Crude Oil Source and Accumulation Models for the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin, (Offshore) China
<p>(<b>a</b>) Map of the Pearl River Mouth Basin in China; (<b>b</b>) the division of tectonic units in the Pearl River Mouth Basin and the location of the Lufeng sag; (<b>c</b>) the division of sub-tectonic units and well location of the WC in Lufeng sag (A-A’ shows the location of the geological section line; B-B’ shows the location of the seismic profile line); (<b>d</b>) formation, lithology, and tectonic of the Lufeng sag.</p> "> Figure 2
<p>Determination of HET model based on the variation of HGP index with depth, modified after [<a href="#B36-minerals-13-00162" class="html-bibr">36</a>].</p> "> Figure 3
<p>(<b>a</b>) Determination of HET map with depth variation of HGP index in southern Lufeng sag; (<b>b</b>) variation of vitrinite reflectance (Ro) with depth of the WC and the EP in the southern Lufeng sag.</p> "> Figure 4
<p>Characteristics of the biomarker in the typical source rocks of the WC in the southern Lufeng sag; (<b>a</b>) hydrocarbon source rocks of the WC6; (<b>b</b>) hydrocarbon source rocks of the WC5; (<b>c</b>) hydrocarbon source rocks of the WC4; (<b>d</b>) hydrocarbon source rocks of the WC3; (<b>e</b>) hydrocarbon source rocks of the WC2; (<b>f</b>) hydrocarbon source rocks of the WC1 and WC2.4.2; Crude Oil Source.</p> "> Figure 5
<p>Distribution characteristics of crude oil density in the southern Lufeng sag.</p> "> Figure 6
<p>Characteristics of the biomarker of the three types of crude oil in the southern Lufeng region: (<b>a</b>) type A semi-deep lacustrine to deep lacustrine facies crude oil; (<b>b</b>) type B shallow lacustrine to semi-deep lacustrine facies crude oil; (<b>c</b>) type C mixed crude oil.</p> "> Figure 7
<p>Comparison of parameters of biomarkers of crude oil in the southern Lufeng region: (<b>a</b>) relationship between C<sub>29</sub> Ts/C<sub>29</sub> H and C<sub>30</sub> Dia-Hop/C<sub>30</sub> H; (<b>b</b>) relationship between C<sub>29</sub> Ts/C<sub>29</sub> H and Ts/Tm.</p> "> Figure 8
<p>Comparison of parameters of biomarkers of crude oil and source rocks in the southern Lufeng sag: (<b>a</b>) relationship between C<sub>29</sub> Ts/C<sub>29</sub> Hop and Ts/Tm; (<b>b</b>) relationship between C<sub>30</sub> Dia-Hop/C<sub>30</sub>H and Ts/Tm.</p> "> Figure 9
<p>Oil and source rock correlation results for the WC in the southern Lufeng sag.</p> "> Figure 10
<p>Relationship between hydrocarbon accumulation stages and oil and gas charging time.</p> "> Figure 11
<p>Distribution map of the oil–source fault and non-oil–source fault in seismic profile (the location of the seismic section is shown in <a href="#minerals-13-00162-f001" class="html-fig">Figure 1</a>c B-B’).</p> "> Figure 12
<p>Distribution map of oil–source fault and non-oil–source fault on the plane.</p> "> Figure 13
<p>Plane distribution characteristics of structural ridges in Lufeng sag: (<b>a</b>) the upper WC; (<b>b</b>) the lower WC.</p> "> Figure 14
<p>Plane distribution characteristics of the connected sand bodies in Lufeng sag; (<b>a</b>) the upper WC; (<b>b</b>) the lower WC.</p> "> Figure 15
<p>Characteristics of oil and gas migration and accumulation in the southern Lufeng region (the section position is shown in <a href="#minerals-13-00162-f001" class="html-fig">Figure 1</a>c A-A’): (<b>a</b>) first hydrocarbon accumulation periods; (<b>b</b>) second hydrocarbon accumulation period; (<b>c</b>) third hydrocarbon accumulation period.</p> "> Figure 16
<p>Schematic diagram of oil and gas accumulation model in the typical reservoir: (<b>a</b>) LF8-A-A reservoir; (<b>b</b>) LF14-D-Ad reservoir; (<b>c</b>) LF8-As-Ad reservoir.</p> "> Figure 17
<p>Distribution characteristics of different types of crude oil in profile in the southern Lufeng sag.</p> "> Figure 18
<p>Plane distribution characteristics of composite oil and gas migration system (including oil–source faults, connected sand bodies, and structural ridges): (<b>a</b>) the upper WC; (<b>b</b>) the lower WC.</p> "> Figure 19
<p>(<b>a</b>) Relationship between reservoir porosity and permeability in the Lufeng sag; (<b>b</b>) reservoir porosity varies with depth in the Lufeng sag; (<b>c</b>) reservoir permeability changes with depth in the Lufeng sag.</p> ">
Abstract
:1. Introduction
2. Geological Background
- Initial rift stage: This stage corresponds to the WC6 and the WC5 sedimentary stage. The main fault was normal, and the basement fault or trunk fault controlled the graben structure;
- Strong rift stage: This stage corresponds to the WC5 and the WC4 sedimentary period. The fault distance of the main fault increased obviously. The fault rotated and was controlled to form several rolling half-graben structures, and the sedimentary thickness increased. The sag centers of the Lufeng 7, Lufeng 13, and Lufeng 15 sub-sags are obvious. Under the influence of the Huizhou Movement, during the WC4 sedimentary period, the strata uplifted and suffered extensive erosion at the Lufeng low uplifts and the Huilu low uplift;
- Weak rift stage: This stage corresponds to the WC3 to the WC1 sedimentary period. During this stage, the fault extension was weakened, and the fault distance was small.
3. Materials and Methods
3.1. Materials
3.2. Laboratory Methods
3.2.1. Total Organic Carbon (TOC) and Pyrolysis Experiment
3.2.2. Biomarker Identification
3.3. Hydrocarbon Generation Potential (HGP) Method
4. Results
4.1. Source Rock Characteristics
4.1.1. Hydrocarbon Generation and Expulsion Characteristics of the Source Rocks
4.1.2. Biomarker Characteristics in the Source Rocks
4.2. Crude Oil Source
4.2.1. Crude Oil Physical Properties
4.2.2. Characteristics of the Crude Oil Biomarker
4.2.3. Oil and Source Rock Correlation
4.3. Hydrocarbon Accumulation Period
4.4. Migration System
4.4.1. Fault
4.4.2. Structural Ridge
4.4.3. Sand Body
- The Shahejie Formation was in a rift continental basin during its sedimentary period. It is very similar to the Lufeng sag in terms of overall structural and sedimentary background;
- The geo-temperature gradient of the Dongying sag is 3.59 °C/100 m [73], which is very similar to that of the Lufeng sag;
- The sedimentary facies of the Shahejie Formation are mainly delta, alluvial fan, and lacustrine facies [74], which are very similar to the sedimentary system of the Paleogene in the Lufeng sag.
4.5. Accumulation Model
- In the first period, accumulation with vertical migration by fault, which considers the fault–sand-body structural ridge as the migration system, formed anticlines and fault hydrocarbon reservoirs, such as the LF8-A-A reservoir (Figure 16a);
- In the second period, accumulation with lateral migration by sand body, which uses the lateral sand body as the migration pathway, generally formed lithologic hydrocarbon reservoirs, such as the LF14-D-Ad reservoir (Figure 16b);
- In the third period, accumulation with vertical migration by sand body and adjacent to source accumulation, which uses the vertical sand body as a migration pathway, generally formed structural and fault reservoirs, such as LF8-As-Ad reservoirs (Figure 16c).
5. Discussion
5.1. Geological Condition Verify Oil and Source Rock Correlation Results
- The drilled mudstone sections of the WC5 and the WC6 have high sand content, exhibiting alternating delta facies and shore–shallow lacustrine facies characteristics as a whole;
- The deep lacustrine to semi-deep lacustrine mudstone of the WC4 of the thick mudstone overlying the WC5 and the WC6 is drilled. As an important hydrocarbon reservoir, the sandstone of the WC5 and the WC6 may have been infected with Type A crude oil. Consequently, this section exhibits deep lacustrine to semi-deep lacustrine characteristics;
- The crude oil of the LF 14-D-Ad, LF 14-D-Adsa, and LF 14-D-Adsb wells in the WC5 and the WC6 exhibit the characteristics of Type B and C crude oil.
5.2. Compound Migration System
5.3. The Lower Limit of Hydrocarbon Accumulation under Buoyancy
6. Conclusions
- The relative contribution of the source rocks of the EP to the WC reservoir is relatively small, and the source rocks of the WC are generally below the HET, which is the main source of crude oil of the WC reservoirs. The source rocks of the WC could be divided into three types: the shallow lacustrine to semi-deep lacustrine source rocks of the WC5 and the WC6, semi-deep lacustrine to deep lacustrine source rocks of the WC4 and the WC3, and shallow lacustrine to semi-deep lacustrine source rocks of the WC3, the WC1, and the WC2.
- The crude oil in the southern Lufeng sag was classified into three types. Type A crude oil is generated from source rocks of the WC4 and the WC3; Type B crude oil is generated from source rocks of the WC3, the WC1, and the WC2; and Type C crude oil is a mixed-source oil of Type A and Type B crude oil.
- This study systematically summarizes three main accumulation models of the WC oil reservoir: in the first period (begins at 18.1 Ma and ends at 13.3 Ma), there was accumulation with vertical migration by fault; in the second period (beginning from 14.6 Ma to the end of 6.8 Ma), there was accumulation with lateral migration by sand body; and in the third period (from 8.5 Ma to the present), there was accumulation with vertical migration by sand body and adjacent to source.
- The sand body transport layers have little direct contact with oil–source faults, and a few oil–source faults at the edge of the sub-sag are in contact with the sand body transport layers, forming a few dominant hydrocarbon migration pathways to the uplift belt. The oil–source faults in the WC inside the sub-sag connect the unconnected sand body transporting layers, providing good conditions for the formation of lithologic hydrocarbon reservoirs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Well | Depth (m) | Strata | TOC (%) | Ro (%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | (S1 + S2)/TOC × 100 (mg/g) |
---|---|---|---|---|---|---|---|---|
LF13-1N-A | 2850.0 | Enping Formation | 0.06 | 479 | 0.21 | 0.10 | 516.67 | |
LF13-A-A | 3181.3 | Enping Formation | 0.42 | 439 | 0.04 | 0.27 | 73.81 | |
LF13-A-A | 3215.0 | Enping Formation | 0.35 | 431 | 0.05 | 0.27 | 91.43 | |
LF13-A-A | 3055.0 | Enping Formation | 0.78 | 441 | 0.16 | 2.03 | 280.77 | |
LF13-A-A | 3145.0 | Enping Formation | 0.47 | 445 | 0.08 | 1.07 | 244.68 | |
LF13-A-A | 2995.0 | Enping Formation | 0.68 | 437 | 0.06 | 0.53 | 86.76 | |
LF13-A-A | 3037.5 | Enping Formation | 0.93 | 436 | 0.10 | 0.84 | 101.08 | |
LF13-A-A | 3077.5 | Enping Formation | 0.50 | 439 | 0.03 | 0.22 | 50.00 | |
LF13-A-A | 3137.5 | Enping Formation | 0.48 | 439 | 0.06 | 0.39 | 93.75 | |
LF13-A-A | 2911.4 | Enping Formation | 0.47 | 440 | 0.03 | 0.57 | 127.66 | |
LF13-B-A | 2890.0 | Enping Formation | 4.44 | 431 | 0.64 | 11.39 | 270.95 | |
LF13-B-A | 2927.5 | Enping Formation | 0.78 | 435 | 0.08 | 0.67 | 96.15 | |
LF13-B-A | 2962.5 | Enping Formation | 5.52 | 431 | 0.72 | 12.85 | 245.83 | |
LF13-B-A | 3015.0 | Enping Formation | 1.49 | 435 | 0.18 | 2.41 | 173.83 | |
LF13-B-A | 3027.5 | Enping Formation | 1.51 | 440 | 0.19 | 2.05 | 148.34 | |
LF13-G-A | 3174.0 | Enping Formation | 1.21 | 0.52 | 413 | 1.30 | 3.32 | 381.82 |
LF13-G-A | 3018.0 | Enping Formation | 1.44 | 0.51 | 435 | 2.56 | 4.05 | 459.03 |
LF14-B-A | 2924.8 | Enping Formation | 17.23 | 418 | 4.44 | 72.81 | 448.35 | |
LF14-B-A | 2928.0 | Enping Formation | 1.33 | 432 | 0.30 | 3.04 | 251.13 | |
LF14-B-A | 2987.0 | Enping Formation | 0.49 | 430 | 0.13 | 0.70 | 169.39 | |
LF14-B-A | 3005.6 | Enping Formation | 0.21 | 426 | 0.55 | 261.90 | ||
LF14-B-A | 3110.0 | Enping Formation | 1.18 | 437 | 0.11 | 2.30 | 204.24 | |
LF14-B-A | 3200.0 | Enping Formation | 1.40 | 438 | 0.13 | 2.15 | 162.86 | |
LF14-C-A | 3037.0 | Enping Formation | 1.44 | 435 | 0.45 | 3.16 | 250.69 | |
LF14-D-Ad | 3009.0 | Enping Formation | 0.56 | 0.60 | 416 | 0.54 | 1.93 | 441.07 |
LF14-D-Dd | 2971.5 | Enping Formation | 429 | 6.21 | 139.98 | 460.01 | ||
LF14-H-AD | 3094.5 | Enping Formation | 0.50 | 0.58 | 427 | 0.34 | 1.45 | 358.00 |
LF14-H-AD | 3211.5 | Enping Formation | 0.59 | 0.60 | 424 | 0.35 | 1.75 | 355.93 |
LF15-H-A | 3183.0 | Enping Formation | 0.61 | 434 | 0.45 | 2.97 | 560.66 | |
LF15-H-A | 2877.5 | Enping Formation | 6.50 | 427 | 0.70 | 25.75 | 406.92 | |
LF15-H-A | 3111.0 | Enping Formation | 1.21 | 436 | 0.30 | 2.82 | 257.85 | |
LF16-F-Ad | 3014.0 | Enping Formation | 1.85 | 426 | 1.03 | 4.82 | 316.22 | |
LF16-F-Ad | 3077.0 | Enping Formation | 1.17 | 422 | 0.85 | 3.45 | 367.52 | |
LF16-G-A | 2827.5 | Enping Formation | 1.15 | 412 | 1.00 | 3.44 | 386.09 | |
LF16-G-A | 3027.5 | Enping Formation | 0.92 | 417 | 0.79 | 3.99 | 519.57 | |
LF7-J-Ad | 3439.5 | Enping Formation | 0.83 | 416 | 0.48 | 3.13 | 434.94 | |
LF7-J-Ad | 3484.5 | Enping Formation | 0.63 | 410 | 0.36 | 2.04 | 380.95 | |
LF7-J-Ad | 3171.0 | Enping Formation | 1.33 | 435 | 0.40 | 3.73 | 310.53 | |
LF7-J-Ad | 3340.5 | Enping Formation | 11.04 | 436 | 1.78 | 49.49 | 464.40 | |
LF7-L-A | 3536.5 | Enping Formation | 0.03 | 483 | 0.01 | 0.04 | 166.67 | |
LF7-L-A | 3563.5 | Enping Formation | 0.14 | 0.44 | 484 | 0.02 | 0.06 | 57.14 |
LF7-L-A | 3614.5 | Enping Formation | 0.10 | 0.44 | 446 | 0.07 | 0.10 | 170.00 |
LF7-L-B | 3798.0 | Enping Formation | 0.76 | 440 | 0.26 | 0.89 | 151.32 | |
LF8-A-A | 2971.5 | Enping Formation | 0.60 | 431 | 0.77 | 0.81 | 263.33 | |
LF8-A-A | 2998.5 | Enping Formation | 0.40 | 432 | 0.57 | 0.71 | 320.00 | |
LF8-A-A | 3085.5 | Enping Formation | 0.27 | 422 | 0.50 | 0.67 | 433.33 | |
LF8-A-A | 3262.5 | Enping Formation | 0.32 | 430 | 0.65 | 0.65 | 406.25 | |
LF8-A-B | 3445.5 | Enping Formation | 0.91 | 437 | 0.33 | 2.40 | 300.00 | |
LF8-A-C | 3557.6 | Enping Formation | 0.11 | 439 | 0.05 | 0.33 | 345.45 | |
LF8-A-C | 3511.0 | Enping Formation | 0.76 | 441 | 0.49 | 2.04 | 332.89 | |
LF8-A-C | 3558.0 | Enping Formation | 0.61 | 439 | 1.03 | 2.26 | 539.34 | |
LF8-A-C | 3660.0 | Enping Formation | 0.84 | 435 | 1.05 | 2.52 | 425.00 | |
LF8-A-C | 3828.0 | Enping Formation | 0.97 | 430 | 1.16 | 2.98 | 426.80 | |
LF8-A-C | 2949.0 | Enping Formation | 0.66 | 424 | 0.68 | 1.85 | 383.33 | |
LF8-A-C | 3060.0 | Enping Formation | 0.57 | 434 | 0.59 | 1.97 | 449.12 | |
LF8-A-C | 3183.0 | Enping Formation | 0.47 | 427 | 0.54 | 1.49 | 431.91 | |
LF8-AS-Ad | 3420.0 | Enping Formation | 0.94 | 439 | 0.64 | 3.17 | 405.32 | |
LF8-AS-Ad | 3486.0 | Enping Formation | 0.71 | 431 | 0.63 | 1.89 | 354.93 | |
LF8-AS-Ad | 3124.5 | Enping Formation | 0.91 | 431 | 0.71 | 2.93 | 400.00 | |
LF8-B-A | 3494.9 | Enping Formation | 0.04 | 0.54 | 437 | 0.02 | 0.12 | 350.00 |
LF9-C-Ad | 3018.0 | Enping Formation | 2.97 | 432 | 0.48 | 9.49 | 335.69 | |
LF9-C-Ad | 3040.5 | Enping Formation | 6.87 | 423 | 0.84 | 30.24 | 452.40 | |
LF9-C-Ad | 3089.5 | Enping Formation | 1.85 | 432 | 0.38 | 4.88 | 284.32 | |
LF9-C-Ad | 3178.5 | Enping Formation | 1.22 | 425 | 0.40 | 1.96 | 193.44 | |
LF9-F-A | 2841.0 | Enping Formation | 0.24 | 423 | 0.13 | 0.54 | 279.17 | |
LF13-B-A | 3145.0 | Wenchang Formation | 4.46 | 440 | 1.81 | 27.01 | 646.19 | |
LF13-B-A | 3155.0 | Wenchang Formation | 2.24 | 437 | 0.61 | 11.06 | 520.98 | |
LF13-B-A | 3185.0 | Wenchang Formation | 439 | 0.52 | 11.09 | 560.87 | ||
LF13-B-A | 3192.5 | Wenchang Formation | 2.30 | 438 | 0.72 | 11.24 | 520.00 | |
LF13-B-A | 3195.0 | Wenchang Formation | 2.09 | 439 | 0.64 | 10.07 | 512.44 | |
LF13-B-A | 3200.0 | Wenchang Formation | 1.93 | 437 | 0.35 | 7.16 | 389.12 | |
LF13-B-A | 3205.0 | Wenchang Formation | 2.09 | 438 | 0.61 | 10.01 | 508.13 | |
LF13-B-A | 3212.5 | Wenchang Formation | 2.50 | 440 | 0.93 | 11.64 | 502.80 | |
LF13-B-A | 3217.5 | Wenchang Formation | 7.75 | 434 | 2.11 | 23.84 | 334.84 | |
LF13-B-A | 3227.5 | Wenchang Formation | 3.50 | 439 | 1.17 | 10.57 | 335.43 | |
LF13-B-A | 3232.5 | Wenchang Formation | 3.54 | 436 | 0.58 | 9.50 | 284.75 | |
LF13-B-A | 3237.5 | Wenchang Formation | 3.94 | 437 | 0.92 | 12.60 | 343.15 | |
LF13-B-A | 3250.0 | Wenchang Formation | 2.21 | 442 | 0.58 | 7.94 | 385.52 | |
LF13-B-A | 3275.0 | Wenchang Formation | 3.56 | 437 | 0.98 | 12.44 | 376.97 | |
LF13-B-A | 3242.5 | Wenchang Formation | 2.93 | 440 | 0.74 | 9.81 | 360.07 | |
LF13-B-A | 3267.5 | Wenchang Formation | 2.58 | 438 | 0.84 | 10.17 | 426.74 | |
LF13-B-A | 3272.5 | Wenchang Formation | 2.32 | 442 | 0.70 | 9.70 | 448.28 | |
LF13-G-A | 3438.0 | Wenchang Formation | 1.76 | 0.55 | 427 | 2.09 | 5.19 | 413.64 |
LF13-G-A | 3468.0 | Wenchang Formation | 2.13 | 0.56 | 440 | 2.80 | 6.34 | 429.11 |
LF13-G-A | 3594.0 | Wenchang Formation | 1.92 | 0.56 | 440 | 2.77 | 6.53 | 484.38 |
LF13-G-A | 3609.0 | Wenchang Formation | 6.10 | 0.58 | 420 | 16.61 | 14.18 | 504.75 |
LF13-G-A | 3624.0 | Wenchang Formation | 5.65 | 0.58 | 432 | 13.42 | 16.23 | 524.78 |
LF13-G-A | 3651.0 | Wenchang Formation | 3.95 | 0.59 | 431 | 8.38 | 11.54 | 504.30 |
LF13-G-A | 3669.0 | Wenchang Formation | 3.26 | 0.60 | 433 | 6.41 | 10.23 | 510.43 |
LF13-G-A | 3684.0 | Wenchang Formation | 3.45 | 0.66 | 436 | 6.60 | 10.48 | 495.07 |
LF13-G-A | 3702.0 | Wenchang Formation | 3.68 | 0.67 | 433 | 7.02 | 10.63 | 479.62 |
LF13-G-A | 3726.0 | Wenchang Formation | 3.14 | 0.71 | 434 | 6.50 | 9.11 | 497.13 |
LF13-G-A | 3747.0 | Wenchang Formation | 4.12 | 0.69 | 432 | 10.03 | 13.97 | 582.52 |
LF13-G-A | 3919.5 | Wenchang Formation | 1.27 | 0.88 | 425 | 3.33 | 4.70 | 632.28 |
LF13-G-A | 4014.0 | Wenchang Formation | 2.56 | 0.82 | 432 | 4.07 | 9.76 | 540.23 |
LF14-D-Ad | 3516.0 | Wenchang Formation | 0.56 | 0.69 | 421 | 0.46 | 2.14 | 464.29 |
LF14-D-Ad | 3564.0 | Wenchang Formation | 0.82 | 0.70 | 459 | 0.57 | 3.07 | 443.90 |
LF14-D-Ad | 4051.5 | Wenchang Formation | 0.53 | 0.74 | 432 | 0.60 | 1.96 | 483.02 |
LF14-D-Ad | 4060.5 | Wenchang Formation | 0.86 | 0.75 | 471 | 0.83 | 3.10 | 456.98 |
LF14-D-Ad | 3639.0 | Wenchang Formation | 0.71 | 468 | 0.70 | 3.07 | ||
LF14-D-Ad | 3720.0 | Wenchang Formation | 0.72 | 432 | 0.03 | 0.04 | 31.82 | |
LF14-D-Ad | 3801.0 | Wenchang Formation | 1.56 | 0.72 | 460 | 2.71 | 8.90 | 744.23 |
LF14-D-Ad | 3825.0 | Wenchang Formation | 1.39 | 0.72 | 460 | 2.12 | 6.44 | 615.83 |
LF14-D-Ad | 3870.0 | Wenchang Formation | 1.23 | 0.73 | 466 | 1.94 | 5.94 | 640.65 |
LF14-D-Ad | 3879.0 | Wenchang Formation | 1.42 | 0.77 | 471 | 2.50 | 7.45 | 700.70 |
LF14-D-B | 3631.5 | Wenchang Formation | 3.11 | 0.61 | 413 | 4.67 | 13.36 | 579.74 |
LF14-D-B | 3718.5 | Wenchang Formation | 2.07 | 0.67 | 413 | 1.51 | 3.37 | 235.75 |
LF14-D-Dd | 3851.0 | Wenchang Formation | 1.21 | 440 | 0.90 | 5.32 | 514.05 | |
LF14-D-Dd | 3912.5 | Wenchang Formation | 1.09 | 441 | 0.81 | 5.02 | 534.86 | |
LF14-D-Dd | 3987.5 | Wenchang Formation | 1.32 | 442 | 0.98 | 6.20 | 543.94 | |
LF14-D-Dd | 4067.0 | Wenchang Formation | 1.25 | 442 | 0.87 | 5.53 | 512.00 | |
LF14-H-Ad | 3778.5 | Wenchang Formation | 0.99 | 439 | 0.62 | 2.88 | 353.54 | |
LF14-H-Ad | 3847.5 | Wenchang Formation | 1.12 | 441 | 0.87 | 3.96 | 431.25 | |
LF14-H-Ad | 3883.5 | Wenchang Formation | 1.26 | 441 | 1.10 | 5.11 | 492.86 | |
LF14-H-Ad | 3979.5 | Wenchang Formation | 1.54 | 444 | 1.63 | 7.02 | 561.69 | |
LF14-H-Ad | 4023.0 | Wenchang Formation | 1.27 | 441 | 1.35 | 5.97 | 576.38 | |
LF14-H-Ad | 4104.0 | Wenchang Formation | 1.54 | 441 | 1.38 | 6.30 | 498.70 | |
LF14-H-Ad | 3778.5 | Wenchang Formation | 0.99 | 0.64 | 439 | 0.62 | 2.88 | 353.54 |
LF14-H-Ad | 3847.5 | Wenchang Formation | 1.12 | 0.62 | 441 | 0.87 | 3.96 | 431.25 |
LF14-H-Ad | 3883.5 | Wenchang Formation | 1.26 | 0.63 | 441 | 1.10 | 5.11 | 492.86 |
LF14-H-Ad | 3979.5 | Wenchang Formation | 1.54 | 0.64 | 444 | 1.63 | 7.02 | 561.69 |
LF14-H-Ad | 4023.0 | Wenchang Formation | 1.27 | 0.63 | 441 | 1.35 | 5.97 | 576.38 |
LF14-H-Ad | 4104.0 | Wenchang Formation | 1.54 | 0.67 | 441 | 1.38 | 6.30 | 498.70 |
LF15-H-A | 3297.0 | Wenchang Formation | 0.79 | 432 | 0.51 | 3.26 | 477.22 | |
LF15-H-A | 3495.0 | Wenchang Formation | 1.10 | 438 | 0.67 | 5.85 | 592.73 | |
LF15-H-A | 3615.0 | Wenchang Formation | 2.75 | 444 | 2.28 | 18.40 | 752.00 | |
LF15-H-A | 3660.0 | Wenchang Formation | 3.14 | 443 | 2.34 | 20.60 | 730.57 | |
LF15-H-A | 3694.0 | Wenchang Formation | 3.07 | 443 | 2.55 | 19.07 | 704.23 | |
LF15-H-A | 3738.0 | Wenchang Formation | 2.12 | 443 | 1.87 | 12.18 | 662.74 | |
LF15-H-A | 3950.0 | Wenchang Formation | 1.48 | 442 | 0.45 | 5.93 | 431.08 | |
LF16-E-A | 3114.0 | Wenchang Formation | 0.76 | 0.55 | 438 | 0.78 | 3.26 | 532.98 |
LF16-E-A | 3156.0 | Wenchang Formation | 0.69 | 0.54 | 444 | 0.43 | 1.64 | 300.44 |
LF16-E-A | 3480.0 | Wenchang Formation | 0.56 | 443 | 0.93 | 9.69 | ||
LF16-E-A | 3216.0 | Wenchang Formation | 0.57 | 0.55 | 438 | 0.61 | 2.52 | 550.09 |
LF16-E-A | 3264.0 | Wenchang Formation | 0.88 | 0.55 | 446 | 0.50 | 2.12 | 297.05 |
LF16-E-A | 3273.0 | Wenchang Formation | 0.80 | 0.56 | 441 | 0.77 | 3.53 | 539.52 |
LF16-E-A | 3315.0 | Wenchang Formation | 1.40 | 0.62 | 443 | 1.49 | 7.13 | 615.71 |
LF16-E-A | 3341.5 | Wenchang Formation | 2.51 | 434 | 0.64 | 12.61 | 527.89 | |
LF16-E-A | 3349.5 | Wenchang Formation | 4.83 | 433 | 2.54 | 24.64 | 562.73 | |
LF16-E-A | 3427.5 | Wenchang Formation | 4.61 | 441 | 2.08 | 28.45 | 662.26 | |
LF16-E-A | 3584.0 | Wenchang Formation | 0.57 | 443 | 0.23 | 2.05 | ||
LF16-E-A | 3417.0 | Wenchang Formation | 1.88 | 0.58 | 438 | 1.27 | 6.83 | 430.85 |
LF16-E-A | 3426.0 | Wenchang Formation | 1.70 | 0.60 | 440 | 1.13 | 6.27 | 435.29 |
LF16-E-A | 3456.0 | Wenchang Formation | 2.45 | 0.60 | 441 | 1.84 | 9.75 | 473.06 |
LF16-E-A | 3474.0 | Wenchang Formation | 1.79 | 0.61 | 440 | 2.18 | 10.38 | 701.68 |
LF16-E-A | 3492.0 | Wenchang Formation | 2.09 | 0.62 | 436 | 1.88 | 7.39 | 443.54 |
LF16-E-A | 3514.5 | Wenchang Formation | 2.01 | 0.62 | 440 | 1.59 | 7.95 | 474.63 |
LF16-E-A | 3531.0 | Wenchang Formation | 2.14 | 0.64 | 437 | 2.07 | 9.22 | 527.57 |
LF16-E-A | 3546.0 | Wenchang Formation | 2.44 | 0.66 | 439 | 2.21 | 9.46 | 478.28 |
LF16-E-A | 3561.0 | Wenchang Formation | 2.73 | 0.66 | 441 | 3.59 | 17.02 | 754.95 |
LF16-E-A | 3576.0 | Wenchang Formation | 2.05 | 0.65 | 439 | 2.71 | 11.79 | 707.32 |
LF16-E-A | 3757.0 | Wenchang Formation | 3.35 | 441 | 2.66 | 16.53 | 572.84 | |
LF16-F-Ad | 3191.0 | Wenchang Formation | 429 | 4.48 | 91.97 | 447.36 | ||
LF16-F-Ad | 3233.0 | Wenchang Formation | 1.94 | 432 | 1.82 | 9.23 | 569.59 | |
LF16-F-Ad | 3263.0 | Wenchang Formation | 4.06 | 434 | 2.11 | 25.90 | 689.90 | |
LF16-F-Ad | 3296.0 | Wenchang Formation | 3.65 | 437 | 2.19 | 23.98 | 716.99 | |
LF16-F-Ad | 3326.0 | Wenchang Formation | 3.55 | 436 | 1.82 | 21.26 | 650.14 | |
LF16-F-Ad | 3356.0 | Wenchang Formation | 3.44 | 435 | 1.58 | 22.91 | 711.92 | |
LF16-F-Ad | 3395.0 | Wenchang Formation | 3.86 | 437 | 1.77 | 24.87 | 690.16 | |
LF16-F-Ad | 3479.0 | Wenchang Formation | 3.33 | 437 | 1.83 | 21.55 | 702.10 | |
LF16-G-A | 3285.0 | Wenchang Formation | 0.92 | 0.73 | 435 | 0.54 | 3.82 | 473.91 |
LF16-G-A | 3387.0 | Wenchang Formation | 0.64 | 0.77 | 426 | 0.44 | 2.26 | 421.88 |
LF16-G-A | 3600.0 | Wenchang Formation | 0.64 | 0.76 | 423 | 0.53 | 2.54 | 479.69 |
LF16-G-A | 3702.0 | Wenchang Formation | 0.81 | 0.81 | 409 | 0.74 | 3.12 | 476.54 |
LF16-G-A | 3955.5 | Wenchang Formation | 0.82 | 0.83 | 431 | 0.70 | 3.63 | 528.05 |
LF16-G-A | 4077.0 | Wenchang Formation | 1.02 | 0.86 | 433 | 0.54 | 2.90 | 337.25 |
LF16-G-A | 4149.0 | Wenchang Formation | 1.30 | 410 | 0.50 | 2.51 | 231.54 | |
LF7-J-Ad | 3606.0 | Wenchang Formation | 1.82 | 442 | 1.00 | 6.73 | 424.73 | |
LF7-J-Ad | 3621.0 | Wenchang Formation | 1.51 | 446 | 0.63 | 4.99 | 372.19 | |
LF7-J-Ad | 3639.0 | Wenchang Formation | 1.48 | 445 | 0.73 | 5.52 | 422.30 | |
LF7-J-Ad | 3671.5 | Wenchang Formation | 2.10 | 445 | 0.97 | 8.65 | 458.10 | |
LF7-J-Ad | 3723.0 | Wenchang Formation | 1.72 | 444 | 1.30 | 7.04 | 484.88 | |
LF7-J-Ad | 3792.0 | Wenchang Formation | 3.13 | 446 | 1.70 | 15.29 | 542.81 | |
LF7-J-Ad | 3825.0 | Wenchang Formation | 2.41 | 448 | 2.56 | 11.33 | 576.35 | |
LF7-J-Ad | 4179.5 | Wenchang Formation | 1.65 | 450 | 1.20 | 7.68 | 538.18 | |
LF7-L-A | 3821.5 | Wenchang Formation | 0.93 | 0.47 | 445 | 0.21 | 1.68 | 203.23 |
LF7-L-A | 3722.5 | Wenchang Formation | 1.31 | 446 | 0.48 | 3.27 | 286.26 | |
LF7-L-A | 3776.5 | Wenchang Formation | 1.17 | 0.57 | 448 | 0.42 | 2.55 | 253.85 |
LF7-L-A | 3827.5 | Wenchang Formation | 1.42 | 0.56 | 448 | 0.67 | 2.87 | 249.30 |
LF7-L-A | 3872.5 | Wenchang Formation | 1.11 | 0.58 | 450 | 0.54 | 2.27 | 253.15 |
LF7-L-A | 3935.5 | Wenchang Formation | 2.51 | 0.59 | 444 | 3.13 | 6.75 | 393.63 |
LF7-L-B | 3804.0 | Wenchang Formation | 1.98 | 439 | 1.29 | 3.60 | 246.97 | |
LF7-L-B | 3814.5 | Wenchang Formation | 1.88 | 442 | 1.28 | 3.99 | 280.32 | |
LF7-L-B | 3823.5 | Wenchang Formation | 1.81 | 441 | 0.97 | 3.71 | 258.56 | |
LF7-L-B | 3833.5 | Wenchang Formation | 1.63 | 441 | 0.76 | 2.80 | 218.40 | |
LF7-L-B | 3844.5 | Wenchang Formation | 1.63 | 440 | 1.04 | 3.11 | 254.60 | |
LF7-L-B | 3852.0 | Wenchang Formation | 1.79 | 439 | 1.15 | 3.11 | 237.99 | |
LF7-L-B | 3858.0 | Wenchang Formation | 2.00 | 441 | 1.27 | 3.43 | 235.00 | |
LF8-A-C | 4212.0 | Wenchang Formation | 1.01 | 431 | 0.95 | 2.90 | 381.19 | |
LF8-A-C | 4266.0 | Wenchang Formation | 1.66 | 440 | 1.32 | 5.04 | 383.13 | |
LF8-A-C | 4351.5 | Wenchang Formation | 1.23 | 446 | 1.01 | 3.95 | 403.25 | |
LF8-AS-Ad | 4136.3 | Wenchang Formation | 0.74 | 444 | 0.20 | 1.32 | 205.41 | |
LF8-AS-Ad | 4272.0 | Wenchang Formation | 1.41 | 442 | 1.48 | 5.10 | 466.67 | |
LF8-AS-Ad | 4317.0 | Wenchang Formation | 1.27 | 442 | 1.32 | 4.47 | 455.91 | |
LF8-AS-Ad | 4380.0 | Wenchang Formation | 1.54 | 445 | 1.47 | 5.08 | 425.32 | |
LF8-AS-Ad | 4515.0 | Wenchang Formation | 1.62 | 441 | 1.62 | 5.57 | 443.83 | |
LF9-C-Ad | 3207.5 | Wenchang Formation | 1.43 | 432 | 0.40 | 3.99 | 306.99 | |
LF9-C-Ad | 3289.5 | Wenchang Formation | 3.13 | 438 | 2.01 | 23.32 | 809.27 | |
LF9-C-Ad | 3322.5 | Wenchang Formation | 3.30 | 439 | 1.83 | 22.92 | 750.00 | |
LF9-C-Ad | 3418.5 | Wenchang Formation | 0.92 | 434 | 0.85 | 4.83 | 617.39 | |
LF9-C-Ad | 3490.5 | Wenchang Formation | 0.84 | 424 | 0.72 | 4.42 | 611.90 | |
LF9-C-Ad | 3558.0 | Wenchang Formation | 0.89 | 432 | 0.69 | 3.74 | 497.75 | |
LF9-F-A | 3110.0 | Wenchang Formation | 2.88 | 443 | 1.15 | 19.79 | 727.08 | |
LF9-F-A | 3075.0 | Wenchang Formation | 1.09 | 0.52 | 439 | 0.39 | 4.52 | 450.46 |
LF9-F-A | 3135.0 | Wenchang Formation | 2.63 | 439 | 1.35 | 14.77 | 612.93 | |
LF9-F-A | 3162.0 | Wenchang Formation | 1.59 | 0.55 | 441 | 0.47 | 5.81 | 394.97 |
LF9-F-A | 3195.0 | Wenchang Formation | 1.58 | 0.56 | 441 | 0.48 | 5.54 | 381.01 |
LF9-F-A | 3264.0 | Wenchang Formation | 1.43 | 0.58 | 441 | 0.48 | 4.40 | 341.26 |
LF9-F-A | 3297.0 | Wenchang Formation | 1.23 | 0.57 | 440 | 0.37 | 2.53 | 235.77 |
LF9-F-A | 3315.0 | Wenchang Formation | 0.47 | 416 | 0.19 | 0.81 | 212.77 |
References
- Leila, M.; Awadalla, A.; Farag, A.; Moscariello, A. Organic Geochemistry and Oil-Source Rock Correlation of the Cretaceous Succession in West Wadi El-Rayan (WWER) Concession: Implications for a New Cretaceous Petroleum System in the North Western Desert, Egypt. J. Pet. Sci. Eng. 2022, 219, 111071. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Kamali, M.R.; Rahimpour-Bonab, H.; Gentzis, T.; Liu, B.; Ostadhassan, M. Organic Geochemistry, Oil-Source Rock, and Oil-Oil Correlation Study in a Major Oilfield in the Middle East. J. Pet. Sci. Eng. 2021, 207, 109074. [Google Scholar] [CrossRef]
- Dembicki, H. Practical Petroleum Geochemistry for Exploration and Production; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Peters, K.E.; Walters, C.C.; Moldowan, J. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zheng, R.; Zhang, G.; Qu, Y.; Wang, S.; Jin, X.; Chen, X.; Zhang, Z. Oil-Source Correlation under the Complex Geological Conditions: A Case Study of the Chaiwopu Sag, Southern Junggar Basin, NW China. J. Pet. Sci. Eng. 2022, 210, 110056. [Google Scholar] [CrossRef]
- Hunt, J.M.; Philp, R.P.; Kvenvolden, K.A. Early Developments in Petroleum Geochemistry. Org. Geochem. 2002, 33, 1025–1052. [Google Scholar] [CrossRef]
- Lan, X.; Liu, H. The Geochemical Characteristics of the Paleogene Lacustrine Source Rock and Cenozoic Oil in the Eastern Huanghekou Sag, Bohai Bay Basin, China: An Oil–Source Rock Correlation. J. Pet. Sci. Eng. 2022, 214, 110434. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Wang, B.; Liu, Z.; Wu, X.; Liu, F.; Zhao, B.; Cheng, J.; Kang, W. Study on Oil–Source Correlation by Analyzing Organic Geochemistry Characteristics: A Case Study of the Upper Triassic Yanchang Formation in the South of Ordos Basin, China. Acta Geochim. 2016, 35, 408–420. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, M. Oil and Gas Geochemistry; Petroleum Industry Press: Beijing, China, 2010. [Google Scholar]
- Bray, E.E.; Evans, E.D. Distribution of N-Paraffins as Clue to Recognision of Source Beds. Geochim. Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Jiamo, F.; Cunmin, P.; Guoying, S.; Dehan, L.; Sizhong, C. A Geochemical Investigation of Crude Oils from Eastern Pearl River Mouth Basin, South China Sea. J. Southeast Asian Earth Sci. 1993, 8, 469–486. [Google Scholar] [CrossRef]
- Huang, Z. Nonmarine Source Rock and Petroleum Formation of Pearl River Mouth Basin. China Offshore Oil Gas (Geol.) 1998, 12, 255–261. [Google Scholar]
- Zhang, S.; Liang, D.; Gong, Z.; Wu, K.; Li, M.; Song, F.; Song, Z.; Zhang, D.; Wang, P. Geochemistry of Petroleum Systems in the Eastern Pearl River Mouth Basin: Evidence for Mixed Oils. Org. Geochem. 2003, 34, 971–991. [Google Scholar] [CrossRef]
- Ji, C. Biomarker Characteristics and Oil-Sources Correlation Research of the Research in the Southern Qiangtang Depression; Chengdu University of Technology: Chengdu, China, 2015. [Google Scholar]
- Huang, W.-Y.; Meinschein, W.G. Sterols as Ecological Indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Mackenzie, A.S.; Patience, R.; Maxwell, J.R.; Vandenbroucke, M.; Durand, B. Molecular Parameters of Maturation in the Toarcian Shales, Paris Basin, France. I. Changes in the Configurations of Acyclic Isoprenoid Alkanes, Steranes and Triterpanes (Organic Geochemistry). Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
- Seifert, W. Source rock/oil correlations by C27–C30 biological marker hydrocarbons. In Advances in Organic Geochemistry 1975; Enadimsa: Madrid, Spain, 1977; pp. 21–44. [Google Scholar]
- Hu, Y.; Hao, F.; Zhu, J.; Tian, J.; Ji, Y. Origin and Occurrence of Crude Oils in the Zhu1 Sub-Basin, Pearl River Mouth Basin, China. J. Asian Earth Sci. 2015, 97, 24–37. [Google Scholar] [CrossRef]
- Illich, H.A.; Grizzle, P.L. Comment on “Comparison of Michigan Basin Crude Oils” by Vogler et Al. Geochim. Cosmochim. Acta 1983, 47, 1151–1155. [Google Scholar] [CrossRef]
- Rullkötter, J.; Meyers, P.A.; Schaefer, R.G.; Dunham, K.W. Oil Generation in the Michigan Basin: A Biological Marker and Carbon Isotope Approach. Org. Geochem. 1986, 10, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Pang, X.; Peng, H.; Ma, X.; Shi, H.; Zhao, Z.; Xiao, S.; Zhu, J. Geochemistry, Origin, and Accumulation of Petroleum in the Eocene Wenchang Formation Reservoirs in Pearl River Mouth Basin, South China Sea: A Case Study of HZ25-7 Oil Field. Mar. Pet. Geol. 2017, 80, 154–170. [Google Scholar] [CrossRef]
- Ge, J.W.; Zhu, X.M.; Zhang, X.T.; Jones, B.G.; Yu, F.S.; Niu, Z.C.; Li, M. Tectono-Stratigraphic Evolution and Hydrocarbon Exploration in the Eocene Southern Lufeng Depression, Pearl River Mouth Basin, South China Sea. Aust. J. Earth Sci. 2017, 64, 931–956. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, C.; Lu, C.; Cheng, M. Study on Facies-Controlled Model of a Reservoir in Xijiang 24-3 Oilfield in the Northern Pearl River Mouth Basin. Adv. Geo-Energy Res. 2018, 2, 282–291. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, G.; Ge, J.; Zhang, X.; Cao, Z.; Lei, Y.; An, Y.; Zhang, M. Geochemical Characteristics and Depositional Environment of Paleogene Lacustrine Source Rocks in the Lufeng sag, Pearl River Mouth Basin, South China Sea. J. Asian Earth Sci. 2019, 171, 60–77. [Google Scholar] [CrossRef]
- Peng, G.; Pang, X.; Xu, D.; Luo, J.; Yu, S.; Li, H.; Hu, T.; Wang, C.; Liu, Y. Characteristics of Paleogene whole petroleum system and orderly distribution of oil and gas reservoirs in south Lufeng depression, Pearl River Mouth Basin. Earth Sci. 2002, 47, 2494–2508. [Google Scholar]
- Shi, H. “Source-migration-accumulation” evaluation system and its application in hydrocarbon exploration: A case study of Zhu I depression in Pearl River Mouth Basin. China Offshore Oil Gas 2015, 27, 1–12. [Google Scholar]
- Zhu, X.; Ge, J.; Wu, B. Reservoirs characteristics and main controlling factors of deep sandstone in Lufeng sag, Pearl River Mouth Basin. Acta Pet. Sin. 2019, 40, 69–80. [Google Scholar]
- Zhang, J.; Cao, J.; Hu, W.; Zhi, D.; Guo, X.; Bian, B. Insights into Carboniferous Subduction-Related Petroleum Systems in the Central Asian Orogenic Belt (CAOB) from Hydrocarbons in Vein Calcite Cements, West Junggar, Northwest China. Mar. Pet. Geol. 2021, 124, 104796. [Google Scholar] [CrossRef]
- Lin, H.-M.; Liu, H.; Wang, X.-D.; Qiu, X.-W.; Ju, Y.-T.; Meng, J.; Li, L. Basin-Filling Processes and Hydrocarbon Source Rock Prediction of Low-Exploration Degree Areas in Rift Lacustrine Basins: A Case from the Wenchang Formation in Low-Exploration Degree Areas, Northern Zhu I Depression, Pearl River Mouth Basin, E China. J. Palaeogeogr. 2022, 11, 286–313. [Google Scholar] [CrossRef]
- Quan, Y.; Hao, F.; Liu, J.; Zhao, D.; Tian, J.; Wang, Z. Source Rock Deposition Controlled by Tectonic Subsidence and Climate in the Western Pearl River Mouth Basin, China: Evidence from Organic and Inorganic Geochemistry. Mar. Pet. Geol. 2017, 79, 1–17. [Google Scholar] [CrossRef]
- Shi, H.; Lei, Y.; Wu, M.; Lan, Q. Research on the evolution of pores in deep sandstone reservoir in ZHU1 Depression. Earth Sci. Front. 2008, 15, 169–175. [Google Scholar]
- Yan, R. The Study of Reservoir Accumulation Mechanism and Enrichment Laws of Paleogene Low-Permeability Reservoirs in the South of Lufeng sag in the Pearl River Estuary Basin; China University of Petroleum: Beijing, China, 2016. [Google Scholar]
- Ding, L. Resource potential and main controlling factors of hydrocarbon accumulation of Wenchang Formation in southwest Lufeng sag. J. Yangtze Univ. (Nat. Sci. Ed.) 2021, 17, 46–56. [Google Scholar] [CrossRef]
- Aguilera, C.L.; Huizinga, B.J.; Lomando, A.J. Petroleum Geology of the Zhu-1 Depression, Pearl River Mouth Basin, People’s Republic of China. AAPG Bull. 1990, 74, 5. [Google Scholar] [CrossRef]
- Peng, J.; Pang, X.; Shi, H.; Peng, H.; Xiao, S.; Yu, Q.; Wu, L. Hydrocarbon Generation and Expulsion Characteristics of Eocene Source Rocks in the Huilu Area, Northern Pearl River Mouth Basin, South China Sea: Implications for Tight Oil Potential. Mar. Pet. Geol. 2016, 72, 463–487. [Google Scholar] [CrossRef]
- Jiang, H.; Pang, X.; Shi, H.; Yu, Q.; Cao, Z.; Yu, R.; Chen, D.; Long, Z.; Jiang, F. Source Rock Characteristics and Hydrocarbon Expulsion Potential of the Middle Eocene Wenchang Formation in the Huizhou Depression, Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2015, 67, 635–652. [Google Scholar] [CrossRef]
- Shi, H.; Dai, Y.; Liu, L.; Shu, Y.; Mei, L. Genetic Pattern of Belt-Wide Petroliferous Phenomenon in the Eastern Pearl River Mouth Basin and Its Practical Application. Pet. Sci. 2014, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, X.; Lin, H.; Que, X.; He, Y.; Jia, L.; Xiao, Z.; Li, M. Paleogene Geological Framework and Tectonic Evolution of the Central Anticlinal Zone in Lufeng 13 Sag, Pearl River Mouth Basin. Pet. Res. 2019, 4, 238–249. [Google Scholar] [CrossRef]
- Ge, J.; Zhu, X.; Chen, F.; Zhu, D.; An, Y.; Niu, Z.; Lei, Y. Sequence Architecture and Controlling Factors of the Wenchang Formation in the Gentle Slope of Eastern Lufeng Depression, Pearl River Mouth Basin. J. China Univ. Min. Technol. 2017, 46, 563–577. [Google Scholar] [CrossRef]
- Huang, B.; Xiao, X.; Zhang, M. Geochemistry, Grouping and Origins of Crude Oils in the Western Pearl River Mouth Basin, Offshore South China Sea. Org. Geochem. 2003, 34, 993–1008. [Google Scholar] [CrossRef]
- Peng, J.; Pang, X.; Li, H.; Xiao, S.; Wang, Z.; Pang, X. A new method based on hydrocarbon migration threshold and combined reservoir controlling function for quantitatively predicting favorable hydrocarbon exploration zones: A case study of the lower Member of the Zhujiang r Formation in Zhuyi depression. Acta Pet. Sin. 2015, 36, 156–168. [Google Scholar]
- Robison, C.R.; Elrod, L.W.; Bissada, K.K. Petroleum Generation, Migration, and Entrapment in the Zhu 1 Depression, Pearl River Mouth Basin, South China Sea. Int. J. Coal Geol. 1998, 37, 155–178. [Google Scholar] [CrossRef]
- Espitalie, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. Rapid Method for Source Rock Characterization and for Determination of Their Petroleum Potential and Degree of Evolution. Oil Gas Sci. Technol. Rev. 1977, 32, 23–42. [Google Scholar]
- Peters, K. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar] [CrossRef]
- Zhou, J.; Pang, X. A method for calculating the quantity of hydrocarbon generation and expulsion. Pet. Explor. Dev. 2002, 29, 24–27. [Google Scholar]
- Pang, X.; Li, M.; Li, S.; Jin, Z. Geochemistry of Petroleum Systems in the Niuzhuang South Slope of Bohai Bay Basin: Part 3. Estimating Hydrocarbon Expulsion from the Shahejie Formation. Org. Geochem. 2005, 36, 497–510. [Google Scholar] [CrossRef]
- Pepper, A.S. Estimating the Petroleum Expulsion Behaviour of Source Rocks: A Novel Quantitative Approach. Geol. Soc. Lond. Spec. Publ. 1991, 59, 9–31. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, Q.; Bai, Y.; Li, J.; Er, C.; Wu, W. Petroleum system: From conventional to unconventional. In Proceedings of the International Conference and Exhibition, Barcelona, Spain, 3–6 April 2016; Society of Exploration Geophysicists: Tulsa, OK, USA; American Association of Petroleum Geologists: Tulsa, OK, USA, 2016; p. 213. [Google Scholar]
- Mu, D.; Peng, G.; Zhu, D.; Li, S.; Suo, Y.; Zhan, H.; Zhao, L. Structure and Formation Mechanism of the Pearl River Mouth Basin: Insights from Multi-Phase Strike-Slip Motions in the Yangjiang Sag, SE China. J. Asian Earth Sci. 2022, 226, 105081. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Pang, X.; Chen, Z. Basic concept of hydrocarbon expulsion threshold and its research significance and application. Geoscience 1997, 11, 510–521. [Google Scholar]
- Atoyebi, A.O.; Adekola, S.A.; Akinlua, A. Tricyclic Terpane Geochemistry of Source Rocks from Northwestern and Central Niger Delta. Pet. Sci. Technol. 2017, 35, 2094–2101. [Google Scholar] [CrossRef]
- De Leeuw, J.W.; Cox, H.C.; van Graas, G.; van de Meer, F.W.; Peakman, T.M.; Baas, J.M.A.; van de Graaf, B. Limited Double Bond Isomerisation and Selective Hydrogenation of Sterenes during Early Diagenesis. Geochim. Cosmochim. Acta 1989, 53, 903–909. [Google Scholar] [CrossRef]
- Jiamo, F.; Guoying, S.; Jiayou, X.; Eglinton, G.; Gowar, A.P.; Rongfen, J.; Shanfa, F.; Pingan, P. Application of Biological Markers in the Assessment of Paleoenvironments of Chinese Non-Marine Sediments. Org. Geochem. 1990, 16, 769–779. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Fago, F.J.; Carlson, R.M.K.; Young, D.C.; an Duvne, G.; Clardy, J.; Schoell, M.; Pillinger, C.T.; Watt, D.S. Rearranged Hopanes in Sediments and Petroleum. Geochim. Cosmochim. Acta 1991, 55, 3333–3353. [Google Scholar] [CrossRef]
- Rubinstein, I.; Albrecht, P. The Occurence of Nuclear Methylated Steranes in a Shale. J. Chem. Soc. Chem. Commun. 1975, 24, 957–958. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Leif, R.N.; Radler de Aquino Neto, F.; Almeida Azevedo, D.; Pinto, A.C.; Albrecht, P. On the Presence of Tricyclic Terpane Hydrocarbons in Permian Tasmanite Algae. Naturwissenschaften 1990, 77, 380–383. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, G. Comprehensive Research Methods of Petroleum Geology; Petroleum Industry Press: Beijing, China, 2017. [Google Scholar]
- England, W.A.; Mackenzie, A.S.; Mann, D.M.; Quigley, T.M. The Movement and Entrapment of Petroleu Fluids in the Subsurface. J. Geol. Soc. 1987, 144, 327–347. [Google Scholar] [CrossRef]
- Horstad, I.; Larter, S.R.; Mills, N. Migration of Hydrocarbons in the Tampen Spur Area, Norwegian North Sea: A Reservoir Geochemical Evaluation. Geological Society, London, Special Publications 1995, 86, 159–183. [Google Scholar] [CrossRef]
- Zhu, C.; Gang, W.; Zhao, X.; Wang, Y.; Chen, G.; Pu, X. The Preferential Pathways of Oil Migration in the Qi-Nan Slope Belt of Bohai Bay Basin, China: Insights from Integrated Analyses Using Geochemical and Morphology Tools. J. Pet. Sci. Eng. 2020, 193, 107451. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Volume 1: Biomarkers and Isotopes in the Environment and Human History, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; Volume 1, ISBN 978-0-521-78697-3. [Google Scholar]
- Bodnar, R.J. Petroleum Migration in the Miocene Monterey Formation, California, USA: Constraints from Fluid-Inclusion Studies. Mineral. Mag. 1990, 54, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Lou, R.; Wang, L.; Wang, L.; Yang, G.; Wang, J.; Liu, C.; Pei, Y.; Zhang, C. Characteristics of Fluid Inclusions and Hydrocarbon Accumulation Period of Huoshiling -Yingcheng Formations in Wangfu Fault Depression, Songliao Basin, China. J. Pet. Sci. Eng. 2022, 208, 109421. [Google Scholar] [CrossRef]
- McLimans, R.K. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Appl. Geochem. 1987, 2, 585–603. [Google Scholar] [CrossRef]
- Aydin, A. Fractures, Faults, and Hydrocarbon Entrapment, Migration and flow. Mar. Pet. Geol. 2000, 17, 797–814. [Google Scholar] [CrossRef]
- Smith, D.A. Sealing and Non-Sealing Faults. AAPG Bull. 1965, 49, 1749. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, X.; Vasseur, G.; Yu, C.; Yang, W.; Lei, Y.; Song, C.; Yu, L.; Yan, J. Evaluation of Geological Factors in Characterizing Fault Connectivity during Hydrocarbon Migration: Application to the Bohai Bay Basin. Mar. Pet. Geol. 2011, 28, 1634–1647. [Google Scholar] [CrossRef]
- Thomas, M.M.; Clouse, J.A. Scaled Physical Model of Secondary Oil Migration1. AAPG Bull. 1995, 79, 19–28. [Google Scholar] [CrossRef]
- Schowalter, T.T. Mechanics of Secondary Hydrocarbon Migration and Entrapment. AAPG Bull. 1979, 63, 723–760. [Google Scholar] [CrossRef]
- Wei, D.; Bilin, S.; Haiyan, J. Daliuquan-Hexiwu Structural Oil and Gas Migration Model and Migration Characteristics of the Plane. IOSR J. Eng. 2016, 6, 10–13. [Google Scholar]
- Luo, X.; Lei, Y.; Zhang, L.; Chen, R.; Chen, Z.; Xu, J.; Zhao, J. Research and quantitative characterization method of oil and gas transport conductive layer. Acta Pet. Sin. 2012, 33, 428–436. [Google Scholar]
- Liu, Z.; Zhu, W.; Sun, Q.; Jin, B.; Xu, X.; Zhang, H. Characteristics of geotemperature-geopressure system in petroliferous basins of China. Acta Pet. Sin. 2012, 33, 1–17. [Google Scholar] [CrossRef]
- Sun, H.; Wan, N.; Xu, T. Provence system and their control on the sedimentation of the upper Es4 in the Guangli Area of Dongying Sag, the Bohai Bay Basin. Oil Gas Geol. 2010, 31, 583–593. [Google Scholar] [CrossRef]
- Han, J.; Steel, R.J.; Hou, M.; Li, Y.; Yuan, L.; Zheng, J.; Liu, J. Subsidence and Maturation Evolution of a New Lower-Slope Minibasin, Xingning Sag, Northern South China Sea. J. Pet. Sci. Eng. 2021, 198, 108163. [Google Scholar] [CrossRef]
- Li, J. Application of layer leveling method in pre-sedimentary paleomorphological restoration: A case study of Dongying delta development zone in Jiyang Depression. Oil Gas Geophys. 2008, 6, 46–49. [Google Scholar]
- Vogler, E.A.; Meyers, P.A.; Moore, W.A. Comparison of Michigan Basin Crude Oils. Geochim. Cosmochim. Acta 1981, 45, 2287–2293. [Google Scholar] [CrossRef]
- Liang, J.; Wang, H.; Blum, M.J.; Ji, X. Modeling of Hydrocarbon Migration and Accumulation on the Chengzikou Uplift, Bohai Bay Basin, China: Implications for Petroleum Exploration on Slope Belts in Rift Basins. J. Pet. Sci. Eng. 2020, 189, 106963. [Google Scholar] [CrossRef]
- Hindle, A.D. Petroleum Migration Pathways and Charge Concentration: A Three-Dimensional Model. AAPG Bull. 1997, 81, 1451–1481. [Google Scholar]
- Zhao, Z.; Wang, H.; Guo, Q.; Gan, H.; Han, J.; Tian, X. Evolutionary analysis of the types of oil and gas transmission systems and their transmission performance in space and space. Pet. Exp. Geol. 2002, 24, 527–532. [Google Scholar] [CrossRef]
- Pang, X. Hydrocarbon Distribution Threshold and Accumulation Areas Prediction; Science Press: Beijing, China, 2015. [Google Scholar]
- Pang, X.; Jia, C.; Chen, J.; Li, M.; Wang, W.; Hu, Q.; Guo, Y.; Chen, Z.; Peng, J.; Liu, K.; et al. A Unified Model for the Formation and Distribution of Both Conventional and Unconventional Hydrocarbon Reservoirs. Geosci. Front. 2021, 12, 695–711. [Google Scholar] [CrossRef]
- Pang, X.; Shao, X.; Li, M.; Hu, T.; Chen, Z.; Zhang, K.; Jiang, F.; Chen, J.; Chen, D.; Peng, J.; et al. Correlation and Difference between Conventional and Unconventional Reservoirs and Their Unified Genetic Classification. Gondwana Res. 2021, 97, 73–100. [Google Scholar] [CrossRef]
- Ben, E. Law1 Basin-Centered Gas Systems. AAPG Bull. 2002, 86, 1891–1919. [Google Scholar] [CrossRef]
- Holditch, S.A. Tight Gas Sands. J. Pet. Technol. 2006, 58, 86–93. [Google Scholar] [CrossRef]
Well | Reservoir | The Time When Hydrocarbon Begins Accumulating | Time for the Hydrocarbon to End Accumulation | The Test Method |
---|---|---|---|---|
(Ma) | (Ma) | |||
LF8-A-A | The Wenchang Formation | 4.9 | 0 | Fluid inclusion homogenization temperature experiment |
LF14-D-Ad | The Wenchang Formation | 3.2 | 3.2 | 40Ar–39Ar Legal Year Analysis |
LF14-D-Dd | The Wenchang Formation | 7 | 0 | Fluid inclusion homogenization temperature experiment |
LF14-D-Bd | The Wenchang Formation | 0.6 | 0 | Fluid inclusion homogenization temperature experiment |
LF14-H-Bdsa | The Wenchang Formation | 4 | 0 | Fluid inclusion homogenization temperature experiment |
LF14-D-Ad | The Wenchang Formation | 13.7 | 13.7 | 40Ar–39Ar Legal Year Analysis |
LF14-H-Ad | The Wenchang Formation | 13 | 8 | Fluid inclusion homogenization temperature experiment |
LF7-D-Ad | The Wenchang Formation | 14.6 | 8.4 | Fluid inclusion homogenization temperature experiment |
LF16-E-A | The Wenchang Formation | 18.1 | 13.6 | Fluid inclusion homogenization temperature experiment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Ma, K.; Huo, X.; Huang, S.; Wu, S.; Zhang, X. Crude Oil Source and Accumulation Models for the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin, (Offshore) China. Minerals 2023, 13, 162. https://doi.org/10.3390/min13020162
Pang H, Ma K, Huo X, Huang S, Wu S, Zhang X. Crude Oil Source and Accumulation Models for the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin, (Offshore) China. Minerals. 2023; 13(2):162. https://doi.org/10.3390/min13020162
Chicago/Turabian StylePang, Hong, Kuiyou Ma, Xungang Huo, Shengmin Huang, Song Wu, and Xingang Zhang. 2023. "Crude Oil Source and Accumulation Models for the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin, (Offshore) China" Minerals 13, no. 2: 162. https://doi.org/10.3390/min13020162