Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test
<p>In situ test configuration following dismantling of Heater #1 [<a href="#B29-minerals-13-01522" class="html-bibr">29</a>].</p> "> Figure 2
<p>The aqueous extract test (AET) (<b>left</b>) to measure ion concentration in pore-water for samples obtained during the final dismantling of the in situ test, and the geochemical model (<b>right</b>) that reverses the AET procedure to infer the ion concentration for the original pore-water.</p> "> Figure 3
<p>Schematic situation of parallel boreholes (FU-1, FU-2 and FU-3) and radial boreholes, plain view [<a href="#B36-minerals-13-01522" class="html-bibr">36</a>].</p> "> Figure 4
<p>Mesh used for the model. Not to scale.</p> "> Figure 5
<p>Inferred chloride, sulfate, and bicarbonate concentration and pH data at 5.3 years [<a href="#B34-minerals-13-01522" class="html-bibr">34</a>] and 18.3 years, and model results from the THMC model.</p> "> Figure 6
<p>Model results and chloride, sulfate, sodium, and calcium concentration data in granite. Data in FU1-3 are collected from a tunnel 0.2 m away from the bentonite/granite interface; Data in FU2-2 are data from a tunnel 0.6 m away from the bentonite/granite interface.</p> "> Figure 7
<p>Model results of gypsum, anhydrite, calcite, illite, and smectite volume fraction change at 5.3 and 18.3 years. Negative values mean dissolution and positive values mean precipitation.</p> "> Figure 8
<p>Inferred sodium, potassium, magnesium, and calcium concentration data at 5.3 and 18.3 years were compared with results from the THMC model.</p> "> Figure 9
<p>Smectite content in samples from different sections around the heater was determined by X-ray diffraction by different laboratories (marked by different color and symbols in the figure). The dashed line indicates the content in the reference sample [<a href="#B35-minerals-13-01522" class="html-bibr">35</a>].</p> "> Figure 10
<p>Spatial distribution of temperature and water saturation degree at several time points in the “extended base model” and “run F”.</p> "> Figure 10 Cont.
<p>Spatial distribution of temperature and water saturation degree at several time points in the “extended base model” and “run F”.</p> "> Figure 11
<p>Inferred chloride concentration data at 5.3 and 18.3 years and model results from the “extended base model” and “Run F” at different times.</p> "> Figure 12
<p>Inferred potassium concentration data at 5.3 and 18.3 years and model results from the “extended base model” and “Run F” at different times.</p> "> Figure 13
<p>Model results for montmorillonite (<b>left</b>) and illite (<b>right</b>) volume fraction change from the “extended base model”. Positive values indicate precipitation.</p> "> Figure 14
<p>Model results for montmorillonite (<b>left</b>) and illite (<b>right</b>) volume fraction change from the “Run F” at different times. A negative value means dissolution.</p> ">
Abstract
:1. Introduction
2. FEBEX In Situ Test
3. Chemical Data for Bentonite
3.1. Ion Concentrations in Pore-Water
3.2. Geochemical Data in Solid Phase
3.3. Chemical Data for Granite Pore-Water
4. Model Development
4.1. Modeling Setup
4.2. THM Model
4.3. Chemical Model
5. Model Results
5.1. THM Evolution in the Test
5.2. Geochemical Evolution in the Test
5.3. Long-Term Evolution
6. Conclusions
- –
- Since geochemical data in solid phases were either too scattered to constrain the model or incomparable with model output, the current model predominantly relied on the ion concentration in the aqueous phase to understand the geochemical change in the bentonite.
- –
- Concentrations of most chemical species along the radial direction were higher near the heater and lower away from the heater.
- –
- Geochemical profiles were strongly affected by THM processes such as evaporation/condensation, porosity change due to swelling, permeability change,
- –
- The shape of concentration profiles for major cations was largely controlled by transport processes (advection and diffusion), but concentration levels were regulated by chemical reactions, and the profiles of some species, such as pH, bicarbonate, and sulfate, were dominated by these reactions.
- –
- Measured mass fractions of illite in the illite/smectite mixed layer varied a great deal depending on the laboratory and sample and, therefore, showed no clear spatial trend and were indistinguishable from the reference bentonite. The model results showed a small amount of illite precipitation and montmorillonite dissolution in the vicinity of the heater, which is neither proved nor disapproved by the measured data.
- –
- Heating prolongs the time that bentonite becomes fully saturated at the area close to the heater/canister: full saturation is expected in 30–40 years based on the model with heat decay function, whereas 200 years is needed if constant heating at 100 °C is maintained.
- –
- High concentrations of ions in bentonite near the heater, observed in the field test, will disappear after bentonite becomes fully saturated.
- –
- Illitization will continue for 50 years but will not proceed. Chemical conditions are the major controlling factor, while temperature plays a secondary role.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Log K (25 °C) | Species | Log K (25 °C) |
---|---|---|---|
OH− | 13.99 | MgHCO3+ | −1.03 |
Al+3 | −22.88 | CO2(aq) | −6.34 |
HAlO2(aq) | −6.45 | CO3−2 | 10.33 |
NaAlO2(aq) | 0.75 | CaCO3(aq) | 7.01 |
AlOH+2 | −17.87 | KCl(aq) | 1.50 |
Al(OH)2+ | −12.78 | MgCl+ | 0.14 |
Al(OH)3(aq) | −6.72 | MgSO4(aq) | −2.38 |
CaCl+ | 0.70 | NaSO4− | −0.81 |
CaCl2(aq) | 0.65 | KSO4− | −0.88 |
CaSO4(aq) | −2.10 | NaHSiO3(aq) | 8.30 |
NaCl(aq) | 0.78 | CaOH+ | 12.85 |
FeCl+ | 0.17 | NaOH(aq) | 14.15 |
FeHCO3+ | −2.04 | NaCO3− | 9.82 |
FeCO3(aq) | 4.88 | NaHCO3(aq) | −0.17 |
FeCl4−2 | 1.94 | CaHCO3+ | −1.04 |
Cation Exchange Reaction | KNa/M |
---|---|
Na+ + mon_H = mon_Na + H+ | 1 |
Na+ + mon_K = mon_Na + K+ | 0.0775 |
Na+ + 0.5 mon_Ca = mon_Na + 0.5Ca+2 | 0.302 |
Na+ + 0.5 mon_Mg = mon_Na + 0.5Mg+2 | 0.302 |
Surface Complexation | Log K |
---|---|
mon_sOH2+ = mon _sOH + H+ | −4.5 |
mon_sO− + H+ = mon _sOH | 7.9 |
mon_w1OH2+ = mon_w1OH + H+ | −4.5 |
mon_w1O− + H+ = mon_w1OH | 7.9 |
mon_w2OH2+ = mon_w2OH + H+ | −6 |
mon_w2O− + H+ = mon_w2OH | 10.5 |
Primary Mineral | log(K) | Secondary Mineral | log(K) |
---|---|---|---|
Calcite | 1.85 | Siderite | 1.543 |
Smectite-Na | −34.62 | Dolomite | 2.524 |
Quartz | −3.75 | Ankerite | −1.035 |
K-feldspar | −22.91 | Illite | −47.33 |
Albite | −20.133 | Chlorite | 4.298 |
Anorthite | −19.19 | Kaolinite | −39.9 |
Gypsum | −4.472 | Anhydrite | −4.297 |
References
- Caporuscio, F.A.; Sauer, K.B.; Rock, M.J. Engineered Barrier System R&D and International Collaborations–LANL–FY21. In Technical Report by Los Alamos National Laboratory, Report Member: LA-UR-21-26538; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2021. [Google Scholar]
- Guillaume, D.; Neaman, A.; Cathelineau, M.; Mosser-Ruck, R.; Peiffert, C.; Abdelmoula, M.; Dubessy, J.; Villieras, F.; Michau, N. Experimental study of the transformation of smectite at 80 to 300 °C in the presence of Fe oxides. Clay Miner. 2004, 39, 17–34. [Google Scholar] [CrossRef]
- Cheshire, M.C.; Caporuscio, F.A.; Jove Colón, C.F.; Norskog, K.E. Fe-saponite growth on low-carbon and stainless steel in hydrothermal-bentonite experiments. J. Nucl. Mater. 2018, 511, 353–366. [Google Scholar] [CrossRef]
- Cheshire, M.C.; Caporuscio, F.A.; Jove Colón, C.; McCarney, M.K. Bentonite Clay evolution at elevated pressures and temperatures: An experimental study for generic nuclear repositories. Am. Mineral. 2014, 99, 1662–1675. [Google Scholar] [CrossRef]
- Fernández, R.; Torres, E.; Ruiz, A.I.; Cuevas, J.; Alonso, M.C.; Calvo JL, G.; Calvo, J.L.G.; Rodríguez, E.; Turrero, M.J. Interaction processes at the concrete-bentonite interface after 13 years of FEBEX-Plug operation. Part II: Bentonite contact. Phys. Chem. Earth Parts A/B/C 2017, 99, 49–63. [Google Scholar] [CrossRef]
- Marty, N.C.M.; Bildstein, O.; Blanc, P.; Claret, F.; Cochepin, B.; Gaucher, E.C.; Jacques, D.; Lartigue, J.-E.; Liu, S.; Mayer, K.U.; et al. Benchmarks for multicomponent reactive transport across a cement/clay interface. Comput. Geosci. 2015, 19, 635–653. [Google Scholar] [CrossRef]
- Necib, S.; Diomidis, N.; Keech, P.; Nakayama, M. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland). Swiss J. Geosci. 2017, 110, 329–342. [Google Scholar] [CrossRef]
- Bourdelle, F.; Truche, L.; Pignatelli, I.; Mosser-Ruck, R.; Lorgeoux, C.; Roszypal, C.; Michau, N. Iron–clay interactions under hydrothermal conditions: Impact of specific surface area of metallic iron on reaction pathway. Chem. Geol. 2014, 381, 194–205. [Google Scholar] [CrossRef]
- Bourdelle, F.; Mosser-Ruck, R.; Truche, L.; Lorgeoux, C.; Pignatelli, I.; Michau, N. A new view on iron-claystone interactions under hydrothermal conditions (90 °C) by monitoring in situ pH evolution and H2 generation. Chem. Geol. 2017, 466, 600–607. [Google Scholar] [CrossRef]
- Mon, A.; Samper, J.; Montenegro, L.; Turrero, M.J.; Torres, E.; Cuevas, J.; Fernández, R.; De Windt, L. Reactive transport models of the geochemical interactions at the iron/bentonite interface in laboratory corrosion tests. Appl. Clay Sci. 2023, 240, 106981. [Google Scholar] [CrossRef]
- Sauer, K.; Caporuscio, F.; Rock, M.; Cheshire, M.; Jove Colon, C. Hydrothermal interactions of Wyoming bentonite and Opalinus clay. Clay Clay Miner. 2020, 68, 144–160. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Berner, U.; Curti, E.; Hummel, W.; Kosakowski, G.; Thoenen, T. The Long Term Geochemical Evolution of the Nearfield of the HLW Repository (No. NTB-12-01); Paul Scherrer Institute (PSI): Villigen, Switzerland, 2014. [Google Scholar]
- Mon, A.; Samper, J.; Montenegro, L.; Naves, A.; Fernández, J. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay. J. Contam. Hydrol. 2017, 197, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.C.; Finck, N.; Metz, V.; Geckeis, H. Reactive Transport Modelling of the Long-Term Interaction between Carbon Steel and MX-80 Bentonite at 25 °C. Minerals 2021, 11, 1272. [Google Scholar] [CrossRef]
- Samper, J.; Zheng, L.; Montenegro, L.; Fernández, A.M.; Rivas, P. Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX “in situ” test. Appl. Geochem. 2008, 23, 1186–1201. [Google Scholar] [CrossRef]
- Zheng, L.; Samper, J.; Montenegro, L.; Fernández, A.M. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite. J. Hydrol. 2010, 386, 80–94. [Google Scholar] [CrossRef]
- Tournassat, C.; Steefel, C.I. Modeling diffusion processes in the presence of a diffuse layer at charged mineral surfaces: A benchmark exercise. Comput. Geosci. 2021, 25, 1319–1336. [Google Scholar] [CrossRef]
- Whittaker, M.L.; Lammers, L.N.; Carrero, S.; Gilbert, B.; Banfield, J.F. Ion exchange selectivity in clay is controlled by nanoscale chemical-mechanical coupling. Proc. Natl. Acad. Sci. USA 2019, 116, 22052–22057. [Google Scholar] [CrossRef]
- Bosch, J.A.; Qiao, Y.; Ferrari, A.; Laloui, L. Thermo-hydro-mechanical analysis of the complete lifetime of the bentonite barrier in the FEBEX in-situ test. Geomech. Energy Environ. 2023, 34, 100472. [Google Scholar] [CrossRef]
- Sánchez, M.; Pomaro, B.; Gens, A. Coupled THM analysis of a full-scale test for high-level nuclear waste and spent fuel disposal under actual repository conditions during 18 years of operation. Géotechnique 2023, 73, 418–438. [Google Scholar] [CrossRef]
- Sedighi, M.; Thomas, H.R.; Vardon, P.J. Reactive transport of chemicals in compacted bentonite under non-isothermal water infiltration. J. Geotech. Geoenvironmental Eng. ASCE 2018, 144, 04018075. [Google Scholar] [CrossRef]
- Samper, J.; Mon, A.; Montenegro, L. A revisited thermal, hydrodynamic, chemical and mechanical model of compacted bentonite for the entire duration of the FEBEX in situ test. Appl. Clay Sci. 2018, 160, 58–70. [Google Scholar] [CrossRef]
- Wilson, J. FEBEX-DP: Geochemical Modelling of Iron-Bentonite Interactions; Technical Report, Report Number: QRS-1713A-R3 (v1.3); Quintessa Ltd.: Henley-On-Thames, UK, 2017. [Google Scholar]
- Zheng, L.; Samper, J.; Montenegro, L. Inverse hydrochemical models of aqueous extracts tests. Phys. Chem. Earth Parts A/B/C 2008, 33, 1009–1018. [Google Scholar] [CrossRef]
- ENRESA. Full-Scale Engineered Barriers Experiment for a Deep Geological Repository in Crystalline Host Rock FEBEX Project; European Commission: Brussels, Belgium, 2000; p. 403.
- ENRESA. FEBEX: Final THG Modelling Report; PT 05-3/2006; ENRESA Technology Publisher: Madrid, Spain, 2006; 155p. [Google Scholar]
- Sánchez, M.; Gens, A.; Guimarães, L. Thermal–hydraulic–mechanical (THM) behaviour of a large-scale “in situ” heating experiment during cooling and dismantling. Can. Geotech. J. 2012, 49, 1169–1195. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, H.; Rutqvist, J.; Reagan, M.; Birkholzer, J.; Villar, M.V.; Fernández, A.M. The hydration of bentonite buffer material revealed by modeling analysis of a long-term in situ test. Appl. Clay Sci. 2020, 185, 105360. [Google Scholar] [CrossRef]
- Huertas, F.; dela Cruz, B.; Fuentes-Cantillana, J.L.; Alonso, E.; Linares, J.; Samper, J.; Elorza, J.; Svemar, C.; Salo, J.-P.; Muurinen, A.; et al. Full-Scale Engineered Barriers Experiment for a Deep Geological Repository for High-Level Waste in Crystalline Host Rock–Phase II; EUR 21922; Nuclear Science and Technology; European Commission: Brussels, Belgium, 2005; pp. 1–44.
- Bárcena, I.; Fuentes-Cantillana, J.L.; García-Siñeriz, J.L. Dismantling of the Heater 1 at the FEBEX In Situ Test. Description of Operations. Enresa Technical Report 9/2003. 2003. Available online: https://www.osti.gov/etdeweb/biblio/20449105 (accessed on 22 November 2023).
- Garcia-Sineriz, J.L.; Abós, H.; Martínez, V.; De la Rosa, C.; Mäder, U.; Kober, F. FEBEX-DP Dismantling of the heater 2 at the FEBEX “in situ” test. In Nagra Arbeitsbericht NAB 16-011; Nagra: Wettingen, Switzerland, 2016; p. 92. [Google Scholar]
- Fernández, A.M.; Baeyens, B.; Bradbury, M.; Rivas, P. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier. Phys. Chem. Earth Parts A/B/C 2004, 29, 105–118. [Google Scholar] [CrossRef]
- Fernández, A.M.; Sánchez-Ledesma, D.M.; Melón, A.; Robredo, L.M.; Rey, J.J.; Labajo, M.; Clavero, M.A.; Carretero, S.; González, A.E. Thermo-Hydro-Chemical (THC) Behaviour of a Spanish Bentonite after Dismantling Heater#1 and Heater#2 of the FEBEX In Situ Test at the Grimsel Test Site; Nagra Working Reports; European Union: Wettingen, Switzerland, 2018; pp. 16–25. [Google Scholar]
- Zheng, L.; Samper, J.; Montenegro, L. A coupled THC model of the FEBEX “in situ” test with bentonite swelling and chemical and thermal osmosis. J. Contam. Hydrol. 2011, 126, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Villar, M.V.; Fernández, A.M.; Romero, E.; Dueck, A.; Cuevas, J.; Plötze, M.; Kaufhold, S.; Dohrmann, R.; Iglesias, R.J.; Sakaki, T.; et al. FEBEX-DP Post-Mortem THM/THG Analysis Report, Nagra Technical Report: NAB 16–17 Rev.1. 2018. Available online: https://www.research-collection.ethz.ch/handle/20.500.11850/463965(accessed on 22 November 2023).
- Pérez-Estaún, A.; Carbonell, R.; Martinez-Landa, L.; Dentz, M.; Suso, J.; Carretero, G.; Bueno, J.; Buil, B.; Garralón, A.; Gómez, P.; et al. New boreholes to investigate the bentonite/crystalline rock interface in the FEBEX tunnel (Grimsel, Switzerland). In 1st Annual Workshop Proceedings of Integrated Project FUNMIG, Stockholm, Sweden, 21–23 November 2006; 6TH EC F-FUNMIG IP. CEA-R-6122; CEA: Budapest, Hungary, 2006; pp. 157–162. [Google Scholar]
- Xu, T.; Sonnenthal, E.; Spycher, N.; Zheng, L. TOUGHREACT V3. 0-OMP Reference Manual: A Parallel Simulation Program for Non-Isothermal Multiphase Geochemical Reactive Transport; University of California, Berkeley: Berkeley, CA, USA, 2014. [Google Scholar]
- Itasca. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimensions; Version 4.0; Itasca Consulting Group: Minneapolis, MN, USA, 2009. [Google Scholar]
- Ramírez, S.; Cuevas, J.; Vigil, R.; Leguey, S. Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions. Appl. Clay Sci. 2002, 21, 257–269. [Google Scholar] [CrossRef]
- Garralón, A.; Gómez, P.; Turrero, M.J.; Torres, E.; Buil, B.; Sánchez, L. Hydrogeochemical characterisation of the groundwater in the FEBEX gallery. In Arbeitsbericht NAB 16-14; Nagra: Wettingen, Switzerland, 2017. [Google Scholar]
- Siitari-Kauppi, M.; Leskinen, A.; Kelokaski, M.; Togneri, L.; Alonso, U.; Missana, T.; García-Gutiérrez, M.; Patelli, A. Physical Matrix Characterisation: Studies of Crystalline Rocks and Consolidated Clays by PMMA Method and Electron Microscopy as Support of Diffusion Analyses. CIEMAT Technical Report, 1127. December 2007. Available online: https://www.osti.gov/etdeweb/biblio/20988489 (accessed on 22 November 2023).
- Wolery, T.J. EQ3/6, A Software Package for Geochemical Modelling of Aqueous Systems; Version 7.2; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1993.
- Bradbury, M.H.; Baeyens, B. Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 2005, 69, 875–892. [Google Scholar] [CrossRef]
- Zheng, L.; Rutqvist, J.; Birkholzer, J.T.; Liu, H.-H. On the impact of temperatures up to 200 °C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling. Eng. Geol. 2015, 197, 278–295. [Google Scholar] [CrossRef]
- Rutqvist, J.; Ijiri, Y.; Yamamoto, H. Implementation of the Barcelona Basic Model into TOUGH–FLAC for simulations of the geomechanical behavior of unsaturated soils. Comput. Geosci. 2011, 37, 751–762. [Google Scholar] [CrossRef]
Event | Date | Time (Day) | Time (Year) |
---|---|---|---|
Commencement of heating | 27 February 1997 | 0 | 0.0 |
Heater #1 was switched off | 28 February 2002 | 1827 | 5.0 |
# Bentonite sampling | 2 May 2002 | 1930 | 5.3 |
Heater #2 was switched off | 24 April 2015 | 6630 | 18.1 |
$ Bentonite sampling | 3 July 2015 | 6700 | 18.3 |
Mineral | FEBEX Bentonite | Granite |
---|---|---|
Calcite | 0.008 | 0 |
Smectite | 0.925 | 0 |
Gypsum | 0.003 | 0 |
Quartz | 0.03 | 0.373 |
Cristobalite | 0.01 | 0 |
K-Feldspar | 0.01 | 0.353 |
Plagioclase | 0.01 | 0.272 |
Dolomite | 0.0 | 0 |
Illite | 0.0 | 0 |
Kaolinite | 0.0 | 0 |
Siderite | 0.0 | 0 |
Ankerite | 0.0 | 0 |
Anhydrite | 0.0 | 0 |
Chlorite | 0.0 | 0 |
EBS Bentonite: FEBEX | Granite | |
---|---|---|
pH | 7.72 | 8.35 |
Cl− | 1.60 × 10−1 | 1.31 × 10−5 |
SO4−2 | 3.20 × 10−2 | 7.86 × 10−5 |
HCO3− | 4.1 × 10−4 | 3.97 × 10−4 |
Ca+2 | 2.2 × 10−2 | 1.81 × 10−4 |
Mg+2 | 2.3 × 10−2 | 1.32 × 10−6 |
Na+ | 1.3 × 10−1 | 3.76 × 10−4 |
K+ | 1.7 × 10−3 | 7.80 × 10−6 |
Fe+2 | 2.06 × 10−8 | 2.06 × 10−8 |
SiO2(aq) | 1.1 × 10−4 | 6.07 × 10−4 |
AlO2− | 1.91 × 10−9 | 3.89 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Fernández, A.M. Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test. Minerals 2023, 13, 1522. https://doi.org/10.3390/min13121522
Zheng L, Fernández AM. Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test. Minerals. 2023; 13(12):1522. https://doi.org/10.3390/min13121522
Chicago/Turabian StyleZheng, Liange, and Ana María Fernández. 2023. "Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test" Minerals 13, no. 12: 1522. https://doi.org/10.3390/min13121522