Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications
Abstract
:1. Introduction
2. Coal as a Source of Energy in India
3. Status of Thermal Power Plants in India
4. Basic Structural and Chemical Properties of CFA
5. CFA Production and Utilization in India
6. Current and Possible Future Applications of CFA
6.1. CFA in Civil Engineering, Cement, Tiles, Pavement Blocks and Bricks
6.2. Sintered CFA Products
6.3. CFA-Based Polymers
6.4. CFA for Geopolymers
6.5. CFA for Zeolite Synthesis
6.6. Roads and Embankments
- Sub-base or base stabilization and construction
- pavement’s topmost strata
- and for the purpose of filling.
6.7. Paints and Enamels
6.8. CFA in Metallurgy
6.9. Mining: As Fillers and Land Reclamation
6.10. CFA in Agriculture
- (a)
- CFA as herbicide
- (b) CFA as fertilizer
- (c) CFA as soil stabilizers
6.11. CFA for Wastewater Treatment
6.12. Carbon and Carbon-Based Products Recovery
6.13. Coal Fly Ash for Air Quality Management
6.14. Application in Making Membrane Filters for Cleaner Biodiesel Production
6.15. Application in Flue Gases Purification
Adsorbent | Constituents | Reference |
---|---|---|
(CaO)x(SiO2) Hydrated calcium silicates | CFA, Calcium hydroxide | [116,119,120] |
CFA, Calcium oxide, Calcium sulfate | [121] | |
CFA/CaCO3 | CFA, Calcium carbonate Calcium hydroxide | [121] |
CFA, Calcium hydroxide Calcium sulfate | [121] | |
LILAC | CFA, Calcium carbonate, Calcium sulfate dihydrate | [122] |
CFA, Calcium hydroxide Calcium sulfate dihydrate | [122] | |
Potassium based CFA | [123] | |
CFA-zeolite | [124] |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.; Yadav, V.K.; Ali, D.; Soni, S.; Kumar, G.; Dawane, V.; Chaurasia, T.P. Isolation and Characterization of Siderophores Producing Chemolithotrophic Bacteria from the Coal Samples of the Aluminum Industry. Geomicrobiol. J. 2022, 1–7. [Google Scholar] [CrossRef]
- Xiahou, Q.; Springer, C.H.; Mendelsohn, R. The effect of foreign investment on Asian coal power plants. Energy Econ. 2022, 105, 105752. [Google Scholar] [CrossRef]
- Nazar, R.; Srinivasan, S.L.; Kanudia, A.; Asundi, J. Implication of emission regulation on cost and tariffs of coal-based power plants in India: A system modelling approach. Energy Policy 2021, 148, 111924. [Google Scholar] [CrossRef]
- Edianto, A.; Trencher, G.; Matsubae, K. Why do some countries receive more international financing for coal-fired power plants than renewables? Influencing factors in 23 countries. Energy Sustain. Dev. 2022, 66, 177–188. [Google Scholar] [CrossRef]
- Marinina, O.; Nevskaya, M.; Jonek-Kowalska, I.; Wolniak, R.; Marinin, M. Recycling of coal fly ash as an example of an efficient circular economy: A stakeholder approach. Energies 2021, 14, 3597. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Osabohien, R.; Lawal, A.I.; de Alwis, T. Energy use and the role of per capita income on carbon emissions in African countries. PLoS ONE 2021, 16, e259488. [Google Scholar] [CrossRef] [PubMed]
- Chateau, B.; Lapillonne, B. Energy Demand in the Transport Sector. In Energy Demand: Facts and Trends: A Comparative Analysis of Industrialized Countries; Chateau, B., Lapillonne, B., Eds.; Springer: Vienna, Austria, 1982; pp. 73–134. [Google Scholar] [CrossRef]
- Gao, Q.; Li, S.; Zhao, Y.; Yao, Q. Mechanism on the contribution of coal/char fragmentation to fly ash formation during pulverized coal combustion. Proc. Combust. Inst. 2019, 37, 2831–2839. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Rogova, O.; Karpukhina, E.; Solopov, A.; Levin, I.; Levkina, V.; Proskurnin, M.; Volkov, D. Assessment of the structure, composition, and agrochemical properties of fly ash and ash-and-slug waste from coal-fired power plants for their possible use as soil ameliorants. J. Clean. Prod. 2022, 333, 130088. [Google Scholar] [CrossRef]
- Nandi, M.; Vyas, N.; Vij, R.K.; Gupta, P. A review on natural gas ecosystem in India: Energy scenario, market, pricing assessment with the developed part of world and way forward. J. Nat. Gas Sci. Eng. 2022, 99, 104459. [Google Scholar] [CrossRef]
- Hasse, C.; Debiagi, P.; Wen, X.; Hildebrandt, K.; Vascellari, M.; Faravelli, T. Advanced modeling approaches for CFD simulations of coal combustion and gasification. Prog. Energy Combust. Sci. 2021, 86, 100938. [Google Scholar] [CrossRef]
- Wei, Z.; Baiquan, L.; Tong, L. Construction of Pingdingshan coal molecular model based on FT-IR and 13C-NMR. J. Mol. Struct. 2022, 1262, 132992. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Waste Manag. 2021, 135, 428–436. [Google Scholar] [CrossRef]
- Park, H.; Wang, L.; Yun, J.-H. Coal beneficiation technology to reduce hazardous heavy metals in fly ash. J. Hazard. Mater. 2021, 416, 125853. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, F.; Zhou, F.; Lu, M.; Hou, H.; Li, J.; Liu, D.; Wang, T. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer. Sci. Total Environ. 2022, 802, 149905. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.S.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. Res. 2021, 28, 32609–32625. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Saxena, P.; Lal, C.; Gnanamoorthy, G.; Choudhary, N.; Singh, B.; Tavker, N.; Kalasariya, H.; Kumar, P. Synthesis and characterization of Mullites from Silicoaluminous fly ash waste. Int. J. Appl. Nanotechnol. Res. (IJANR) 2020, 5, 10–25. [Google Scholar] [CrossRef]
- Yadav, V.K.; Inwati, G.K.; Ali, D.; Gnanamoorthy, G.; Bera, S.P.; Khan, S.H.; Choudhary, N.; Kumar, G.; Chaurasia, T.P.; Basnet, A. Remediation of Azure A Dye from Aqueous Solution by Using Surface-Modified Coal Fly Ash Extracted Ferrospheres by Mineral Acids and Toxicity Assessment. Adsorpt. Sci. Technol. 2022, 2022, 7012889. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Szumera, M.; Gnatowski, A.; Sadkowski, D. Comparative thermal analysis of coal fuels, biomass, fly ash and polyamide. Energy 2022, 258, 124840. [Google Scholar] [CrossRef]
- Choi, M.; Park, Y.; Deng, K.; Li, X.; Kim, K.; Sung, Y.; Hwang, T.; Choi, G. Effects of exhaust tube vortex on the in-furnace phenomena in a swirl-stabilized pulverized coal flame. Energy 2022, 239, 122409. [Google Scholar] [CrossRef]
- Wu, G.; Wang, T.; Chen, G.; Shen, Z.; Pan, W.-P. Coal fly ash activated by NaOH roasting: Rare earth elements recovery and harmful trace elements migration. Fuel 2022, 324, 124515. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Alam, J.; Cabral-Pinto, M.M.; Gnanamoorthy, G.; Alhoshan, M.; Kamyab, H.; Hamid, A.A.; Ali, F.A.A.; Shukla, A.K. Transformation of hazardous sacred incense sticks ash waste into less toxic product by sequential approach prior to their disposal into the water bodies. Environ. Sci. Pollut. Res. 2021, 86, 100938. [Google Scholar] [CrossRef]
- Yang, J.; Yang, M.; He, X.; Ma, M.; Fan, M.; Su, Y.; Tan, H. Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Constr. Build. Mater. 2021, 306, 124840. [Google Scholar] [CrossRef]
- Joshi, S.; Mukhopadhyay, K. Cleaner the better: Macro-economic assessment of ambitious decarbonisation pathways across Indian states. Renew. Sustain. Energy Transit. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Khankhaje, E.; Rezania, S. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J. Build. Eng. 2022, 49, 104040. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Argiz, C. Fineness of Coal Fly Ash for Use in Cement and Concrete. Fuels 2021, 2, 471–486. [Google Scholar] [CrossRef]
- Gao, K.; Iliuta, M.C. Trends and advances in the development of coal fly ash-based materials for application in hydrogen-rich gas production: A review. J. Energy Chem. 2022, 73, 485–512. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, H.; He, X.; Zhang, H.; Yu, G. Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. Bull. Environ. Contam. Toxicol. 2020, 105, 784–789. [Google Scholar] [CrossRef]
- Hamada, H.; Alattar, A.; Tayeh, B.; Yahaya, F.; Adesina, A. Sustainable application of coal bottom ash as fine aggregates in concrete: A comprehensive review. Case Stud. Constr. Mater. 2022, 16, e01109. [Google Scholar] [CrossRef]
- Lo, F.-C.; Lee, M.-G.; Lo, S.-L. Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete. Constr. Build. Mater. 2021, 286, 122947. [Google Scholar] [CrossRef]
- Muthusamy, K.; Budiea, A.M.A.; Azhar, N.W.; Jaafar, M.S.; Mohsin, S.M.S.; Arifin, N.F.; Yahaya, F.M. Durability properties of oil palm shell lightweight aggregate concrete containing fly ash as partial cement replacement. Mater. Today Proc. 2021, 41, 56–60. [Google Scholar] [CrossRef]
- Hwang, S.S.; Moreno Cortés, C.M. Properties of mortar and pervious concrete with co-utilization of coal fly ash and waste glass powder as partial cement replacements. Constr. Build. Mater. 2021, 270, 121415. [Google Scholar] [CrossRef]
- Rezaei, H.; Ziaedin Shafaei, S.; Abdollahi, H.; Shahidi, A.; Ghassa, S. A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: Sodium salts roasting and organic acids leaching. Fuel 2022, 312, 122844. [Google Scholar] [CrossRef]
- Umejuru, E.C.; Prabakaran, E.; Pillay, K. Coal fly ash coated with carbon hybrid nanocomposite for remediation of cadmium (II) and photocatalytic application of the spent adsorbent for reuse. Results Mater. 2020, 7, 100117. [Google Scholar] [CrossRef]
- Aniruddha, R.; Sreedhar, I.; Parameshwaran, R. Valorization of alkaline hydroxide modified coal fly ash to efficient adsorbents for enhanced carbon capture. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Murukutti, M.K.; Jena, H. Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. J. Hazard. Mater. 2022, 423, 127085. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Li, S.; Hu, P.; Wu, W.; Wu, Q.; Xi, X. Mechanism of mechanical–chemical synergistic activation for preparation of mullite ceramics from high-alumina coal fly ash. Ceram. Int. 2018, 44, 3884–3892. [Google Scholar] [CrossRef]
- Lin, K.-L.; Lin, W.-T.; Korniejenko, K.; Hsu, H.-M. Application of ternary cementless hybrid binders for pervious concrete. Constr. Build. Mater. 2022, 346, 128497. [Google Scholar] [CrossRef]
- Mostajeran, M.; Bondy, J.-M.; Reynier, N.; Cameron, R. Mining value from waste: Scandium and rare earth elements selective recovery from coal fly ash leach solutions. Miner. Eng. 2021, 173, 107091. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 2018, 73, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud. Univ. Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Roy, M.; Roychowdhury, R.; Mukherjee, P.; Roy, A.; Nayak, B.; Roy, S. Phytoreclamation of Abandoned Acid Mine Drainage Site After Treatment with Fly Ash. In Coal Fly Ash Beneficiation—Treatment of Acid Mine Drainage with Coal Fly Ash; InTech: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Harshini, J.; Abinaya, D.; Manikandan, A.; Srinivasan, K.; Natarajan, N. Performance of fly ash bricks with differential composition. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 4550–4556. [Google Scholar] [CrossRef]
- Nataatmadja, A. Development of Low-Cost Fly Ash Bricks. Available online: https://www.irbnet.de/daten/iconda/CIB11444.pdf (accessed on 23 January 2022).
- Hasim, A.M.; Shahid, K.A.; Ariffin, N.F.; Nasrudin, N.N.; Zaimi, M.N.S.; Kamarudin, M.K. Coal bottom ash concrete: Mechanical properties and cracking mechanism of concrete subjected to cyclic load test. Constr. Build. Mater. 2022, 346, 128464. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, N. Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume fly ash-self compacting concrete. J. Build. Eng. 2020, 32, 101491. [Google Scholar] [CrossRef]
- Rameshwaran, P.M.; Madhavi, T.C. Flexural behaviour of fly ash based geopolymer concrete. Mater. Today Proc. 2021, 46, 3423–3425. [Google Scholar] [CrossRef]
- Kumar, K.; Arora, R.; Khan, S.; Dixit, S. Characterization of fly ash for potential utilization in green concrete. Mater. Today Proc. 2022, 56, 1886–1890. [Google Scholar] [CrossRef]
- Das, M.; Adhikary, S.K.; Rudzionis, Z. Effectiveness of fly ash, zeolite, and unburnt rice husk as a substitute of cement in concrete. Mater. Today Proc. 2022, 61, 237–242. [Google Scholar] [CrossRef]
- Nakamura, K.; Inoue, Y.; Komai, T. Consideration of strength development by three-dimensional visualization of porosity distribution in coal fly ash concrete. J. Build. Eng. 2021, 35, 101948. [Google Scholar] [CrossRef]
- Lieberman, R.N.; Knop, Y.; Querol, X.; Moreno, N.; Muñoz-Quirós, C.; Mastai, Y.; Anker, Y.; Cohen, H. Environmental impact and potential use of coal fly ash and sub-economical quarry fine aggregates in concrete. J. Hazard. Mater. 2018, 344, 1043–1056. [Google Scholar] [CrossRef]
- Sokolar, R.; Vodova, L. The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash–clay body. Ceram. Int. 2011, 37, 2879–2885. [Google Scholar] [CrossRef]
- Zhan, X.; Wang, L.; Wang, L.; Gong, J.; Wang, X.; Song, X.; Xu, T. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite. Chemosphere 2021, 263, 127914. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, P.; Chen, J.; Li, L.; Li, M. Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate. Chin. J. Chem. Eng. 2014, 22, 1363–1367. [Google Scholar] [CrossRef]
- van der Merwe, E.; Prinsloo, L.; Mathebula, C.; Swart, H.; Coetsee, E.; Doucet, F. Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications. Appl. Surf. Sci. 2014, 317, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, A.K.; Pappu, A.; Gupta, M.K. Unraveling the role of agro waste-derived graphene quantum dots on dielectric and mechanical property of the fly ash based polymer nanocomposite. J. Alloys Compd. 2022, 903, 163953. [Google Scholar] [CrossRef]
- Baran, P.; Nazarko, M.; Włosińska, E.; Kanciruk, A.; Zarębska, K. Synthesis of geopolymers derived from fly ash with an addition of perlite. J. Clean. Prod. 2021, 293, 126112. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Reaction kinetics of fly ash geopolymerization: Role of particle size controlled by using ball mill. Adv. Powder Technol. 2019, 30, 1079–1088. [Google Scholar] [CrossRef]
- Mohamed, R.; Razak, R.A.; Abdullah, M.M.A.B.; Shuib, R.K.; Subaer; Chaiprapa, J. Geopolymerization of class C fly ash: Reaction kinetics, microstructure properties and compressive strength of early age. J. Non-Cryst Solids 2021, 553, 120519. [Google Scholar] [CrossRef]
- Barik, N.; Mishra, J. Utilization and Geopolymerization of Fly ash for Concrete Preparation and Soil Stabilization: A Short Review. In Processing and Characterization of Materials: Select Proceedings of CPCM 2020; Pal, S., Roy, D., Sinha, S.K., Eds.; Springer: Singapore, 2021; pp. 357–367. [Google Scholar] [CrossRef]
- Hager, I.; Sitarz, M.; Mróz, K. Fly-ash based geopolymer mortar for high-temperature application—Effect of slag addition. J. Clean. Prod. 2021, 316, 128168. [Google Scholar] [CrossRef]
- Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 2019, 216, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.; Priyadarshini, S.; Acharath Mohanakrishnan, A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- Sultana, S.; Ahsan, S.; Tanvir, S.; Haque, N.; Alam, F.; Yellishetty, M. Coal Fly Ash Utilisation and Environmental Impact. In Clean Coal Technologies: Beneficiation, Utilization, Transport Phenomena and Prospective; Jyothi, R.K., Parhi, P.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 381–402. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, V.K.; Gacem, A.; Al-Dossari, M.; Yadav, K.K.; Abd El-Gawaad, N.S.; Ben Khedher, N.; Choudhary, N.; Kumar, P.; Cavalu, S. Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review. Int. J. Environ. Res. Public Health 2022, 19, 15494. [Google Scholar] [CrossRef]
- Thapa, A.; Kaushik, R.; Arora, S.; Jaglan, S.; Jaswal, V.; Yadav, V.K.; Singh, M.; Bains, A.; Chawla, P.; Khan, A.; et al. Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica. Int. J. Mol. Sci. 2022, 23, 14090. [Google Scholar] [CrossRef]
- Khan, M.A.; Memon, S.A.; Farooq, F.; Javed, M.F.; Aslam, F.; Alyousef, R. Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest. Adv. Civ. Eng. 2021, 2021, 6618407. [Google Scholar] [CrossRef]
- Gupta, P.; Nagpal, G.; Gupta, N. Fly ash-based geopolymers: An emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 89. [Google Scholar] [CrossRef]
- Längauer, D.; Čablík, V.; Hredzák, S.; Zubrik, A.; Matik, M.; Danková, Z. Preparation of synthetic zeolites from coal fly ash by hydrothermal synthesis. Materials 2021, 14, 1267. [Google Scholar] [CrossRef]
- Yadav, V.K.; Choudhary, N.; Ali, D.; Gnanamoorthy, G.; Inwati, G.K.; Almarzoug, M.H.; Kumar, G.; Khan, S.H.; Solanki, M.B. Experimental and computational approaches for the structural study of novel Ca-rich zeolites from incense stick ash and their application for wastewater treatment. Adsorpt. Sci. Technol. 2021, 2021, 6066906. [Google Scholar] [CrossRef]
- Tauanov, Z.; Shah, D.; Inglezakis, V.; Jamwal, P.K. Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion. J. Clean. Prod. 2018, 182, 616–623. [Google Scholar] [CrossRef]
- Yadav, V.K.; Suriyaprabha, R.; Inwati, G.K.; Gupta, N.; Singh, B.; Lal, C.; Kumar, P.; Godha, M.; Kalasariya, H. A noble and economical method for the synthesis of low cost zeolites from coal fly ash waste. Adv. Mater. Process. Technol. 2021, 1–19. [Google Scholar] [CrossRef]
- Feng, W.; Wan, Z.; Daniels, J.; Li, Z.; Xiao, G.; Yu, J.; Xu, D.; Guo, H.; Zhang, D.; May, E.F.; et al. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. J. Clean. Prod. 2018, 202, 390–400. [Google Scholar] [CrossRef]
- Sahay, D.K.; Bansal, S. Use of Fly Ash—A Resourceful Byproduct in Road Embankment: A Review. In Advances in Construction Materials and Sustainable Environment; Gupta, A.K., Shukla, S.K., Azamathulla, H., Eds.; Springer: Singapore, 2022; pp. 539–550. [Google Scholar]
- Choudhary, N.; Yadav, V.K.; Malik, P.; Khan, S.H.; Inwati, G.K.; Suriyaprabha, R.; Singh, B.; Yadav, A.K.; Ravi, R.K. Recovery of natural nanostructured minerals: Ferrospheres, plerospheres, cenospheres, and carbonaceous particles from fly ash. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; IGI Global: Hershey, PA, USA, 2020; pp. 450–470. [Google Scholar]
- Yadav, V.K.; Yadav, K.K.; Tirth, V.; Jangid, A.; Gnanamoorthy, G.; Choudhary, N.; Islam, S.; Gupta, N.; Son, C.T.; Jeon, B.-H. Recent advances in methods for recovery of cenospheres from fly ash and their emerging applications in ceramics, composites, polymers and environmental cleanup. Crystals 2021, 11, 1067. [Google Scholar] [CrossRef]
- Shende, D.Z.; Wasewar, K.L.; Wadatkar, S.S. Target-Specific Applications of Fly Ash Cenosphere as Smart Material. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. Ceramics 2020, 3, 384–420. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Anshits, N.N.; Fedorchak, M.A.; Zhizhaev, A.M.; Sharonova, O.M.; Anshits, A.G. Composition and Structure of Block-Type Ferrospheres Isolated from Calcium-Rich Power Plant Ash. Inorg. Mater. 2018, 54, 187–194. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, S.; Dhawan, N. Processing of Coal Fly Ash for the Extraction of Alumina Values. J. Sustain. Metall. 2020, 6, 294–306. [Google Scholar] [CrossRef]
- Kamarudin, R.A.; Matlob, A.S.; Jubri, Z.; Ramli, Z. Extraction of silica and alumina from coal fly ash for the synthesis of zeolites. In Proceedings of the 2009 3rd International Conference on Energy and Environment (ICEE), Malacca, Malaysia, 7–8 December 2009; pp. 456–461. [Google Scholar] [CrossRef]
- Yadav, V.K.; Suriyaprabha, R.; Khan, S.H.; Singh, B.; Gnanamoorthy, G.; Choudhary, N.; Yadav, A.K.; Kalasariya, H. A novel and efficient method for the synthesis of amorphous nanosilica from fly ash tiles. Mater. Today: Proc. 2020, 26, 701–705. [Google Scholar] [CrossRef]
- Pare, B.; Barde, V.S.; Solanki, V.S.; Agarwal, N.; Yadav, V.K.; Alam, M.M.; Gacem, A.; Alsufyani, T.; Khedher, N.B.; Park, J.-W.; et al. Green Synthesis and Characterization of LED-Irradiation-Responsive Nano ZnO Catalyst and Photocatalytic Mineralization of Malachite Green Dye. Water 2022, 14, 3221. [Google Scholar] [CrossRef]
- Font, O.; Querol, X.; Juan, R.; Casado, R.; Ruiz, C.R.; López-Soler, Á.; Coca, P.; Peña, F.G. Recovery of gallium and vanadium from gasification fly ash. J. Hazard. Mater. 2007, 139, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Gacem, A.; Modi, S.; Yadav, V.K.; Islam, S.; Patel, A.; Dawane, V.; Jameel, M.; Inwati, G.K.; Piplode, S.; Solanki, V.S.; et al. Recent Advances in Methods for Synthesis of Carbon Nanotubes and Carbon Nanocomposite and their Emerging Applications: A Descriptive Review. J. Nanomater. 2022, 2022, 7238602. [Google Scholar] [CrossRef]
- Patel, H.; Yadav, V.K.; Yadav, K.K.; Choudhary, N.; Kalasariya, H.; Alam, M.M.; Gacem, A.; Amanullah, M.; Ibrahium, H.A.; Park, J.-W.; et al. A Recent and Systemic Approach towards Microbial Biodegradation of Dyes from Textile Industries. Water 2022, 14, 3163. [Google Scholar] [CrossRef]
- Yadav, V.K. Nano Based Approaches Techniques and Method Development for Separation of Ferrous Alumina and Silica from Waste Fly Ash; Central University of Gujarat: Gandhinagar, India, 2019. [Google Scholar]
- Zucha, W.; Weibel, G.; Wolffers, M.; Eggenberger, U. Inventory of MSWI fly ash in Switzerland: Heavy metal recovery potential and their properties for acid leaching. Processes 2020, 8, 1668. [Google Scholar] [CrossRef]
- Ram, L.C.; Masto, R.E. An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manag. 2010, 91, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, A.; Sasaoka, T.; Shimada, H.; Matsumoto, S. Amelioration of acidic soil using fly Ash for Mine Revegetation in Post-Mining Land. Int. J. Coal Sci. Technol. 2022, 9, 33. [Google Scholar] [CrossRef]
- Singh, N.B.; Agarwal, A.; De, A.; Singh, P. Coal fly ash: An emerging material for water remediation. Int. J. Coal Sci. Technol. 2022, 9, 44. [Google Scholar] [CrossRef]
- Wasil, M.; Zabielska-Adamska, K. Tensile Strength of Class F Fly Ash and Fly Ash with Bentonite Addition as a Material for Earth Structures. Materials 2022, 15, 2887. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Dong, Z.; Peng, Q.; Wang, X.; Fan, C.; Zhang, X. Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil. J. Environ. Manag. 2017, 197, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.; Dahiya, P.; Sharma, A.; Pandey, R.; Mohan, S. Fly ash application in soil for sustainable agriculture: An Indian overview. Energy Ecol. Environ. 2022, 7, 340–357. [Google Scholar] [CrossRef]
- Mushtaq, F.; Zahid, M.; Bhatti, I.A.; Nasir, S.; Hussain, T. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 2019, 240, 27–46. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G. Rare Earth-bearing particles in fly ash carbons: Examples from the combustion of eastern Kentucky coals. Energy Geosci. 2021, 2, 90–98. [Google Scholar] [CrossRef]
- Ankrah, A.F.; Tokay, B.; Snape, C.E. Heavy Metal Removal from Aqueous Solutions Using Fly-Ash Derived Zeolite NaP1. Int. J. Environ. Res. 2022, 16, 17. [Google Scholar] [CrossRef]
- Lito, P.F.; Aniceto, J.P.S.; Silva, C.M. Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their Selective Sorption. Water Air Soil Pollut. 2012, 223, 6133–6155. [Google Scholar] [CrossRef]
- Ali, I.M.; Kotp, Y.H.; El-Naggar, I.M. Thermal stability, structural modifications and ion exchange properties of magnesium silicate. Desalination 2010, 259, 228–234. [Google Scholar] [CrossRef]
- Czuma, N.; Baran, P.; Franus, W.; Zabierowski, P.; Zarębska, K. Synthesis of zeolites from fly ash with the use of modified two-step hydrothermal method and preliminary SO2 sorption tests. Adsorpt. Sci. Technol. 2019, 37, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Satyawali, Y.; Batra, V.S.; Balakrishnan, M. Submerged membrane bioreactor using fly ash filters: Trials with distillery wastewater. Water Sci. Technol. 2008, 58, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Choudhary, N.; Tirth, V.; Kalasariya, H.; Gnanamoorthy, G.; Algahtani, A.; Yadav, K.K.; Soni, S.; Islam, S.; Yadav, S.; et al. A short review on the utilization of incense sticks ash as an emerging and overlooked material for the synthesis of zeolites. Crystals 2021, 11, 1255. [Google Scholar] [CrossRef]
- Koshy, N.; Singh, D.N. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 2016, 4, 1460–1472. [Google Scholar] [CrossRef]
- Gadore, V.; Ahmaruzzaman, M. Fly ash–based nanocomposites: A potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream. Environ. Sci. Pollut. Res. 2021, 28, 46910–46933. [Google Scholar] [CrossRef]
- Dai, S.; Yao, Q.; Yu, G.; Liu, S.; Yun, J.; Xiao, X.; Deng, Z.; Li, H. Biochemical Characterization of a Novel Bacterial Laccase and Improvement of Its Efficiency by Directed Evolution on Dye Degradation. Front. Microbiol. 2021, 12, 633004. [Google Scholar] [CrossRef]
- Alam, J.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.; Tavker, N.; Choudhary, N.; Shukla, A.K.; Ali, F.A.A.; Alhoshan, M.; Hamid, A.A. Recent advances in methods for the recovery of carbon nanominerals and polyaromatic hydrocarbons from coal fly ash and their emerging applications. Crystals 2021, 11, 88. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Gupta, V.K. Application of Coal Fly Ash in Air Quality Management. Ind. Eng. Chem. Res. 2012, 51, 15299–15314. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Al-Shawabkeh, A.; Maisuda, H.; Hasatani, M. Comparative reactivity of treated FBC- and PCC-Fly ash for SO2 removal. Can. J. Chem. Eng. 1995, 73, 678–685. [Google Scholar] [CrossRef]
- Ściubidło, A.; Majchrzak-Kucęba, I. Exhaust gas purification process using fly ash-based sorbents. Fuel 2019, 258, 116126. [Google Scholar] [CrossRef]
- Gray, M.; Soong, Y.; Champagne, K.; Baltrus, J.; Stevens, R.; Toochinda, P.; Chuang, S. CO2 capture by amine-enriched fly ash carbon sorbents. Sep. Purif. Technol. 2004, 35, 31–36. [Google Scholar] [CrossRef]
- Sanders, G.; Jones, K.C.; Hamilton-Taylor, J. A simple method to assess the susceptibility of polynuclear aromatic hydrocarbons to photolytic decomposition. Atmos. Environ. Part A Gen. Top. 1993, 27, 139–144. [Google Scholar] [CrossRef]
- Davini, P. Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems. Fuel 1996, 75, 713–716. [Google Scholar] [CrossRef]
- Fernández, J.; Renedo, M.J.; Pesquera, A.; Irabien, J.A. Effect of CaSO4 on the structure and use of Ca(OH)2/fly ash sorbents for SO2 removal. Powder Technol. 2001, 119, 201–205. [Google Scholar] [CrossRef]
- Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete. J. Environ. Manag. 2016, 170, 70–78. [Google Scholar] [CrossRef]
- Chen, H.; Khalili, N. Fly-Ash-Modified Calcium-Based Sorbents Tailored to CO2 Capture. Ind. Eng. Chem. Res. 2017, 56, 1888–1894. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Zhao, Q.; Chen, X.; Dai, H.; Huang, C.; Liu, L.; Li, Y.; Gao, W.; Zhang, J. Suppression of methane/coal dust deflagration flame propagation by CO2/fly ash as a flue gas layer. Adv. Powder Technol. 2021, 32, 2770–2780. [Google Scholar] [CrossRef]
- Tsuchiai, H.; Ishizuka, T.; Nakamura, H.; Ueno, T.; Hattori, H. Study of Flue Gas Desulfurization Absorbent Prepared from Coal Fly Ash: Effects of the Composition of the Absorbent on the Activity. Ind. Eng. Chem. Res. 1996, 35, 2322–2326. [Google Scholar] [CrossRef]
- Sanna, A.; Maroto-Valer, M.M. Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ. Sci. Pollut. Res. 2016, 23, 22242–22252. [Google Scholar] [CrossRef] [PubMed]
- Boycheva, S.; Marinov, I.; Zgureva-Filipova, D. Studies on the CO2 capture by coal fly ash zeolites: Process design and simulation. Energies 2021, 14, 8279. [Google Scholar] [CrossRef]
- Mercedes Maroto-Valer, M.; Lu, Z.; Zhang, Y.; Tang, Z. Sorbents for CO2 capture from high carbon fly ashes. Waste Manag. 2008, 28, 2320–2328. [Google Scholar] [CrossRef]
S. No | Year | CFA Production (Million Tonnes) | CFA Utilization (Million Tonnes) | Percentage (%) |
---|---|---|---|---|
1 | 1996–1997 | 68.88 | 6.64 | 9.63 |
2 | 1997–1998 | 78.06 | 8.43 | 10.80 |
3 | 1998–1999 | 78.99 | 9.22 | 11.68 |
4 | 1999–2000 | 74.03 | 8.91 | 12.03 |
5 | 2000–2001 | 86.29 | 13.54 | 15.70 |
6 | 2001–2002 | 82.81 | 15.57 | 18.80 |
7 | 2002–2003 | 91.65 | 20.79 | 22.68 |
8 | 2003–2004 | 96.28 | 28.29 | 29.39 |
9 | 2004–2005 | 98.57 | 37.49 | 38.04 |
10 | 2005–2006 | 98.97 | 45.22 | 45.69 |
11 | 2006–2007 | 108.15 | 55.01 | 50.86 |
12 | 2007–2008 | 116.94 | 61.98 | 53.00 |
13 | 2008–2009 | 116.69 | 66.64 | 57.11 |
14 | 2009–2010 | 123.54 | 77.33 | 62.60 |
15 | 2010–2011 | 131.09 | 73.13 | 55.79 |
16 | 2011–2012 | 145.41 | 85.05 | 58.48 |
17 | 2012–2013 | 163.56 | 100.37 | 61.37 |
18 | 2013–2014 | 172.87 | 99.62 | 57.63 |
19 | 2014–2015 | 184.14 | 102.54 | 55.69 |
20 | 2015–2016 | 176.74 | 107.77 | 60.97 |
21 | 2016–2017 | 169.25 | 107.1 | 63.28 |
22 | 2017–2018 | 196.44 | 131.87 | 67.28 |
23 | 2018–2019 | 217.04 | 168.4 | 67.13 |
24 | 2019–2020 | 226.14 | 189.01 | 77.59 |
25 | 2020–2021 | 232.56 | 214.91 | 83.28 |
26 | 2021–2022 | 270.82 | 259.86 | 92.41 |
27 | 2022–2023 | - | - | - |
Sr. No. | Name of Thermal Power Station and Power Utility Source | Installed Capacity (Megawatts) | Fly Ash Generation and Utilization (Tonnes) | % Fly Ash Utilization |
---|---|---|---|---|
1 | Nabinagar-BRBCL, Bhartiya Rail Bijlee Company Ltd., Bihar | 1000 | 0.4870, 0.1416 | 29.07 |
2 | Korba (East), CSPGCL (Chhattisgarh) | 440 | 0.2898, 0.0601 | 20.73 |
3 | Dr Shyama Prasad Mukherjee TPS, CSPGCL (Chhattisgarh) | 500 | 0.5427, 0.0966 | 24.95 |
4 | Korba (West), CSPGCL (Chhattisgarh) | 1340 | 1.4838, 0.3701 | 17.80 |
5 | Raghunathpur, Damodar Valley Corporation (West Bengal) | 1200 | 0.6277, 0.0822 | 13.20 |
6 | O.P. Jindal Super (Stage-I), Jindal Power Limited (Chhattisgarh) | 1000 | 0.4670, 0.1080 | 23.13 |
7 | O.P. Jindal Super (Stage-II), Jindal Power Limited (Chhattisgarh) | 2400 | 1.3145, 0.3137 | 23.86 |
8 | Amarkantak, LANCO, LANCO Amarkantak Power Limited (Chhattisgarh) | 600 | 0.5939, 0.1737 | 29.25 |
9 | Anpara-C, LANCO Anpara Power Limited, Uttar Pradesh | 1200 | 0.8992, 0.1575 | 17.51 |
10 | Meja, Meja Urja Nigam Private Limited, Uttar Pradesh | 660 | 0.3310, 0.0557 | 16.84 |
11 | Shree Singaji, MPPGCL, Madhya Pradesh | 1200 | 0.5294, 0.2016 | 38.07 |
12 | Chandrapur Super, MSPGCL (Madhya Pradesh) | 2920 | 2.3519, 0.3457 | 14.70 |
13 | Durgapur Captive, NSPCL (West Bengal) | 120 | 0.0899, 0.0405 | 45.05 |
14 | Singrauli, NTPC Limited (Uttar Pradesh) | 2000 | 1.3956, 0.3171 | 22.72 |
15 | Korba-NTPC, NTPC Limited (Chhattisgarh) | 2600 | 2.4220, 1.2076 | 49.86 |
16 | Vindhyachal, NTPC Limited (Madhya Pradesh) | 4760 | 4.7415, 1.2308 | 25.96 |
17 | Gadarwara, NTPC Limited (Madhya Pradesh) | 800 | 0.2351, 0.0029 | 1.25 |
18 | Sipat, NTPC Limited (Chhattisgarh) | 2980 | 2.7597, 0.8527 | 30.90 |
19 | Darlipali, NTPC Limited (Odisha) | 800 | 0.5694, 0.0032 | 0.56 |
20 | Lara Super, NTPC Limited (Chhattisgarh) | 800 | 0.4671, 0.0366 | 7.84 |
21 | Barauni, BSPGCL (JV) (Bihar) | 220 | 0.2031, 0.0669 | 32.95 |
22 | IB Valley, OPGCL (Odisha) | 1740 | 1.5895, 0.3348 | 21.07 |
23 | Chhabra Super Critical, RRUNL (Rajasthan) | 1320 | 0.7249, 0.3285 | 45.32 |
24 | Yeramarus, Raichur Power Corporation Limited (Karnataka) | 1600 | 0.1615, 0.0296 | 18.33 |
25 | RINL Cative, Visakhapatnam, Rashtriya Ispat Nigam Limited (Andhra Pradesh) | 315 | 0.3329, 0.0296 | 8.88 |
26 | Sasan UMPP, Reliance Power Limited (Madhya Pradesh) | 3960 | 2.5915, 0.1117 | 4.31 |
27 | Talwandi SABO Power Limited, Talwandi SABO Power Limited (Punjab) | 1980 | 0.9600, 0.2300 | 23.96 |
28 | Kothagudem-V, TSGENCO (Telangana) | 500 | 0.4692, 0.1336 | 28.48 |
29 | Kothagudem-VII, TSGENCO (Telangana) | 800 | 0.3935, 0.1012 | 25.73 |
30 | Anpara ‘A’ and ‘B’, UPRVUNL, Uttar Pradesh | 2630 | 1.7330, 0.4017 | 23.18 |
31 | OBRA, UPRVUNL (Uttar Pradesh) | 1000 | 0.6853, 0.0371 | 5.41 |
32 | BANDEL, WBPDCL (West Bengal) | 335 | 0.1307, 0.0539 | 41.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, V.K.; Gacem, A.; Choudhary, N.; Rai, A.; Kumar, P.; Yadav, K.K.; Abbas, M.; Khedher, N.B.; Awwad, N.S.; Barik, D.; et al. Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications. Minerals 2022, 12, 1503. https://doi.org/10.3390/min12121503
Yadav VK, Gacem A, Choudhary N, Rai A, Kumar P, Yadav KK, Abbas M, Khedher NB, Awwad NS, Barik D, et al. Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications. Minerals. 2022; 12(12):1503. https://doi.org/10.3390/min12121503
Chicago/Turabian StyleYadav, Virendra Kumar, Amel Gacem, Nisha Choudhary, Ashita Rai, Pankaj Kumar, Krishna Kumar Yadav, Mohamed Abbas, Nidhal Ben Khedher, Nasser S. Awwad, Debabrata Barik, and et al. 2022. "Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications" Minerals 12, no. 12: 1503. https://doi.org/10.3390/min12121503