Sources of Metallogenic Materials of the Saima Alkaline Rock-Hosted Niobium–Tantalum Deposit in the Liaoning Region: Evidence from the Sr-Nd-Pb and Li Isotopes
<p>Geotenctonic location map. (<b>A</b>) Geological sketch map (modified from reference [<a href="#B9-minerals-13-01443" class="html-bibr">9</a>]). (<b>B</b>) Distribution map of rare earth deposits in northeast China (Modified from reference [<a href="#B9-minerals-13-01443" class="html-bibr">9</a>]). (<b>C</b>) Geological map of the Saima deposit (Modified from reference [<a href="#B5-minerals-13-01443" class="html-bibr">5</a>]). 1. Quaternary alluvium; 2. Jurassic Beimiao formation; 3. Huaziyu formation of Liaohe group; 4. Late Triassic Saima diamictite; 5. Late Triassic nepheline syenite; 6. Late Triassic biotite–nepheline syenite; 7. Angular unconformity; 8. parallel displacement fault; 9. Nb ore body and number; 10. Jurassic Zhuanshanzi formation; 11. Wangjiagou rockbody of the Liaohe group; 12. Late-Triassic brown ijolite syenite; 13. Late Triassic aegirine syenite; 14. Late Triassic grass—green aegirine ijolite syenite; 15. Late Triassic intrusive rock (nepheline phonolite); 16. Supposed fault; 17. Sample location.</p> "> Figure 2
<p>Field and photomicrographs of the Saima deposit. (<b>a</b>) Coarse medium-grained biotite nepheline syenite. (<b>b</b>) Aegirine nepheline syenite. (<b>c</b>) Aegirine nepheline syenite. (<b>d</b>) Biotite nepheline syenite.</p> "> Figure 3
<p>Backscatter images of niobium-bearing minerals. (<b>a</b>,<b>b</b>) Fersmite; (<b>c</b>,<b>d</b>) Betafite; (<b>e</b>,<b>f</b>) Loparite.</p> "> Figure 4
<p>Geochemical diagrams showing the major elements of aegirine nepheline syenite and nepheline syenite in the Saima Deposit. (<b>a</b>) TAS diagram (after [<a href="#B29-minerals-13-01443" class="html-bibr">29</a>]). (<b>b</b>) A/NK-A/CNK diagram (after [<a href="#B30-minerals-13-01443" class="html-bibr">30</a>]). (<b>c</b>) K<sub>2</sub>O-SiO<sub>2</sub> diagram (after [<a href="#B31-minerals-13-01443" class="html-bibr">31</a>]). (<b>d</b>) FeOt/(FeOt + MgO)-SiO<sub>2</sub> diagram of ore-forming plutons of the Saima and Baerzhe deposits (after [<a href="#B32-minerals-13-01443" class="html-bibr">32</a>]).</p> "> Figure 5
<p>Primitive mantle-normalized trace element spider diagrams (<b>a</b>) and chondrite-normalized REE patterns (<b>b</b>) of the aegirine nepheline syenite and nepheline syenite in the Saima deposit [<a href="#B38-minerals-13-01443" class="html-bibr">38</a>]. The grey field is the data from Ju [<a href="#B9-minerals-13-01443" class="html-bibr">9</a>].</p> "> Figure 6
<p>Magmatic source area diagrams of ore-forming rock plutons in the Saima (<b>a</b>) modified from [<a href="#B49-minerals-13-01443" class="html-bibr">49</a>]; (<b>b</b>,<b>c</b>) modified from [<a href="#B50-minerals-13-01443" class="html-bibr">50</a>]) (EMI, EMII, HIMU and Primitive Mantle after [<a href="#B51-minerals-13-01443" class="html-bibr">51</a>]; lower crust, mature arc and upper crust after Zartman et al. [<a href="#B50-minerals-13-01443" class="html-bibr">50</a>]).</p> "> Figure 7
<p>Plots of Li isotope fractionation: Nb/Ta-Zr/Hf (<b>a</b>), whole-rock δ<sup>7</sup>Li versus Li content (<b>b</b>), whole-rock δ<sup>7</sup>Li-Nb/Ta (<b>c</b>), and whole-rock δ<sup>7</sup>Li-Zr/Hf plots (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Regional Geological Setting
3. Analytical Methods
3.1. Mineral Compositions
3.2. Major- and Trace-Element Geochemistry
3.3. Sr-Nd-Pb Isotopic Analyses
3.4. Li Isotopes in Whole Rocks and Minerals
4. Analytical Results
4.1. Petrographic Characteristics
4.1.1. Aegirine Nepheline Syenite
4.1.2. Nepheline Syenite
4.2. Mineralogical Features
- A.
- Fersmite
- B.
- Betafite
- C.
- Loparite
4.3. Lithogeochemical Characteristics
4.3.1. Major Elements
4.3.2. Trace Elements
4.4. Sr-Nd-Pb Isotopes
4.5. Whole-Rock and Mineral Li Isotopic Compositions
5. Discussion
5.1. Material Sources
5.2. Li Isotopic Characteristics of the Saima Alkaline Pluton and Their Implications
5.2.1. Li Isotope Fractionation during the Magmatic Differentiation
5.2.2. Diffusion-Driven Li Isotope Fractionation
5.2.3. Indications for the Mineralization of Rare Metals
6. Conclusions
- (1)
- The Saima deposit, located within potassium-rich, low-sodium peraluminous alkaline rocks, is dominated by aegirine nepheline syenite and nepheline syenite. The electron probe results show that the main niobium-bearing minerals in the Saima deposit are loparite, betafite, and fersmite, which are mainly found in the aegirine nepheline syenite, while only fersmite is identified within the biotite nepheline syenite. Additionally, as one transitions from REE-rich to niobium–tantalum-rich alkaline rocks, the presence of titanium-bearing minerals diminishes, and the texture shifts from coarse-grained to intermediate and fine-grained structures.
- (2)
- All samples display a pronounced, indicative of LREE enrichment and HREE depletion. Such patterns suggest that deep hydrothermal fluids from both the crust and mantle contributed to the crystallization of these samples. Both the aegirine nepheline syenite and nepheline syenite in the Saima Deposit exhibit consistent Sr-Nd-Pd isotopic characteristics, encompassing elevated ISr values, negative εNd (t) values, and two-stage model ages spanning 1967–2047 Ma. From these data, it can be deduced that the material sources of the Saima Deposit are tied to an enriched mantle with some degree of crustal material mixing. The material sources of the aegirine nepheline syenite and nepheline syenite align with the broader regional sources of the Saima Deposit.
- (3)
- The Li isotope fractionation observed during the Saima pluton’s formation can likely be attributed to the faster diffusion rate of 6Li compared to 7Li during non-equilibrium fluid–rock interactions. Distinct magmatic differentiation impacts on Li isotope fractionation emerge as a crucial mechanism, driving the varied mineralization of rare earth elements, zirconium, and niobium in rare-metal alkaline rocks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Giester, G.; Ding, K.; Tillmanns, E. Hezuolinite, (Sr, REE)4Zr(Ti, Fe3+, Fe2+)2Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. Eur. J. Mineral. 2012, 24, 189–196. [Google Scholar] [CrossRef]
- Wooley, A.R. Alkaline Rocks and Carbonatites of the World. Part3: Africa; The Geological Society Publishing House: London, UK, 2001. [Google Scholar]
- Greenland Minerals and Energy LTD. Greenland Minerals 2021 AGM Presentation. Available online: http://wcsecure.welink.com.au/pdf/GGG/02504612.pdf (accessed on 20 March 2022).
- Sheard, E.R.; Williams-Jones, A.E.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Chen, Z.B.; Fan, J.; Guo, Z.T.; He, Z.Q.; Wang, S.L.; Ren, K.C. Saima Alkaline Rocks and Metallogenesis; Atomic Energy Press: Beijing, China, 1996; pp. 1–19, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Zhu, Z.; Chen, C.; Zhang, S.; Sun, X.; Yang, Z.; Liang, W. Geochemical and mineralogical characteristics of weathered ore in the Dalucao REE deposit, Mianning-Dechang REE Belt, western Sichuan Province, southwestern China. Ore Geol. Rev. 2015, 71, 437–456. [Google Scholar] [CrossRef]
- Wu, B.; Wang, R.C.; Yang, J.H.; Wu, F.Y.; Zhang, W.L.; Gu, X.P.; Zhang, A.C. Zr and REE mineralization in sodic lujauvrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos 2016, 262, 232–246. [Google Scholar] [CrossRef]
- Wu, B.; Wang, R.C.; Guo, G.L.; Song, Z.T. Compositional variations of rinkite in the Saima alkaline complex, Liaoning Province, and its implications for alkaline magma evolution. Earth Sci. 2020, 45, 467–478, (In Chinese with English abstract). [Google Scholar]
- Ju, N.; Ren, Y.-S.; Zhang, S.; Bi, Z.-W.; Shi, L.; Zhang, D.; Shang, Q.-Q.; Yang, Q.; Wang, Z.-G.; Gu, Y.-C.; et al. Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China. Minerals 2019, 9, 80. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, J.; Zhang, H.; He, B. U-Pb Geochronology and Geochemistry of Zircon from the Saima-Bailinchuan Alkaline Intrusion in Eastern Liaoning, China. Acta Geol. Sin. Engl. Ed. 2014, 88, 959–962. [Google Scholar] [CrossRef]
- Ma, D.Z.; Liu, Y. Nb mineralization in the nepheline syenite in the Saima area of the North China Craton, China. Ore Geol. Rev. 2023, 152, 105247. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Marks, M.A.; Liu, Z.C.; Zhou, Q.; Ge, W.C.; Yang, J.S.; Zhao, Z.F.; Mitchell, R.H.; Markl, G. In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chem. Geol. 2010, 273, 8–34. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Yang, J.H.; Sun, J.F.; Zhang, J.H.; Wu, F.Y. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. J. Asian Earth Sci. 2016, 117, 184–207. [Google Scholar] [CrossRef]
- Wu, B.; Gu, X.P.; Rao, C.; Wang, R.C.; Xing, X.Q.; Zhong, F.J.; Wan, J.J.; Bonnetti, C. Fluorsigaiite, Ca2S3(PO4)3F, a new mineral of the apatite supergroup from the Saima alkaline complex, Liaoning Province, China. Mineral. Mag. 2022, 86, 940–947. [Google Scholar] [CrossRef]
- Wu, B.; Gu, X.P.; Rao, C.; Wang, R.C.; Xing, X.Q.; Wan, J.J.; Bonnetti, C. Gysinite-(La), PbLa(CO3)2(OH)·H2O, a new rare earth mineral of the ancylite group from the Saima alkaline complex, Liaoning Province, China. Mineral. Mag. 2023, 87, 143–150. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, J.; Lai, S.; Long, X.; Ju, Y.; Wang, X.; Zhu, Y. Origin of Late Permian amphibole syenite from the Panxi area, SW China: High degree fractional crystallization of basaltic magma in the inner zone of the Emeishan mantle plume. Int. Geol. Rev. 2020, 62, 210–224. [Google Scholar] [CrossRef]
- Abdel-Karim, A.A.; Azer, M.; Sami, M. Petrogenesis and tectonic implications of the Maladob ring complex in the South Eastern Desert, Egypt: New insights from mineral chemistry and whole-rock geochemistry. Int. J. Earth Sci. 2021, 110, 53–80. [Google Scholar] [CrossRef]
- Yang, H.; Lai, S.C.; Qin, J.F.; Zhu, R.Z.; Zhao, S.W.; Zhu, Y.; Zhang, F.Y.; Zhang, Z.Z.; Wang, X.Y. Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and geological implications. Int. Geol. Rev. 2021, 63, 2037–2056. [Google Scholar] [CrossRef]
- Choi, E.; Fiorentini, M.L.; Giuliani, A.; Foley, S.F.; Maas, R.; Graham, S. Petrogenesis of Proterozoic alkaline ultramafic rocks in the Yilgarn Craton, Western Australia. Gondwana Res. 2021, 93, 197–217. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Hoernle, K.; Hauff, F.; Garbe-Schönberg, D.; Pfänder, J. Geochemistry and petrogenesis of alkaline rear-arc magmatism in NW Iran. Lithos 2022, 412, 106590. [Google Scholar] [CrossRef]
- Fu, R.X.; Li, N.B.; Niu, H.C.; Shan, Q.; Zhao, X.; Liu, K. Magmatic evolution and rare earth element enrichment of Saima alkaline complex, Liaoning, China. Acta Petrol. Sin. 2023, 39, 2951–2967, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhang, H.F.; Chu, Z.Y.; Xie, L.W.; Wu, F.Y. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collecter ICP-MS and TIMS. Int. J. Mass Spectrom. 2010, 290, 120–126. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Liu, Z.C.; Chu, Z.Y.; Xie, L.W.; Yang, J.H. Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. J. Anal. At. Spectrom. 2012, 27, 516. [Google Scholar] [CrossRef]
- Su, A.N.; Tian, S.H.; Li, Z.Z.; Hou, Z.Q.; Hou, K.J.; Hu, W.J.; Gao, Y.G.; Yang, D.; Li, Y.H.; Yang, Z.S. MC-ICP-MS high precision determination of Li isotope analysis method. Earth Front. 2011, 18, 304–314, (In Chinese with English abstract). [Google Scholar]
- Tian, S.H.; Hu, W.J.; Hou, Z.Q.; Mo, X.X.; Yang, Z.S.; Zhao, Y.; Hou, K.J.; Zhu, D.C.; Su, A.N.; Zhang, Z.Q. Mantle source region and petrogenesis of the Miocene Selip superpotassic volcanic rocks in the western part of Lhasa Block: Li isotopic restriction. Depos. Geol. 2012, 31, 791–812, (In Chinese with English abstract). [Google Scholar]
- Tian, S.; Hou, Z.; Mo, X.; Tian, Y.; Zhao, Y.; Hou, K.; Yang, Z.; Hu, W.; Li, X.; Zhang, Y. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet. Gondwana Res. 2020, 77, 168–183. [Google Scholar] [CrossRef]
- Millot, R.; Guerrot, C.; Vigier, N. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC ICP-MS. Geostand. Geoanalytical Res. 2004, 28, 153–159. [Google Scholar] [CrossRef]
- Garth, P.R. Perovskites, niobium perovskites, and Ba-Fe manganites from the Schryburt Lake carbonate complex in northwestern Ontario, Canada. J. Geosci. Transl. 1995, 12, 1–6. [Google Scholar]
- Middlemost, E.A.K. Naming Materials in the Magma/Igneous Rock System. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Streckeisen, A. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Middlemost, E. Magmas and Magmatic Rocks; Addison-Wesley Longman Ltd.: Boston, MA, USA, 1985. [Google Scholar]
- Frost, C.D.; Frost, B.R. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Barth, M.G.; McDonough, W.F.; Rudnick, R.L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Wu, C.B.; Hou, G.S.; Xiang, S.H. Characteristics of Yuchi Syenites from East Qinling and the Rare Metal Elements, Rare Earth Element Mineralization. Geol. Sci. Technol. Inf. 2017, 36, 58–64, (In Chinese with English abstract). [Google Scholar]
- Shi, Y.; Liu, Z.; Liu, Y.; Shi, S.; Wei, M.; Yang, J.; Gao, T. Late Paleozoic-Early Mesozoic southward subduction-closure of the Paleo-Asian Ocean: Proof from geochemistry and geochronology of Early Permian-Late Triassic felsic intrusive rocks from North Liaoning, NE China. Lithos 2019, 346, 105165. [Google Scholar] [CrossRef]
- Linnen, R.L.; Samson, I.M.; Williams-Jones, A.E. Geochemistry of the Rare-Earth Element, Nb, Ta, Hf and Zr Deposits. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier Science Press: Amsterdam, The Netherlands, 2014; Volume 13, pp. 543–568. [Google Scholar]
- Guo, D.X.; Liu, Y. Occurrence and geochemistry of bastnasite in carbonatite-related REE deposit, Mianning-Dechang REE belt, Sichuan Province, SW China. Ore Geol. Rev. 2019, 107, 266–282. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society, Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, Y.; Tian, S.; Yang, Z.; Xie, Y. Formation of carbonatite-related giant rare-earth-element deposit by the recycling of marine sediments. Sci. Rep. 2015, 5, 10231. [Google Scholar] [CrossRef]
- Liu, S.; Fan, H.R.; Yang, K.F.; Hu, F.F.; Rusk, B.; Liu, X.; Li, X.C.; Yang, Z.Y.; Wang, Q.W.; Wang, K.Y. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit: Implication for REE mineralization. Ore Geol. Rev. 2018, 94, 290–309. [Google Scholar] [CrossRef]
- Zhou, H.S.; Ma, C.Q.; Zhang, C.; Chen, L.; Zhang, J.Y.; She, Z.B. Yanshanian aluminous A-type granitoids in the Chunshui of Biyang, south margin of North China Craton: Implication from petrology, geochronology and geochemistry. Acta Pet. Sin. 2008, 24, 49–64, (In Chinese with English abstract). [Google Scholar]
- Yang, J.H.; Chung, S.L.; Wilde, S.A.; Wu, F.Y.; Chu, M.F.; Lo, C.H.; Fan, H.R. Petrogenesis of postorogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol. 2005, 214, 99–125. [Google Scholar] [CrossRef]
- Liu, Y.; Chakhmouradian, A.R.; Hou, Z.; Song, W.; Kynický, J. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry. Miner. Depos. 2019, 54, 701–718. [Google Scholar] [CrossRef]
- Zhao, J.X.; Shiraishik, A.; Ellis, D.J.; Sheraton, J.W. Geochemical and isotopic studies from the Yamato mountains, East Antarctica: Implication for the origin of syenitic magmas. Geochim. Cosmochim. Acta 1995, 59, 1363–1385. [Google Scholar] [CrossRef]
- Yang, F.; Pang, X.; Li, B.; Chen, J.; Han, J.; Liu, M.; Yang, Z.; Wang, Y.; Shi, Y. Geological, fluid inclusion, H-O-S-Pb isotope constraints on the genesis of the Erdaogou gold deposit, Liaoning Province. J. Earth Sci. 2021, 32, 103–115. [Google Scholar] [CrossRef]
- Yan, G.H.; Xu, B.L.; Mu, B.L. Nd, Sr and Pb Isotopic characteristics and significance of Mesozoic alkali-rich intrusions in northern China. Bull. Mineral. Petrol. Geochem. 2001, 20, 234–236. [Google Scholar]
- Ren, K.X.; Yan, G.H.; Cai, J.H.; Mu, B.L.; Li, F.T.; Chu, Z.Y. Nd, Sr and Pb isotopic geochemistry of Paleo-Mesoproterozoic alkaline-rich intrusions from the northern part of the North China Craton: Evidence of the lithospheric mantle enrichment. Acta Petrol. Sin. 2006, 22, 2933–2944, (In Chinese with English abstract). [Google Scholar]
- Ju, N.; Zhang, S.; Bi, Z.W.; Ren, Y.S.; Shi, L.; Zhang, D.; Gu, Y.C.; Sun, Q.S. Geochemical characteristics and geological significance of metallogenic rock bodies of Saima niobium deposit in Fengcheng, Liaoning. Glob. Geol. 2019, 38, 130–139, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Xiong, X.L.; Li, C.D. Adakite and Grantie: Challenge and Opportunity; Chian Land Pres: Beijing, China, 2008; pp. 107–129, (In Chinese with English abstract). [Google Scholar]
- Zartman, R.E.; Doe, R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Vasyukova, O.V. Niobium, Critical Metal, and Progeny of the Mantle. Econ. Geol. 2022, 118, 837–855. [Google Scholar] [CrossRef]
- Van Lichtervelde, M.; Holtz, F.; Hanchar, J.M. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contrib. Mineral. Petrol. 2010, 160, 17–32. [Google Scholar] [CrossRef]
- Barnes, E.M.; Weis, D.; Groat, L.A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 2012, 132, 21–36. [Google Scholar] [CrossRef]
- Icenhower, J.; London, D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am. Mineral. 1995, 80, 1229–1251. [Google Scholar] [CrossRef]
- Magna, T.; Novák, M.; Cempírek, J.; Janoušek, V.; Ullmann, C.V.; Wiechert, U. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites. Geology 2016, 44, 655–658. [Google Scholar] [CrossRef]
- Wunder, B.; Meixner, A.; Romer, R.L.; Feenstra, A.; Schettler, G.; Heinrich, W. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chem. Geol. 2007, 238, 277–290. [Google Scholar] [CrossRef]
- Sartbaeva, A.; Wells, S.A.; Redfern, S.A.T. Li+ ion motion in quartz and β-eucryptite studied by dielectric spectroscopy and atomistic simulations. J. Phys. Condens. Matter 2004, 16, 8173. [Google Scholar] [CrossRef]
- Maneta, V.; Baker, D.R.; Minarik, W. Evidence for lithium-aluminosilicate supersaturation ofpegmatite-forming melts. Contrib. Mineral. Petrol. 2015, 170, 4. [Google Scholar] [CrossRef]
- Maneta, V.; Baker, D.R. Exploring the effect of lithium on pegmatitic textures: An experimental study. Am. Mineral. 2014, 99, 1383–1403. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, W.B.; Niu, H.C.; Li, N.B.; Shan, Q.; Fan, G.Q.; Jiang, Z.Y. Two discrete stages of fenitization in the Lizhuang REE deposit, SW China: Implications for REE mineralization. Ore Geol. Rev. 2021, 133, 104090. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.L.; He, P.L.; Li, W.X.; Yu, Y.; Chen, L. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta–Nb bearing granites. Ore Geol. Rev. 2015, 65, 793–810. [Google Scholar] [CrossRef]
Sample | SMK-1-1 | SMK-1-2 | SMK-6-1 | SMK-6-2 | SMK-2-1 | SMK-2-2 | SMK-4-1 | SMK-4-2 | SMK-3-1 | SMK-3-2 | SMW-4-1 | SMW-4-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minerals | Loparite | Betafite | Fersmite | |||||||||
Al2O3 | 0.98 | 1.67 | 1.64 | 2.11 | 0.36 | 0.33 | 1.46 | 0.57 | 1.34 | 0.61 | 0.10 | 0.16 |
SiO2 | 2.55 | 3.94 | 4.21 | 3.98 | 5.13 | 3.27 | 6.02 | 5.43 | 3.65 | 2.87 | 2.05 | 2.34 |
TiO2 | 34.69 | 33.78 | 34.60 | 35.39 | 16.28 | 13.84 | 13.06 | 12.73 | 7.86 | 7.60 | 7.61 | 8.78 |
CaO | 0.94 | 0.87 | 1.88 | 1.87 | 2.12 | 2.65 | 12.46 | 10.79 | 12.15 | 14.62 | 14.46 | 14.72 |
K2O | 0.94 | 0.79 | 1.31 | 1.74 | 4.33 | 1.51 | — | — | 0.54 | 0.62 | 1.39 | 1.59 |
Nb2O5 | 8.70 | 8.59 | 6.59 | 6.23 | 50.36 | 53.72 | 32.80 | 34.68 | 51.55 | 52.64 | 56.83 | 53.54 |
Y2O3 | 7.81 | 9.94 | 10.29 | 9.79 | — | — | — | — | 0.79 | 0.83 | — | — |
Ce2O3 | 21.84 | 20.61 | 18.92 | 18.94 | — | — | 5.73 | 5.92 | 2.44 | 2.54 | 2.65 | 2.73 |
MnO | 2.04 | 3.92 | — | — | — | — | — | — | — | — | — | — |
La2O3 | 13.98 | 10.60 | 9.32 | 8.77 | — | — | — | — | 2.35 | 2.77 | 1.43 | 1.73 |
Pr2O3 | 3.74 | 3.68 | — | — | — | — | — | — | — | — | — | — |
PbO | — | — | 3.80 | 3.66 | 6.08 | 8.89 | 1.90 | 2.16 | — | — | 1.21 | 1.25 |
ThO2 | — | — | 1.78 | 1.59 | — | — | — | — | — | — | — | — |
ZrO2 | — | — | 3.55 | 3.53 | — | — | — | — | 2.07 | 1.91 | 3.57 | 4.01 |
UO2 | — | — | — | — | 12.64 | 13.99 | 18.67 | 18.83 | 8.19 | 7.56 | 3.59 | 3.74 |
Na2O | — | — | — | — | 0.96 | - | — | — | — | — | — | — |
SrO | — | — | — | — | — | — | 3.92 | 5.58 | 3.13 | 2.72 | 2.96 | 3.29 |
MgO | — | — | — | — | — | — | 0.12 | - | — | — | — | — |
Ta2O5 | — | — | — | — | — | — | 1.14 | 0.86 | — | — | 0.62 | 0.52 |
ThO2 | — | — | — | — | — | — | — | — | 0.44 | 0.98 | — | — |
BaO | — | — | — | — | — | — | — | — | 4.05 | 1.89 | — | — |
Total | 98.21 | 98.40 | 97.9 | 97.6 | 98.25 | 98.19 | 96.14 | 96.69 | 99.76 | 99.33 | 98.49 | 98.40 |
Calculated in units of 2 oxygen atoms | ||||||||||||
Al | 0.03 | 0.06 | 0.06 | 0.07 | 0.02 | 0.02 | 0.10 | 0.04 | 0.09 | 0.04 | 0.01 | 0.01 |
Si | 0.08 | 0.12 | 0.13 | 0.12 | 0.29 | 0.19 | 0.34 | 0.31 | 0.21 | 0.16 | 0.12 | 0.13 |
Ti | 0.78 | 0.76 | 0.78 | 0.80 | 0.70 | 0.59 | 0.56 | 0.54 | 0.34 | 0.33 | 0.33 | 0.38 |
Ca | 0.03 | 0.03 | 0.12 | 0.06 | 0.13 | 0.16 | 0.76 | 0.66 | 0.74 | 0.89 | 0.88 | 0.90 |
K | 0.04 | 0.03 | 0.05 | 0.07 | 0.31 | 0.11 | — | — | 0.04 | 0.05 | 0.10 | 0.12 |
Nb | 0.12 | 0.12 | 0.09 | 0.08 | 1.29 | 1.38 | 0.84 | 0.89 | 1.33 | 1.36 | 1.46 | 1.38 |
Y | 0.12 | 0.16 | 0.16 | 0.16 | — | — | — | — | 0.02 | 0.03 | — | — |
Ce | 0.24 | 0.23 | 0.21 | 0.21 | 0.00 | — | 0.12 | 0.12 | 0.05 | 0.05 | 0.06 | 0.06 |
Mn | 0.05 | 0.10 | — | — | — | — | — | — | — | — | — | — |
La | 0.15 | 0.12 | 0.10 | 0.10 | — | — | — | — | 0.05 | 0.06 | 0.03 | 0.04 |
Pr | 0.04 | 0.04 | — | — | — | — | — | — | — | — | — | — |
Pb | — | — | 0.03 | 0.03 | 0.09 | 0.14 | 0.03 | 0.03 | — | — | 0.02 | 0.02 |
Th | — | — | 0.01 | 0.01 | — | — | — | — | — | — | — | — |
Zr | — | — | 0.05 | 0.05 | — | — | — | — | 0.06 | 0.05 | 0.10 | 0.11 |
U | — | — | — | — | 0.16 | 0.18 | 0.24 | 0.24 | 0.10 | 0.19 | 0.05 | 0.05 |
Na | — | — | — | — | 0.11 | — | — | — | — | — | ||
Sr | — | — | — | — | — | — | 0.13 | 0.18 | 0.10 | 0.09 | 0.10 | 0.11 |
Mg | — | — | — | — | — | — | 0.01 | - | — | — | — | — |
Ta | — | — | — | — | — | — | 0.02 | 0.01 | — | — | 0.01 | 0.01 |
Th | — | — | — | — | — | — | — | — | 0.01 | 0.01 | — | — |
Ba | — | — | — | — | — | — | — | — | 0.09 | 0.04 | — | — |
Sample | SMK-1 | SMK-2 | SMK-3 | SMK-4 | SMK-5 | SMK-6 | SMW-1 | SMW-2 | SMW-3 | SMW-4 | SMW-5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Rock Name | Aegirine nephline syenite | Nepheline syenite | |||||||||
SiO2 | 51.1 | 51.5 | 49.7 | 53.3 | 54.0 | 46.8 | 53.6 | 51.7 | 54.6 | 54.5 | 53.2 |
Al2O3 | 15.2 | 15.9 | 16.9 | 21.2 | 20.3 | 20.4 | 19.4 | 20.3 | 7.34 | 20.6 | 21.1 |
TFe2O3 | 12.6 | 11.6 | 8.62 | 4.24 | 4.74 | 13.0 | 7.46 | 8.38 | 20.9 | 4.09 | 4.71 |
MgO | 0.44 | 0.20 | 2.05 | 0.28 | 0.60 | 0.05 | 0.05 | 0.03 | 0.04 | 0.37 | 0.01 |
CaO | 1.03 | 1.00 | 2.59 | 0.55 | 0.61 | 0.05 | 0.74 | 0.94 | 0.14 | 0.36 | 1.24 |
Na2O | 10.0 | 9.82 | 2.98 | 4.41 | 3.74 | 4.97 | 6.21 | 6.02 | 9.77 | 3.63 | 5.66 |
K2O | 5.98 | 6.49 | 11.6 | 12.2 | 13.3 | 7.03 | 9.02 | 8.83 | 4.89 | 12.8 | 11.1 |
MnO | 0.46 | 0.43 | 0.29 | 0.23 | 0.22 | 0.45 | 0.23 | 0.24 | 0.45 | 0.23 | 0.17 |
TiO2 | 1.37 | 1.31 | 3.49 | 0.68 | 0.75 | 1.43 | 0.24 | 0.24 | 1.12 | 0.54 | 1.10 |
P2O5 | 0.02 | 0.02 | 0.45 | 0.04 | 0.11 | 0.01 | 0.01 | 0.03 | 0.01 | 0.05 | 0.01 |
LOI | 1.72 | 1.67 | 1.62 | 2.84 | 1.46 | 5.56 | 3.00 | 3.12 | 0.70 | 2.80 | 1.51 |
Ba | 458 | 484 | 2187 | 1918 | 3661 | 246 | 664 | 750 | 197 | 2017 | 970 |
Cr | 27.2 | 32.2 | 21.0 | 31.3 | 26.3 | 21.7 | 21.3 | 29.5 | 21.0 | 26.4 | 28.3 |
Li | 124 | 82.3 | 133 | 54.6 | 51.0 | 83.0 | 52.0 | 274 | 11.8 | 56.1 | 7.60 |
Be | 21.6 | 18.6 | 6.18 | 15.8 | 8.88 | 29.2 | 25.8 | 18.4 | 12.0 | 11.4 | 8.58 |
Sc | 9.65 | 9.09 | 5.65 | 1.07 | 2.89 | 7.74 | 3.12 | 2.67 | 2.29 | 2.29 | 3.96 |
Co | 7.25 | 11.2 | 21.9 | 6.29 | 9.31 | 3.93 | 4.37 | 3.66 | 5.66 | 5.90 | 3.38 |
Ni | 4.18 | 2.36 | 5.64 | 2.21 | 2.49 | 6.01 | 1.91 | 1.54 | 5.30 | 2.47 | 2.50 |
Ga | 50.6 | 50.9 | 22.5 | 24.6 | 20.5 | 57.0 | 39.2 | 47.6 | 66.8 | 19.6 | 23.3 |
Rb | 152 | 131 | 460 | 517 | 453 | 240 | 255 | 241 | 204 | 585 | 296 |
Sr | 6412 | 6939 | 2971 | 2759 | 2283 | 621 | 716 | 758 | 145 | 2269 | 1275 |
Zr | 11,900 | 11,600 | 722 | 1400 | 413 | 8500 | 874 | 953 | 2800 | 962 | 588 |
Nb | 340 | 375 | 94.5 | 65.3 | 37.8 | 244 | 16.3 | 18.9 | 53.1 | 42.0 | 51.5 |
Hf | 86.0 | 214 | 20.7 | 29.2 | 8.40 | 161 | 24.1 | 27.7 | 73.8 | 21.1 | 16.4 |
Ta | 19.6 | 18.3 | 11.3 | 4.31 | 2.99 | 11.3 | 5.56 | 4.47 | 2.14 | 2.83 | 3.88 |
Pb | 1800 | 2000 | 72.0 | 140 | 42.8 | 840 | 68.7 | 288 | 47.9 | 58.4 | 68.7 |
Th | 55.0 | 51.4 | 21.3 | 12.9 | 31.2 | 36.7 | 21.9 | 28.9 | 30.9 | 13.7 | 11.3 |
U | 25.3 | 21.2 | 5.97 | 16.7 | 12.7 | 20.5 | 5.75 | 7.58 | 5.39 | 5.80 | 2.25 |
La | 206 | 213 | 273 | 169 | 141 | 226 | 21.2 | 48.8 | 30.7 | 105 | 77.1 |
Ce | 419 | 425 | 665 | 268 | 298 | 610 | 38.8 | 89.4 | 63.0 | 180 | 193 |
Pr | 43.7 | 46.0 | 71.3 | 22.4 | 29.6 | 52.7 | 3.84 | 8.83 | 7.08 | 17.3 | 24.5 |
Nd | 170 | 174 | 310 | 76.0 | 102 | 213 | 12.3 | 24.1 | 25.8 | 50.9 | 83.8 |
Sm | 43.5 | 41.0 | 46.2 | 9.30 | 13.8 | 45.6 | 1.90 | 3.84 | 4.59 | 6.88 | 12.9 |
Eu | 13.2 | 12.6 | 11.8 | 2.81 | 4.63 | 11.4 | 0.59 | 1.18 | 1.17 | 2.33 | 3.43 |
Gd | 41.4 | 39.6 | 31.3 | 7.42 | 11.0 | 37.0 | 1.47 | 3.26 | 3.78 | 5.50 | 8.57 |
Tb | 8.19 | 7.68 | 3.73 | 0.83 | 1.33 | 5.82 | 0.22 | 0.39 | 0.60 | 0.66 | 1.07 |
Dy | 48.8 | 45.3 | 13.9 | 3.15 | 5.61 | 29.1 | 0.96 | 1.57 | 3.35 | 2.77 | 4.05 |
Ho | 9.24 | 8.77 | 1.89 | 0.52 | 0.93 | 4.75 | 0.18 | 0.26 | 0.70 | 0.48 | 0.60 |
Er | 28.2 | 26.9 | 4.86 | 1.45 | 2.65 | 13.2 | 0.53 | 0.74 | 2.28 | 1.30 | 1.46 |
Tm | 4.91 | 4.62 | 0.55 | 0.22 | 0.40 | 2.10 | 0.11 | 0.13 | 0.42 | 0.19 | 0.20 |
Yb | 31.2 | 29.4 | 2.85 | 1.42 | 2.45 | 13.2 | 0.86 | 1.09 | 2.66 | 1.15 | 1.26 |
Lu | 4.22 | 3.98 | 0.30 | 0.21 | 0.32 | 1.69 | 0.16 | 0.21 | 0.35 | 0.16 | 0.20 |
Sample | SMK-1 | SMK-3 | SMK-4 | SMK-5 | SMK-6 | SMW-1 | SMW-2 | SMW-4 |
---|---|---|---|---|---|---|---|---|
Rock Name | Aegirine nephline syenite | Nepheline syenite | ||||||
t(Ma) | 224 | 224 | 224 | 224 | 224 | 224 | 224 | 224 |
87Rb/86Sr | 0.066751 | 0.437760 | 0.529536 | 0.560739 | 1.090988 | 1.005113 | 0.899047 | 0.728126 |
87Sr/86Sr | 0.708529 | 0.709622 | 0.709802 | 0.709842 | 0.710648 | 0.710324 | 0.710058 | 0.710271 |
147Sm/144Nd | 0.160598 | 0.093791 | 0.076910 | 0.084378 | 0.134784 | 0.097483 | 0.100186 | 0.084921 |
143Nd/144Nd | 0.511942 | 0.511846 | 0.511821 | 0.511839 | 0.511912 | 0.511884 | 0.511850 | 0.511817 |
ISr | 0.70832 | 0.70823 | 0.70812 | 0.70806 | 0.70717 | 0.70712 | 0.70719 | 0.70795 |
εSr(t) | 58 | 56.7 | 55.1 | 54.3 | 41.7 | 40.9 | 41.9 | 52.7 |
fRb/Sr | −0.19 | 4.29 | 5.4 | 5.78 | 12.19 | 11.15 | 9.87 | 7.8 |
INd | 0.511706 | 0.511709 | 0.511708 | 0.511715 | 0.511715 | 0.511742 | 0.511703 | 0.511692 |
tDM2 | 2012 | 2019 | 2021 | 2010 | 2005 | 1967 | 2027 | 2047 |
εNd(t) | −12.56 | −12.5 | −12.52 | −12.39 | −12.39 | −11.86 | −12.62 | −12.84 |
fSm/Nd | −0.18 | −0.52 | −0.61 | −0.57 | −0.31 | −0.5 | −0.49 | −0.57 |
206Pb/204Pb | 16.945133 | 17.059080 | 17.112741 | 17.246771 | 17.018350 | 17.983013 | 16.994215 | 17.100560 |
207Pb/204Pb | 15.505977 | 15.514526 | 15.517586 | 15.523648 | 15.515068 | 15.540079 | 15.508530 | 15.516513 |
208Pb/204Pb | 36.996076 | 37.155187 | 37.053145 | 37.489011 | 7.034726 | 37.859821 | 37.068329 | 37.160730 |
(206Pb/204Pb)i | 16.915 | 16.88 | 16.857 | 16.603 | 16.966 | 17.798 | 16.937 | 16.886 |
(207Pb/204Pb)i | 15.504 | 15.505 | 15.505 | 15.491 | 15.512 | 15.531 | 15.506 | 15.506 |
(208Pb/204Pb)i | 36.975 | 36.947 | 36.989 | 36.972 | 37.004 | 37.63 | 36.998 | 36.995 |
Rock/mineral | Sample | Li | δ7Li | 2SD | |
---|---|---|---|---|---|
Nepheline syenite | SM-21-32 | 39.0 | 2.2 | 0.07 | |
Aegirine nepheline syenite | SM-21-28 | 94.3 | 2.04 | 0.27 | |
Mica in aegirine nepheline syenite | SM-21-28-1 | 542 | 1.49 | 0.25 | |
Nepheline in aegirine nepheline syenite | SM-21-28-2 | 0.375 | |||
Feldspar in aegirine nepheline syenite | SM-21-28-3 | 17.9 | −22.44 | 0.19 | |
Aegirine in aegirine nepheline syenite | SM-21-28-4 | 27.3 | −0.35 | 0.14 | |
REE(ppm) | Nb | Ta | Zr | Hf | Li |
SM-21-28 | 37.8 | 2.99 | 413 | 8.4 | 39 |
SM-21-32 | 16.3 | 5.56 | 874 | 24.1 | 94.3 |
SM-21-28-2 | 18.9 | 4.47 | 953 | 27.7 | 542 |
SM-21-28-1 | 53.1 | 2.14 | 2800 | 73.8 | 0.375 |
SM-21-28-3 | 42 | 2.83 | 962 | 21.1 | 17.9 |
SM-21-28-4 | 51.5 | 3.88 | 588 | 16.4 | 27.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Ju, N.; Liu, X.; Shi, L.; Feng, Y.; Ma, D. Sources of Metallogenic Materials of the Saima Alkaline Rock-Hosted Niobium–Tantalum Deposit in the Liaoning Region: Evidence from the Sr-Nd-Pb and Li Isotopes. Minerals 2023, 13, 1443. https://doi.org/10.3390/min13111443
Wu Y, Ju N, Liu X, Shi L, Feng Y, Ma D. Sources of Metallogenic Materials of the Saima Alkaline Rock-Hosted Niobium–Tantalum Deposit in the Liaoning Region: Evidence from the Sr-Nd-Pb and Li Isotopes. Minerals. 2023; 13(11):1443. https://doi.org/10.3390/min13111443
Chicago/Turabian StyleWu, Yue, Nan Ju, Xin Liu, Lu Shi, Yuhui Feng, and Danzhen Ma. 2023. "Sources of Metallogenic Materials of the Saima Alkaline Rock-Hosted Niobium–Tantalum Deposit in the Liaoning Region: Evidence from the Sr-Nd-Pb and Li Isotopes" Minerals 13, no. 11: 1443. https://doi.org/10.3390/min13111443