.M.; Trigueiro, P.; Silva Filho, E.C.; Fonseca, M.G. What Happens When Chitosan Meets Bentonite under Microwave-Assisted Conditions? Clay-Based Hybrid Nanocomposites for Dye Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125584. [Google Scholar] [CrossRef]
- da Rocha, M.C.; Galdino, T.; Trigueiro, P.; Honorio, L.M.C.; de Melo Barbosa, R.; Carrasco, S.M.; Silva-Filho, E.C.; Osajima, J.A.; Viseras, C. Clays as Vehicles for Drug Photostability. Pharmaceutics 2022, 14, 796. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Dong, W.; Wang, W.; Wang, Q.; Hui, A.; Wang, A. A Comparative Study of Different Natural Palygorskite Clays for Fabricating Cost-Efficient and Eco-Friendly Iron Red Composite Pigments. Appl. Clay Sci. 2019, 167, 50–59. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Rautureau, M.; Figueiredo Gomes, C.D.S.; Liewig, N.; Katouzian-Safadi, M.; Rautureau, M.; Figueiredo Gomes, C.D.S.; Liewig, N.; Katouzian-Safadi, M. Clay Reactivity Depending Upon the Crystallochemical Properties of Clay Minerals. Clays Health Prop. Ther. Uses 2017, 2017, 63–94. [Google Scholar]
- Trigueiro, P.; Rodrigues, F.; Rigaud, B.; Balme, S.; Janot, J.-M.; dos Santos, I.M.G.; Fonseca, M.G.; Osajima, J.; Walter, P.; Jaber, M.; et al. When Anthraquinone Dyes Meet Pillared Montmorillonite: Stability or Fading upon Exposure to Light? Dyes Pigments 2018, 159, 384–394. [Google Scholar] [CrossRef]
- Cavalcanti, G.R.S.; Rodrigues, F.; Zhuang, G.; Balme, S.; Janot, J.-M.; Fonseca, M.G.; Jaber, M. Inorganic-Organic Hybrid Pigments Based on Carminic Acid and Clay Minerals. Dyes Pigments 2021, 190, 109306. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Balakumar, V.; Uchida, J.; Katsurao, T.; Sakabe, H.; Ohtani, B.; Sasaki, K. Efficient Photocatalytic Degradation of Emerging Ciprofloxacin under Visible Light Irradiation Using BiOBr/Carbon Quantum Dot/Saponite Composite. Environ. Res. 2022, 212, 113635. [Google Scholar] [CrossRef]
- Fatimah, I.; Nurillahi, R.; Sahroni, I.; Muraza, O. TiO2-Pillared Saponite and Photosensitization Using a Ruthenium Complex for Photocatalytic Enhancement of the Photodegradation of Bromophenol Blue. Appl. Clay Sci. 2019, 183, 105302. [Google Scholar] [CrossRef]
- Dlamini, M.C.; Maubane-Nkadimeng, M.S.; Moma, J.A. The Use of TiO2/Clay Heterostructures in the Photocatalytic Remediation of Water Containing Organic Pollutants: A Review. J. Environ. Chem. Eng. 2021, 9, 106546. [Google Scholar] [CrossRef]
- Heidari, A.; Shahbazi, A.; Aminabhavi, T.M.; Barceló, D.; Rtimi, S. A Systematic Review of Clay-Based Photocatalysts for Emergent Micropollutants Removal and Microbial Inactivation from Aqueous Media: Status and Limitations. J. Environ. Chem. Eng. 2022, 10, 108813. [Google Scholar] [CrossRef]
- Lalevée, J.; Morlet-Savary, F.; Dietlin, C.; Graff, B.; Fouassier, J.P. Photochemistry and Radical Chemistry under Low Intensity Visible Light Sources: Application to Photopolymerization Reactions. Molecules 2014, 19, 15026–15041. [Google Scholar] [CrossRef] [PubMed]
- Zyoud, A.H.; Asaad, S.; Zyoud, S.H.; Zyoud, S.H.; Helal, M.H.; Qamhieh, N.; Hajamohideen, A.; Hilal, H.S. Raw Clay Supported ZnO Nanoparticles in Photodegradation of 2-Chlorophenol under Direct Solar Radiations. J. Environ. Chem. Eng. 2020, 8, 104227. [Google Scholar] [CrossRef]
- Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Stability Improvement of Natural Food Colors: Impact of Amino Acid and Peptide Addition on Anthocyanin Stability in Model Beverages. Food Chem. 2017, 218, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Stabilization of Natural Colors and Nutraceuticals: Inhibition of Anthocyanin Degradation in Model Beverages Using Polyphenols. Food Chem. 2016, 212, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Enhanced Stability of Anthocyanin-Based Color in Model Beverage Systems through Whey Protein Isolate Complexation. Food Res. Int. 2015, 76, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Gérard, V.; Ay, E.; Graff, B.; Morlet-Savary, F.; Galopin, C.; Mutilangi, W.; Lalevée, J. Ascorbic Acid Derivatives as Potential Substitutes for Ascorbic Acid to Reduce Color Degradation of Drinks Containing Ascorbic Acid and Anthocyanins from Natural Extracts. J. Agric. Food Chem. 2019, 67, 12061–12071. [Google Scholar] [CrossRef]
- Li, X.; Tang, D.; Du, H.; Shi, Y. Transcriptome Sequencing and Biochemical Analysis of Perianths and Coronas Reveal Flower Color Formation in Narcissus Pseudonarcissus. Int. J. Mol. Sci. 2018, 19, 4006. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Liu, Z.; Zhao, Z.; Zhao, J.; Wang, Z.; Zhou, G.; Liu, P.; Liu, M. Transcriptome and Metabolome Profiling Unveil the Mechanisms of Ziziphus jujuba Mill. Peel Coloration. Food Chem. 2020, 312, 125903. [Google Scholar] [CrossRef] [PubMed]
- Khunmuang, S.; Kanlayanarat, S.; Wongs-Aree, C.; Meir, S.; Philosoph-Hadas, S.; Oren-Shamir, M.; Ovadia, R.; Buanong, M. Ethylene Induces a Rapid Degradation of Petal Anthocyanins in Cut Vanda ‘Sansai Blue’ Orchid Flowers. Front. Plant Sci. 2019, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Nhut Pham, T.; Quoc Toan, T.; Duc Lam, T.; Vu-Quang, H.; Vo, D.V.N.; Anh Vy, T.; Bui, L.M. Anthocyanins Extraction from Purple Sweet Potato (Ipomoea batatas (L.) Lam): The Effect of PH Values on Natural Color. IOP Conf. Ser. Mater. Sci. Eng. 2019, 542, 012031. [Google Scholar] [CrossRef]
- Coelho, M.; Silva, S.; Costa, E.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M. Anthocyanin Recovery from Grape By-Products by Combining Ohmic Heating with Food-Grade Solvents: Phenolic Composition, Antioxidant, and Antimicrobial Properties. Molecules 2021, 26, 3838. [Google Scholar] [CrossRef]
- Esteves, L.C.; Pinheiro, A.C.; Pioli, R.M.; Penna, T.C.; Baader, W.J.; Correra, T.C.; Bastos, E.L. Revisiting the Mechanism of Hydrolysis of Betanin. Photochem. Photobiol. 2018, 94, 853–864. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhu, H.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Complexation of Bovine β-Lactoglobulin with Malvidin-3-O-Glucoside and Its Effect on the Stability of Grape Skin Anthocyanin Extracts. Food Chem. 2016, 209, 234–240. [Google Scholar] [CrossRef]
- Qian, B.-J.; Liu, J.-H.; Zhao, S.-J.; Cai, J.-X.; Jing, P. The Effects of Gallic/Ferulic/Caffeic Acids on Colour Intensification and Anthocyanin Stability. Food Chem. 2017, 228, 526–532. [Google Scholar] [CrossRef]
- Rehman, R.N.U.; You, Y.; Yang, C.; Khan, A.R.; Li, P.; Ma, F. Characterization of Phenolic Compounds and Active Anthocyanin Degradation in Crabapple (Malus orientalis) Flowers. Hortic. Environ. Biotechnol. 2017, 58, 324–333. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Wu, Q. Effects of Temperature, PH, and Sunlight Exposure on the Color Stability of Strawberry Juice during Processing and Storage. LWT-Food Sci. Technol. 2015, 60, 1174–1178. [Google Scholar] [CrossRef]
- Wang, Z.; Du, H.; Zhai, R.; Song, L.; Ma, F.; Xu, L. Transcriptome Analysis Reveals Candidate Genes Related to Color Fading of ‘Red Bartlett’ (Pyrus communis L.). Front. Plant Sci. 2017, 8, 455. [Google Scholar] [CrossRef]
- Wu, M.; Si, M.; Li, X.; Song, L.; Liu, J.; Zhai, R.; Cong, L.; Yue, R.; Yang, C.; Ma, F.; et al. PbCOP1.1 Contributes to the Negative Regulation of Anthocyanin Biosynthesis in Pear. Plants 2019, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-L.; Luo, Y.; Yuan, K.; Guo, Y.; Jin, S.-H. Preparation and Evaluation of an Encapsulated Anthocyanin Complex for Enhancing the Stability of Anthocyanin. LWT 2020, 117, 108543. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- de Rosso, V.V.; Mercadante, A.Z. Evaluation of Colour and Stability of Anthocyanins from Tropical Fruits in an Isotonic Soft Drink System. Innov. Food Sci. Emerg. Technol. 2007, 8, 347–352. [Google Scholar] [CrossRef]
- Idaka, E.; Ohashi, Y.; Ogawa, T.; Kondo, T.; Goto, O. Structure of Zebrinin, a Novel Acylated Anthocyanin Isolated from Zebrina Pendula. Tetrahedron Lett. 1987, 28, 1901–1904. [Google Scholar] [CrossRef]
- Rehman, R.N.U.; You, Y.; Zhang, L.; Goudia, B.D.; Khan, A.R.; Li, P.; Ma, F. High Temperature Induced Anthocyanin Inhibition and Active Degradation in Malus Profusion. Front. Plant Sci. 2017, 8, 1401. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Xu, W.; Zheng, X. Analysis of the Anthocyanin Degradation in Blue Honeysuckle Berry under Microwave Assisted Foam-Mat Drying. Foods 2020, 9, 397. [Google Scholar] [CrossRef]
- Ribeiro, H.L.; de Oliveira, A.V.; de Brito, E.S.; Ribeiro, P.R.; Azeredo, H.M. Stabilizing Effect of Montmorillonite on Acerola Juice Anthocyanins. Food Chem. 2018, 245, 966–973. [Google Scholar] [CrossRef]
- Kohno, Y.; Ito, M.; Kurata, M.; Ikoma, S.; Shibata, M.; Matsushima, R.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Photo-Induced Coloration of 2-Hydroxychalcone in the Clay Interlayer. J. Photochem. Photobiol. A Chem. 2011, 218, 87–92. [Google Scholar] [CrossRef]
- Dordoni, R.; Galasi, R.; Colangelo, D.; De Faveri, D.M.; Lambri, M. Effects of Fining with Different Bentonite Labels and Doses on Colloidal Stability and Colour of a Valpolicella Red Wine. Int. J. Food Sci. Technol. 2015, 50, 2246–2254. [Google Scholar] [CrossRef]
- Li, S.; Mu, B.; Wang, X.; Kang, Y.; Wang, A. Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite. Materials 2020, 13, 4649. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.J.; Yaginuma, S.R.; Quadri, M.G.N.; Quadri, M.B. Evaluation of Red Cabbage Anthocyanins after Partial Purification on Clay. Brazilian Arch. Biol. Technol. 2011, 54, 1349–1356. [Google Scholar] [CrossRef]
- Tulun, Ş.; Şimşek, İ.; Bahadır, T.; Çelebi, H. Investigation of Removal of Anthocyanin in Turnip Juice Wastewater by Using Different Adsorbents. SN Appl. Sci. 2019, 1, 967. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.T.M.; Silva, C.P.; Gehlen, M.H.; Oake, J.; Bohne, C.; Quina, F.H. Organic/Inorganic Hybrid Pigments from Flavylium Cations and Palygorskite. Appl. Clay Sci. 2018, 162, 478–486. [Google Scholar] [CrossRef]
- Capello, C.; Leandro, G.C.; Maduro Campos, C.E.; Hotza, D.; Mattar Carciofi, B.A.; Valencia, G.A. Adsorption and Desorption of Eggplant Peel Anthocyanins on a Synthetic Layered Silicate. J. Food Eng. 2019, 262, 162–169. [Google Scholar] [CrossRef]
- Lima, L.C.B.; Silva, F.C.; Silva-Filho, E.C.; Fonseca, M.G.; Zhuang, G.; Jaber, M. Saponite-Anthocyanin Derivatives: The Role of Organoclays in Pigment Photostability. Appl. Clay Sci. 2020, 191, 105604. [Google Scholar] [CrossRef]
- Ogawa, M.; Takee, R.; Okabe, Y.; Seki, Y. Bio-Geo Hybrid Pigment; Clay-Anthocyanin Complex Which Changes Color Depending on the Atmosphere. Dyes Pigments 2017, 139, 561–565. [Google Scholar] [CrossRef]
- Kang, S.; Wang, H.; Guo, M.; Zhang, L.; Chen, M.; Jiang, S.; Li, X.; Jiang, S. Ethylene-Vinyl Alcohol Copolymer–Montmorillonite Multilayer Barrier Film Coated with Mulberry Anthocyanin for Freshness Monitoring. J. Agric. Food Chem. 2018, 66, 13268–13276. [Google Scholar] [CrossRef]
- Mirzaaghaei, M.; Goli, S.A.H.; Fathi, M. Clarification of Apple Juice Using Activated Sepiolite as a New Fining Clay. Clay Miner. 2017, 52, 497–508. [Google Scholar] [CrossRef]
- Li, S.E.; Mu, B.; Ding, J.J.; Zhang, H.; Wang, X.W.; Wang, A.Q. Fabrication of Anthocyanin/Montmorillonite Hybrid Pigments To Enhance Their Environmental Stability and Application in Allochroic Composite Films. Clays Clay Miner. 2021, 69, 142–151. [Google Scholar] [CrossRef]
- Singh, A.; Kitts, D.D. In Vitro Bioaccessibility of Tart Cherry Anthocyanins in a Health Supplement Mix Containing Mineral Clay. J. Food Sci. 2019, 84, 475–480. [Google Scholar] [CrossRef]
- Raji, M.; El Foujji, L.; Mekhzoum, M.E.M.; El Achaby, M.; Essabir, H.; Bouhfid, R.; Qaiss, A.E.K. PH-Indicative Films Based on Chitosan–PVA/Sepiolite and Anthocyanin from Red Cabbage: Application in Milk Packaging. J. Bionic Eng. 2022, 19, 837–851. [Google Scholar] [CrossRef]
- Mao, L.; Wang, C.; Yao, J.; Lin, Y.; Liao, X.; Lu, J. Design and Fabrication of Anthocyanin Functionalized Layered Clay/Poly(Vinyl Alcohol) Coatings on Poly(Lactic Acid) Film for Active Food Packaging. Food Packag. Shelf Life 2023, 35, 101007. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; León, I.E.; Ponce, A.G.; Alvarez, V.A. Active and PH-Sensitive Nanopackaging Based on Polymeric Anthocyanin/Natural or Organo-Modified Montmorillonite Blends: Characterization and Assessment of Cytotoxicity. Polymers 2022, 14, 4881. [Google Scholar] [CrossRef]
- Toro-Márquez, L.A.; Merino, D.; Gutiérrez, T.J. Bionanocomposite Films Prepared from Corn Starch With and Without Nanopackaged Jamaica (Hibiscus sabdariffa) Flower Extract. Food Bioprocess Technol. 2018, 11, 1955–1973. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA Nanocomposite Films Containing Black Carrot Anthocyanin and Bentonite Nanoclays with Improved Mechanical, Thermal and Antibacterial Properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Alvarez, V.A. Bionanocomposite Films Developed from Corn Starch and Natural and Modified Nano-Clays with or without Added Blueberry Extract. Food Hydrocoll. 2018, 77, 407–420. [Google Scholar] [CrossRef]
- De Castro Silva, F.; Brandão Lima, L.C.; Silva-Filho, E.C.; Fonseca, M.G.; Jaber, M. Through Alizarin-Hectorite Pigments: Influence of Organofunctionalization on Fading. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124323. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.M.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of Thermosonication Treatment on Blueberry Juice Quality: Total Phenolics, Flavonoids, Anthocyanin, and Antioxidant Activity. LWT 2021, 150, 112021. [Google Scholar] [CrossRef]
- Ji, Y. Synthesis of Porous Starch Microgels for the Encapsulation, Delivery and Stabilization of Anthocyanins. J. Food Eng. 2021, 302, 110552. [Google Scholar] [CrossRef]
- Laleh, G.H.; Frydoonfar, H.; Heidary, R.; Jameei, R.; Zare, S. The Effect of Light, Temperature, PH and Species on Stability of Anthocyanin Pigments in Four Berberis Species. Pakistan J. Nutr. 2006, 5, 90–92. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.; Pereira, A.R.; Araújo, P.; Mateus, N.; de Freitas, V.; Oliveira, J.; Fernandes, I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int. J. Mol. Sci. 2020, 21, 7464. [Google Scholar] [CrossRef] [PubMed]
- Laganà, G.; Barreca, D.; Smeriglio, A.; Germanò, M.P.; D’angelo, V.; Calderaro, A.; Bellocco, E.; Trombetta, D. Evaluation of Anthocyanin Profile, Antioxidant, Cytoprotective, and Anti-Angiogenic Properties of Callistemon Citrinus Flowers. Plants 2020, 9, 1045. [Google Scholar] [CrossRef]
- Pan, F.; Liu, Y.; Liu, J.; Wang, E. Stability of Blueberry Anthocyanin, Anthocyanidin and Pyranoanthocyanidin Pigments and Their Inhibitory Effects and Mechanisms in Human Cervical Cancer HeLa Cells. RSC Adv. 2019, 9, 10842–10853. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.; Wang, A. Adsorption of Dyes onto Palygorskite and Its Composites: A Review. J. Environ. Chem. Eng. 2016, 4, 1274–1294. [Google Scholar] [CrossRef]
- Tangaraj, V.; Janot, J.; Jaber, M.; Bechelany, M.; Balme, S. Adsorption and Photophysical Properties of Fluorescent Dyes over Montmorillonite and Saponite Modified by Surfactant. Chemosphere 2017, 184, 1355–1361. [Google Scholar] [CrossRef]
- Grassi, G.; Michels, L.; Rozynek, Z.; Altoé, M.A.S.; dos Santos, E.C.; da Fonseca, C.L.S.; Droppa, R.; Gholamipour-Shirazi, A.; Fossum, J.O.; da Silva, G.J. Cation Exchange Dynamics Confined in a Synthetic Clay Mineral. Eur. Phys. J. Spec. Top. 2014, 223, 1883–1893. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.-H.; Lin, C.-X.; Tong, D.-S.; Yu, W.-H. Synthesis of Clay Minerals. Appl. Clay Sci. 2010, 50, 1–11. [Google Scholar] [CrossRef]
- Cao, L.; Xie, W.; Cui, H.; Xiong, Z.; Tang, Y.; Zhang, X.; Feng, Y. Fibrous Clays in Dermopharmaceutical and Cosmetic Applications: Traditional and Emerging Perspectives. Int. J. Pharm. 2022, 625, 122097. [Google Scholar] [CrossRef]
Name | R7 | R6 | R5 | R3 | R5′ | R4′ | R3′ |
---|---|---|---|---|---|---|---|
Cyanidin | OH | H | OH | OH | OH | OH | H |
Delphinidin | OH | H | OH | OH | OH | OH | OH |
Pelargonidin | OH | H | OH | OH | H | OH | H |
Peonidin | OH | H | OH | OH | H | OH | OCH3 |
Malvidin | OH | H | OH | OH | OCH3 | OH | OCH3 |
Petunidin | OH | H | OH | OH | OCH3 | OH | OH |
Keywords | Web of Science | Scopus | Scielo |
---|---|---|---|
Anthocyanin | 29,667 | 30,432 | 345 |
Anthocyanin AND degradation | 2336 | 1776 | 33 |
Anthocyanin AND stability | 3835 | 2634 | 43 |
Anthocyanin AND protection | 900 | 1400 | 4 |
Anthocyanin AND degradation AND temperature AND fading | 13 | 8 | 0 |
Anthocyanin AND degradation AND pH AND fading | 14 | 13 | 0 |
Anthocyanin AND degradation AND protein AND fading | 11 | 6 | 0 |
Anthocyanin AND degradation AND light AND fading | 15 | 5 | 0 |
Anthocyanin AND degradation AND ascorbic acid AND fading | 6 | 7 | 0 |
Anthocyanin AND degradation AND vitamin AND fading | 4 | 3 | 0 |
Anthocyanin AND degradation AND oxygen AND fading | 3 | 1 | 0 |
Anthocyanin AND degradation AND glucose AND fading | 1 | 0 | 0 |
Anthocyanin AND clay | 65 | 56 | 1 |
Anthocyanin AND clay AND protection | 4 | 1 | 0 |
Anthocyanin AND clay AND degradation | 3 | 3 | 0 |
Anthocyanin AND degradation AND clay AND fading | 0 | 0 | 0 |
Ref. | Characterization Techniques | Source of Degradation |
---|---|---|
[74] | UV-visible spectrophotometer; colorimeter; Fluorescence extinction analysis | pH, ascorbic acid, temperature, light |
[75] | UV-visible spectrophotometer; colorimeter; Fluorescence measurements | Temperature, pH, light, ascorbic acid |
[76] | UV-visible spectrophotometer, colorimetry, visual appearance through digital photography and fluorescence measurements | Ascorbic acid, temperature, pH and light |
[83] | pH, oxygen, light | |
[84] | Fluorescence spectroscopy, Synchronous Fluorescence Measurement (SF), FTIR Spectroscopy Circular dichroism (CD) spectroscopy, thermal stability test, Spectrophotometer for color analysis | pH, Temperature, Light and H2O2 |
[80] | HPLC | Ethylene, peroxidase enzymes (POD), temperature and light |
[77] | UV-visible spectrophotometer | Ascorbic acid, temperature, pH and light |
[12] | Instrumental colorimeter; dynamic shear rheometer; UV-visible spectrophotometer; optical and confocal scanning laser microscopy | pH, temperature |
[81] | UV-visible spectrophotometer | pH |
[85] | UV-visible spectrophotometer, HPLC | pH, temperature |
[86] | UV-visible spectrophotometer, HPLC | H2O2 |
[79] | Analysis of staining mechanisms using metabolomics and transcriptomics approaches | Light, temperature |
[87] | UV-visible spectrophotometer | Temperature, pH and light |
[88] | UV-visible spectrophotometer | Light, LAC and POD degrading enzymes |
[89] | UV-visible spectrophotometer | Light, COP1 type protein (Photomorphogenic Constituents: PbCOP1.1 and PbCOP1.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, R.; Trigueiro, P.; Orta Cuevas, M.d.M.; Medina-Carrasco, S.; Duarte, T.M.; Honório, L.M.d.C.; Damacena, D.H.L.; Fonseca, M.G.; da Silva-Filho, E.C.; Osajima, J.A. The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature. Minerals 2023, 13, 268. https://doi.org/10.3390/min13020268
Cunha R, Trigueiro P, Orta Cuevas MdM, Medina-Carrasco S, Duarte TM, Honório LMdC, Damacena DHL, Fonseca MG, da Silva-Filho EC, Osajima JA. The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature. Minerals. 2023; 13(2):268. https://doi.org/10.3390/min13020268
Chicago/Turabian StyleCunha, Robson, Pollyana Trigueiro, María del Mar Orta Cuevas, Santiago Medina-Carrasco, Thiago M. Duarte, Luzia M. de C. Honório, Dihêgo H. L. Damacena, Maria Gardennia Fonseca, Edson C. da Silva-Filho, and Josy A. Osajima. 2023. "The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature" Minerals 13, no. 2: 268. https://doi.org/10.3390/min13020268
APA StyleCunha, R., Trigueiro, P., Orta Cuevas, M. d. M., Medina-Carrasco, S., Duarte, T. M., Honório, L. M. d. C., Damacena, D. H. L., Fonseca, M. G., da Silva-Filho, E. C., & Osajima, J. A. (2023). The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature. Minerals, 13(2), 268. https://doi.org/10.3390/min13020268