Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge
Abstract
:1. Introduction
2. Research Methodology
2.1. Framework Design of Research Methodology
2.2. Literature Source
2.3. Literature Analysis
2.3.1. Co-Occurrence Analysis of the Literature
2.3.2. Literature Publication Source Analysis
3. Overview of Big Data Technologies
3.1. Big Data Collection
3.2. Big Data Analysis
3.2.1. Text Analysis
3.2.2. Audio Analysis
3.2.3. Video Analysis
3.2.4. Predictive Analysis
4. Discussion
4.1. Challenges of Applying Big Data to Worker Behavioral Safety
4.2. Prospects and Challenges for the Integration of Big Data Technologies
4.3. Combining Big Data Technology with Construction Management Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Meng, Q.; Li, Z.; Hu, X. Applications of Computer Vision in Monitoring the Unsafe Behavior of Construction Workers: Current Status and Challenges. Buildings 2021, 11, 409. [Google Scholar] [CrossRef]
- Choi, J.; Gu, B.; Chin, S.; Lee, J.-S. Machine learning predictive model based on national data for fatal accidents of construction workers. Autom. Constr. 2020, 110, 102974. [Google Scholar] [CrossRef]
- Akinlolu, M.; Haupt, T.C.; Edwards, D.J.; Simpeh, F. A bibliometric review of the status and emerging research trends in construction safety management technologies. Int. J. Constr. Manag. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.H.; Akhavian, R.; Hwang, S. Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. J. Comput. Civ. Eng. 2016, 30, 16. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wu, G.; Wang, L. Big data: A new perspective of the engineering project management driven by data. Syst. Eng. Theory Pract. 2017, 37, 710–719. [Google Scholar]
- Huang, L.; Wu, C.; Wang, B. Challenges, opportunities and paradigm of applying big data to production safety management: From a theoretical perspective. J. Clean. Prod. 2019, 231, 592599. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Ayhan, B.U.; Tokdemir, O.B. Accident Analysis for Construction Safety Using Latent Class Clustering and Artificial Neural Networks. J. Constr. Eng. Manag. 2020, 146, 04019114. [Google Scholar] [CrossRef]
- Guo, S.Y.; Ding, L.Y.; Luo, H.B.; Jiang, X.Y. A Big-Data-based platform of workers’ behavior: Observations from the field. Accid. Anal. Prev. 2016, 93, 299–309. [Google Scholar] [CrossRef]
- Su, Y.; Mao, C.; Jiang, R.; Liu, G.; Wang, J. Data-Driven Fire Safety Management at Building Construction Sites: Leveraging CNN. J. Manag. Eng. 2021, 37, 04020108. [Google Scholar] [CrossRef]
- Omran, B.A.; Chen, Q. Trend on the Implementation of Analytical Techniques for Big Data in Construction Research (2000–2014). In Proceedings of the Construction Research Congress, San Juan, Argentina, 31 May–2 June 2016; pp. 990–999. [Google Scholar]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Wang, Y.; IEEE. Research on Big Data Architecture, Key Technologies and its Measures. In Proceedings of the 11th IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC), Chengdu, China, 21–22 December 2013; pp. 1–4. [Google Scholar]
- Han, S.U.; Lee, S.H.; Peña-Mora, F. A machine-learning classification approach to automatic detection of workers’ actions for behavior-based safety analysis. In Proceedings of the International Conference on Computing in Civil Engineering, Clearwater Beach, FL, USA, 17–20 June 2012; pp. 65–72. [Google Scholar]
- Yu, Y.T.; Guo, H.L.; Ding, Q.H.; Li, H.; Skitmore, M. An experimental study of real-time identification of construction workers’ unsafe behaviors. Autom. Constr. 2017, 82, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Alwasel, A.; Sabet, A.; Nahangi, M.; Haas, C.T.; Abdel-Rahman, E. Identifying poses of safe and productive masons using machine learning. Autom. Constr. 2017, 84, 345–355. [Google Scholar] [CrossRef]
- Yu, Y.; Umer, W.; Yang, X.; Antwi-Afari, M.F. Posture-related data collection methods for construction workers: A review. Autom. Constr. 2021, 124, 103508. [Google Scholar] [CrossRef]
- Guo, S.; Luo, H.; Yong, L. A big data-based workers behavior observation in China metro construction. Procedia Eng. 2015, 123, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M.; van der Voort, H.; Wahyudi, A. Factors influencing big data decision-making quality. J. Bus. Res. 2017, 70, 338–345. [Google Scholar] [CrossRef]
- Hu, H.; Wen, Y.G.; Chua, T.S.; Li, X.L. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access 2014, 2, 652–687. [Google Scholar] [CrossRef]
- Cheng, B.; Fan, C.; Fu, H.; Huang, J.; Chen, H.; Luo, X. Measuring and Computing Cognitive Statuses of Construction Workers Based on Electroencephalogram: A Critical Review. IEEE Trans. Comput. Soc. Syst. 2022, 1–16. [Google Scholar] [CrossRef]
- Lee, I. Big data: Dimensions, evolution, impacts, and challenges. Bus. Horiz. 2017, 60, 293–303. [Google Scholar] [CrossRef]
- Garyaev, N.; Garyaeva, V. Big data technology in construction. In Proceedings of the 22nd International Scientific Conference on Construction—The Formation of Living Environment (FORM), Tashkent, Uzbekistan, 18–21 April 2019. [Google Scholar]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Hung Byers, A. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: Washington, DC, USA, 2011. [Google Scholar]
- Chong, H.Y.; Low, T.S. Accidents in Malaysian Construction Industry: Statistical Data and Court Cases. Int. J. Occup. Saf. Ergon. 2014, 20, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xu, K. Analysis of the Characteristics of Fatal Accidents in the Construction Industry in China Based on Statistical Data. Int. J. Environ. Res. Public Health 2021, 18, 2162. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Kim, J.U.; Kim, Y.J.; Ok, H. Measure for the Improvement of Constructio Work Accident Informaiton Service Contents in CPMS Focused on Analysis of Construction Work Accidents Big Data. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NEV, USA, 7–9 December 2015; pp. 340–343. [Google Scholar]
- Park, J.; Cho, Y.K.; Khodabandelu, A. Sensor-Based Safety Performance Assessment of Individual Construction Workers. Sensors 2018, 18, 3897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.P.; Park, Y.J.; Seo, J.; Lee, D.E. Association Rules Mined from Construction Accident Data. KSCE J. Civ. Eng. 2018, 22, 1027–1039. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, B.-S. Analysis of Fire-Accident Factors Using Big-Data Analysis Method for Construction Areas. KSCE J. Civ. Eng. 2018, 22, 1535–1543. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Kusoemo, D.; Gosno, R.A. Text mining-based construction site accident classification using hybrid supervised machine learning. Autom. Constr. 2020, 118, 103532. [Google Scholar] [CrossRef]
- Lee, Y.C.; Shariatfar, M.; Rashidi, A.; Lee, H.W. Evidence-driven sound detection for prenotification and identification of construction safety hazards and accidents. Autom. Constr. 2020, 113, 103127. [Google Scholar] [CrossRef]
- Rashid, K.M.; Louis, J. Activity identifi cation in modular construction using audio signals and machine learning. Autom. Constr. 2020, 119, 103361. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Colasante, F.; Di Tanna, S.; Ciancia, M.; Lee, Y.C.; Uncini, A. Deep Belief Network based audio classification for construction sites monitoring. Expert Syst. Appl. 2021, 177, 114839. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Comminiello, D.; Uncini, A.; Lee, Y.C. Deep Recurrent Neural Networks for Audio Classification in Construction Sites. In Proceedings of the 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 810–814. [Google Scholar] [CrossRef]
- Wang, T.; Cao, J.; Pei, L. A Novel Underground Pipeline Surveillance System Based on Hybrid Acoustic Features. IEEE Sens. J. 2021, 21, 1040–1050. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Rashidi, A.; Davenport, M.A.; Anderson, D.V. Evaluation of Software and Hardware Settings for Audio-Based Analysis of Construction Operations. Int. J. Civ. Eng. 2019, 17, 1469–1480. [Google Scholar] [CrossRef]
- Xie, Y.; Lee, Y.C.; Shariatfar, M.; Zhang, Z.D.; Rashidi, A.; Lee, H.W. Historical Accident and Injury Database-Driven Audio-Based Autonomous Construction Safety Surveillance. In Proceedings of the ASCE International Conference on Computing in Civil Engineering (i3CE), Atlanta, GA, USA, 17–19 June 2019; pp. 105–113. [Google Scholar]
- Zhang, T.Y.; Lee, Y.C.; Scarpiniti, M.; Uncini, A. A Supervised Machine Learning-Based Sound Identification for Construction Activity Monitoring and Performance Evaluation. In Proceedings of the Construction Research Congress, New Orleans, LA, USA, 2–4 April 2018; pp. 358–366. [Google Scholar]
- Han, S.; Lee, S.; Pena-Mora, F. Vision-Based Detection of Unsafe Actions of a Construction Worker: Case Study of Ladder Climbing. J. Comput. Civ. Eng. 2013, 27, 635–644. [Google Scholar] [CrossRef]
- Han, S.; Lee, S.; Peña-Mora, F. Vision-based motion detection for safety behavior analysis in construction. In Proceedings of the Construction Research Congress 2012: Construction Challenges in a Flat World, West Lafayette, IN, USA, 21–23 May 2012; pp. 1032–1041. [Google Scholar]
- Han, S.; Lee, S. A vision-based motion capture and recognition framework for behavior-based safety management. Autom. Constr. 2013, 35, 131–141. [Google Scholar] [CrossRef]
- Tang, S.; Golparvar-Fard, M. Machine Learning-Based Risk Analysis for Construction Worker Safety from Ubiquitous Site Photos and Videos. J. Comput. Civ. Eng. 2021, 35, 04021020. [Google Scholar] [CrossRef]
- Li, Y.G.; Wei, H.; Han, Z.; Huang, J.L.; Wang, W.D. Deep Learning-Based Safety Helmet Detection in Engineering Management Based on Convolutional Neural Networks. Adv. Civ. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Tang, S.; Golparvar-fard, M.; Naphade, M.; Gopalakrishna, M.M. Video-Based Activity Forecasting for Construction Safety Monitoring Use Cases. In Proceedings of the ASCE International Conference on Computing in Civil Engineering (i3CE), Atlanta, GA, USA, 17–19 June 2019; pp. 204–210. [Google Scholar]
- Han, Z.; Wang, Y. The Applied Exploration of Big Data Technology in Prefabricated Construction Project Management. In Proceedings of the International Conference on Construction and Real Estate Management (ICCREM), Guangzhou, China, 10–12 November 2017; pp. 71–78. [Google Scholar]
- Hegde, J.; Rokseth, B. Applications of machine learning methods for engineering risk assessment—A review. Saf. Sci. 2020, 122, 104492. [Google Scholar] [CrossRef]
- Tixier, A.J.P.; Hallowell, M.R.; Rajagopalan, B.; Bowman, D. Application of machine learning to construction injury prediction. Autom. Constr. 2016, 69, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Hu, X.; Hou, J.; Li, X. Application of machine learning techniques for predicting the consequences of construction accidents in China. Process Saf. Environ. Prot. 2021, 145, 293–302. [Google Scholar] [CrossRef]
- Dong, M.; Wu, H.; Hu, H.; Azzam, R.; Zhang, L.; Zheng, Z.; Gong, X. Deformation Prediction of Unstable Slopes Based on Real-Time Monitoring and DeepAR Model. Sensors 2021, 21, 14. [Google Scholar] [CrossRef]
- Abbasianjahromi, H.; Mohammadi Golafshani, E.; Aghakarimi, M. A prediction model for safety performance of construction sites using a linear artificial bee colony programming approach. Int. J. Occup. Saf. Ergon. 2021, 28, 1265–1280. [Google Scholar] [CrossRef]
- Lee, K.; Han, S. Convolutional neural network modeling strategy for fall-related motion recognition using acceleration features of a scaffolding structure. Autom. Constr. 2021, 130, 103857. [Google Scholar] [CrossRef]
- Ding, L.; Fang, W.; Luo, H.; Love, P.E.D.; Zhong, B.; Ouyang, X. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Autom. Constr. 2018, 86, 118–124. [Google Scholar] [CrossRef]
- Verdenhofs, A.; Geipele, I.; Tambovceva, T. Big data in construction industry: Systematic literature overview. In Proceedings of the 13th International Conference on Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 16–17 May 2019; pp. 698–703. [Google Scholar]
- Mostafa, K.; Hegazy, T. Review of image-based analysis and applications in construction. Autom. Constr. 2021, 122, 103516. [Google Scholar] [CrossRef]
- Xie, Z.P.; Liu, H.X.; Li, Z.W.; He, Y.C. A convolutional neural network based approach towards real-time hard hat detection. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing (PIC), Suzhou, China, 14–16 December 2018; pp. 430–434. [Google Scholar]
- Sanhudo, L.; Calvetti, D.; Martins, J.P.; Ramos, N.M.M.; Meda, P.; Goncalves, M.C.; Sousa, H. Activity classification using accelerometers and machine learning for complex construction worker activities. J. Build. Eng. 2021, 35, 102001. [Google Scholar] [CrossRef]
- Huang, L.; Fu, Q.B.; He, M.L.; Jiang, D.; Hao, Z.Q. Detection algorithm of safety helmet wearing based on deep learning. Concurr. Comput. Pract. Exp. 2021, 33, e6234. [Google Scholar] [CrossRef]
- Yi, X.; Wu, J. Research on safety management of construction engineering personnel under “big data+ artificial intelligence”. Open J. Bus. Manag. 2020, 8, 1059–1075. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.Z.; Hou, J.C.; Xiong, G.; Nyberg, T.R.; Li, X.H.; IEEE. Smart Cloud-based Platform for Construction Sites. In Proceedings of the IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Beijing, China, 10–12 July 2016; pp. 168–173. [Google Scholar]
- Tibaut, A.; Zazula, D. Sustainable management of construction site big visual data. Sustain. Sci. 2018, 13, 1311–1322. [Google Scholar] [CrossRef]
- Zhou, Z.; Irizarry, J.; Zhou, J. Development of a database exclusively for subway construction accidents and corresponding analyses. Tunn. Undergr. Space Technol. 2021, 111, 103852. [Google Scholar] [CrossRef]
- Khan, N.; Ali, A.K.; Van-Tien Tran, S.; Lee, D.; Park, C. Visual language-aided construction fire safety planning approach in building information modeling. Appl. Sci. 2020, 10, 1704. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, J.; Li, M.; Huang, J.; Wang, X. A Review of Smart Design Based on Interactive Experience in Building Systems. Sustainability 2020, 12, 6760. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Hou, C.; Guo, X.; Fu, H. Building and Health: Mapping the Knowledge Development of Sick Building Syndrome. Buildings 2022, 12, 287. [Google Scholar] [CrossRef]
Step | Title/Abstract/Keywords | Document Type | Language |
---|---|---|---|
Step1 | (“Big data”) AND (“Construction” OR “Engineering” OR “Building” OR “Architecture”) | Research articles/Conference articles/Literature reviews | English |
Step2 | (“Machine learning” OR “Prediction model” OR “Data mining”) AND (“Construction” OR “Engineering” OR “Building” OR “ Architecture” OR “worker”) AND “safety” OR “risk”) | Research articles/Conference articles/Literature reviews | English |
Group | Keyword Co-Occurrence Phrases |
---|---|
Group 1 | big data; big data analytics; data analytics; cloud computing; construction; Hadoop; safety |
Group 2 | machine learning; activity recognition; construction industry; safety management |
Group 3 | construction safety; construction workers; motion capture |
Group 4 | audio processing; deep learning; environmental sound |
Group 5 | motion recognition; motion sensor |
Technology | Data Format | ||
---|---|---|---|
Big data collection | Motion sensor | Worker posture | |
Inertial Measurement Unit (IMU) and camera | Identification of pose clusters from kinematic data | ||
Motion capture & recognition framework | Extract 3D human bone motion model from video | ||
Big data analysis | Text analysis | Statistical analysis | The text data |
Data mining | The text data | ||
Regression tree (CART) data mining | The text data | ||
Principal Component Analysis (PCA) | The text data | ||
A hybrid model combining GRU & symbiotic search (SOS) | The text data | ||
Audio analysis | Audio signals and machine learning | Audio data | |
Audio signal classification method based on deep belief network (DBN) | Audio data | ||
New CMC system with mixed acoustic characteristics | Audio data | ||
Deep recurrent neural network based on LSTM unit | Audio data | ||
Sensors and calculations and analysis programs | Audio data | ||
Video analysis | Based on CNN image recognition technology | Video data | |
A visual unsafe behavior detection framework based on CNN image recognition technology | Video data | ||
Forecast analysis | GM (1,1) model | Statistical data | |
Convolutional Neural Network (CNN) | Image data | ||
Convolutional Neural Network (CNN) and Long- and Short-Term Memory (LSTM) | Statistical data | ||
Latent Class Clustering Analysis and Artificial Neural Network (ANN) | Statistical data | ||
Random Forest (RF) and Random Gradient Tree Increment (SGTB) | Statistical data | ||
Machine learning Autoregressive Network Probability Prediction (DeepAR) model based on time series and probability prediction | Statistical data | ||
Support vector machine (SVM) algorithm | Statistical data | ||
Logistic regression, decision tree, random forest and AdaBoost analysis | Statistical data | ||
Linear Artificial Colony Programming (LABCP) | Statistical data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Peng, Q.; Li, Z.; Hu, X. Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge. Buildings 2022, 12, 533. https://doi.org/10.3390/buildings12050533
Meng Q, Peng Q, Li Z, Hu X. Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge. Buildings. 2022; 12(5):533. https://doi.org/10.3390/buildings12050533
Chicago/Turabian StyleMeng, Qingfeng, Qiyuan Peng, Zhen Li, and Xin Hu. 2022. "Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge" Buildings 12, no. 5: 533. https://doi.org/10.3390/buildings12050533
APA StyleMeng, Q., Peng, Q., Li, Z., & Hu, X. (2022). Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge. Buildings, 12(5), 533. https://doi.org/10.3390/buildings12050533