Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions
<p>The CIE 1924 (black continuous line), 1951 Judd (brown continuous line), CIE 1964 10-degree (light green continuous line), 1978 Vos (green dashed line), CIE 2015 2-degree (cyan continuous line), and CIE 2015 10-degree (red continuous line) spectral luminous efficacy functions.</p> "> Figure 2
<p>The CIE 1931 (blue lines), 1951 Judd version (yellow lines), CIE 1964 10-degree (red lines), 1978 Vos version (green lines), CIE 2015 2-deg (black lines), and CIE 2015 10-deg (gray lines) color matching functions. Dotted lines are long-wavelength, dashed lines are middle-wavelength, and continuous lines are short-wavelength CMFs.</p> "> Figure 3
<p>Box plot of LER for six spectral luminous efficiency functions.</p> "> Figure 4
<p>The chromaticity coordinates of 118 light sources using six different color matching functions: (<b>a</b>) CIE 1931 (<span class="html-italic">x</span>,<span class="html-italic">y</span>); (<b>b</b>) CIE 1976 (<span class="html-italic">u</span>′,<span class="html-italic">v</span>′). The black continuous line is the Planckian locus, and the red straight lines show the ANSI 7-step quadrangles [<a href="#B26-buildings-12-02220" class="html-bibr">26</a>].</p> "> Figure 5
<p>The box plot of CCTs for six CMFs: 1931 (red), 1951 (orange), 1964 10-degrees (gray), 1978 (purple), 2015 2-degrees (blue), 2015 10-degrees (cyan).</p> "> Figure 6
<p>The box plot of <span class="html-italic">D</span><sub>uv</sub> for six CMFs: 1931 (red), 1951 (orange), 1964 10-degrees (gray), 1978 (purple), 2015 2-degrees (blue), 2015 10-degrees (cyan).</p> ">
Abstract
:1. Introduction
2. Background
2.1. Spectral Luminous Efficiency Function
2.2. Color Matching Functions
3. Methods
3.1. Luminous Efficacy of Radiation Calculation
3.2. Color Matching Function Calculation
3.3. Correlated Color Temperature (CCT) and Duv Calculation
3.4. Statistical Method
4. Results
4.1. Luminous Efficiency of Radiation
4.2. Chromaticity Coordinates
4.3. CCT and Duv
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, K. 2022 Solid-State Lighting R&D Opportunities (No. DOE/EE-2542); Guidehouse: Chicago, IL, USA, 2022. [Google Scholar]
- Sesana, E.; Bertolin, C.; Gagnon, A.S.; Hughes, J.J. Mitigating climate change in the cultural built heritage sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Toftum, J.; Thorseth, A.; Markvart, J.; Logadóttir, Á. Occupant response to different correlated colour temperatures of white LED lighting. Build. Environ. 2018, 143, 258–268. [Google Scholar] [CrossRef]
- Viénot, F.; Walraven, P. Colour-matching functions, physiological basis. In Colorimetry: Understanding the CIE System; CIE: Vienna, Austria; Wiley-Interscience: Hoboken, NJ, USA, 2007; pp. 219–243. [Google Scholar]
- Stockman, A. Cone fundamentals and CIE standards. Curr. Opin. Behav. Sci. 2019, 30, 87–93. [Google Scholar] [CrossRef]
- CIE 170-2:2015; Fundamental Chromaticity Diagram with Physiological Axes—Part 2: Spectral Luminous Efficiency Functions and Chromaticity Diagrams. Commission Internationale de l’Eclairage: Vienna, Austria, 2015.
- Royer, M.; Murdoch, M.J.; Smet, K.; Whitehead, L.; David, A.; Houser, K.; Esposito, T.; Livingston, J.; Ohno, Y. Improved Method for Evaluating and Specifying the Chromaticity of Light Sources. Leukos 2022, 1–18. [Google Scholar] [CrossRef]
- Ohno, Y. Spectral design considerations for white LED color rendering. Opt. Eng. 2005, 44, 11302. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Eclairage Proceedings; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Schanda, J.; Morren, L.; Rea, M.; Rositani-Ronchi, L.; Walraven, P. Does lighting need more photopic luminous efficiency functions? Light. Res. Technol. 2002, 34, 69–76. [Google Scholar] [CrossRef]
- Wright, W.D. A re-determination of the trichromatic coefficients of the spectral colours. Trans. Opt. Soc. 1929, 30, 141. [Google Scholar] [CrossRef]
- Guild, J. The colorimetric properties of the spectrum. Philos. Trans. R. Soc. Lond. Ser. A 1931, 230, 149–187. [Google Scholar]
- Judd, D.B. Color in business science and industry. Appl. Spectrosc. 1953, 7, 90–91. [Google Scholar] [CrossRef]
- Vos, J.J. Colorimetric and photometric properties of a 2 fundamental observer. Color Res. Appl. 1978, 3, 125–128. [Google Scholar] [CrossRef]
- CIE. CIE 10 Degree Photopic Photometric Observer; Commission Internationale de l’Eclairage: Vienna, Austria, 2005. [Google Scholar]
- Sharpe, L.T.; Stockman, A.; Jagla, W.; Jagle, H. A luminous efficiency function, V*(λ), for daylight adaptation. J. Vis. 2005, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.H.; Swanson, W.H. Empiric determination of corrected visual acuity standards for train crews. Optom. Vis. Sci. 2005, 82, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Guild, J. The CIE colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73. [Google Scholar] [CrossRef]
- Fairman, H.S.; Brill, M.H.; Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 1997, 22, 11–23. [Google Scholar] [CrossRef]
- CIE. CIE 015:2018 Colorimetry, 4th ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 2018. [Google Scholar]
- Ohno, Y. Color rendering and luminous efficacy of white LED spectra. In Proceedings of the Fourth International Conference on Solid State Lighting, Denver, CO, USA, 3–6 August 2004. [Google Scholar]
- Sharpe, L.T.; Stockman, A.; Jagla, W.; Jägle, H. A luminous efficiency function, VD65*(λ), for daylight adaptation: A correction. Color Res. Appl. 2011, 36, 42–46. [Google Scholar] [CrossRef]
- Davis, W.; Ohno, Y. Color quality scale. Opt. Eng. 2010, 49, 033602. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y. Practical use and calculation of CCT and Duv. Leukos 2014, 10, 47–55. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- ANSI C78.377-2017; American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting Products. National Electrical Manufacturers Association: Rosslyn, VA, USA, 2017.
- Durmus, D. Correlated color temperature: Use and limitations. Light. Res. Technol. 2022, 54, 363–375. [Google Scholar] [CrossRef]
- TN 001:2014; Chromaticity Difference Specification for Light Sources. Commission Internationale de l’Eclairage: Vienna, Austria, 2014.
- Kong, X.; Wei, M.; Murdoch, M.J.; Vogels, I.; Heynderickx, I. Assessing the temporal uniformity of CIELAB hue angle. JOSA A 2020, 37, 521–528. [Google Scholar] [CrossRef]
- Durmus, D. Multi-objective optimization trade-offs for color rendition, energy efficiency, and circadian metrics. In Light-Emitting Devices, Materials, and Applications XXV; SPIE: Bellingham, WA, USA, 2021; Volume 11706, pp. 143–151. [Google Scholar]
- Li, J.; Hanselaer, P.; Smet, K.A. Impact of color matching primaries on observer matching: Part II–Observer variability. Leukos 2022, 18, 104–126. [Google Scholar] [CrossRef]
- Energy Star. Energy Star Certification for Buildings. Available online: https://www.energystar.gov/buildings/building_recognition/building_certification (accessed on 13 November 2021).
- EERE. L-Prize Competition. Available online: https://www.energy.gov/eere/ssl/l-prize-competition (accessed on 9 May 2021).
- Royer, M. Evaluating tradeoffs between energy efficiency and color rendition. OSA Contin. 2019, 2, 2308–2327. [Google Scholar] [CrossRef]
- Pardo, P.J.; Suero, M.I.; Pérez, Á.L.; Martínez-Borreguero, G. Optimization of the correlated color temperature of a light source for a better color discrimination. JOSA A 2014, 31, A121–A124. [Google Scholar] [CrossRef] [PubMed]
- Durmus, D.; Davis, W. Appearance of achromatic colors under optimized light source spectrum. IEEE Photonics 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Zhu, P.; Zhu, H.; Adhikari, G.C.; Thapa, S. Spectral optimization of white light from hybrid metal halide perovskites. OSA Contin. 2019, 2, 1880–1888. [Google Scholar] [CrossRef]
- Durmus, D.; Abdalla, D.; Duis, A.; Davis, W. Spectral Optimization to Minimize Light Absorbed by Artwork. Leukos 2020, 16, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Kore, R.; Brown, N.; Durmus, D. Damage Reduction with Maintained Colour Quality of Artwork Under RGB Projector. Light. Res. Technol. 2023. submitted. [Google Scholar]
- Hu, W.; Davis, W. Spectral optimization for human-centric lighting using a genetic algorithm and a modified Monte Carlo method. In Proceedings of the Optical Devices and Materials for Solar Energy and Solid-state Lighting, Washington, DC, USA, 13–16 July 2020; p. PvM2G-4. [Google Scholar]
- Durmus, D. Circadian metric variability measures for tunable LED light sources. In Light-Emitting Devices, Materials, and Applications XXV; SPIE: Bellingham, WA, USA, 2021; Volume 11706, pp. 108–114. [Google Scholar]
- Afshari, S.; Mishra, S.; Wen, J.; Karlicek, R. An adaptive smart lighting system. In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, New York, NY, USA, 6 November 2012; pp. 201–202. [Google Scholar]
- Choi, K.; Suk, H.J. Dynamic lighting system for the learning environment: Performance of elementary students. Opt. Exp. 2016, 24, A907–A916. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Durmus, D. Image quality metrics, personality traits, and subjective evaluation of indoor environment images. Buildings 2022, 12, 2086. [Google Scholar] [CrossRef]
- Asano, Y.; Fairchild, M.D.; Blondé, L.; Morvan, P. Color matching experiment for highlighting interobserver variability. Color Res. Appl. 2016, 41, 530–539. [Google Scholar] [CrossRef]
- Yang, W.; Jeon, J.Y. Effects of correlated colour temperature of LED light on visual sensation, perception, and cognitive performance in a classroom lighting environment. Sustainability 2020, 12, 4051. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, K.; Zhang, X.; Ma, M.; Zhang, J. Study of Human Visual Comfort Based on Sudden Vertical Illuminance Changes. Buildings 2022, 12, 1127. [Google Scholar] [CrossRef]
- Pattison, M.; Hansen, M.; Bardsley, N.; Elliott, C.; Lee, K.; Pattison, L.; Tsao, J. 2019 Lighting R&D Opportunities; Solid State Lighting Solutions (SSLS) Inc.: Santa Barbara, CA, USA, 2020. [Google Scholar]
- Durmus, D.; Hu, W.; Davis, W. Lighting application efficacy: A framework for holistically measuring lighting use in buildings. Front. Built Environ. 2022, 8, 986961. [Google Scholar] [CrossRef]
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.875 ns | <0.001 *** | 0.797 ns | 0.002 ** | <0.001 *** |
r | 0.014 | 0.323 | 0.024 | 0.284 | 0.381 | ||
1951 | p | - | - | <0.001 *** | 0.863 ns | 0.002 ** | <0.001 *** |
r | 0.320 | 0.016 | 0.280 | 0.376 | |||
1964 10-deg | p | - | - | - | <0.001 *** | 0.697 ns | 0.437 ns |
r | 0.313 | 0.036 | 0.072 | ||||
1978 | p | - | - | - | - | 0.003 ** | <0.001 *** |
r | 0.274 | 0.370 | |||||
2015 2-deg | p | - | - | - | - | - | 0.276 ns |
r | 0.100 |
LER (lm/W) | pcLED YAG | Daylight Fluorescent | Incandescent | RGB LED (5000 K) |
---|---|---|---|---|
1924 | 293.84 | 290.65 | 154.87 | 277.50 |
1951 | 294.24 | 292.28 | 155.11 | 277.72 |
1964 10-deg | 323.84 | 315.69 | 163.24 | 308.81 |
1978 | 294.40 | 292.51 | 155.09 | 277.61 |
2015 2-deg | 310.70 | 306.08 | 163.12 | 295.26 |
2015 10-deg | 329.43 | 320.95 | 164.73 | 312.43 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.225 ns | 0.118 ns | 0.191 ns | 0.134 ns | 0.095 ns |
r | 0.112 | 0.114 | 0.120 | 0.138 | 0.154 | ||
1951 | p | - | - | 0.998 ns | 0.908 ns | 0.702 ns | 0.095 ns |
r | 0.0002 | 0.011 | 0.035 | 0.032 | |||
1964 10-deg | p | - | - | - | 0.942 ns | 0.690 ns | 0.698 ns |
r | 0.007 | 0.037 | 0.036 | ||||
1978 | p | - | - | - | - | 0.765 ns | 0.798 ns |
r | 0.028 | 0.024 | |||||
2015 2-deg | p | - | - | - | - | - | 0.957 ns |
r | 0.005 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.001 *** | 0.236 ns | 0.001 *** | 0.280 ns | 0.113 ns |
r | 0.307 | 0.109 | 0.303 | 0.100 | 0.146 | ||
1951 | p | - | - | <0.001 *** | 0.872 ns | 0.007 ** | <0.001 *** |
r | 0.400 | 0.015 | 0.250 | 0.430 | |||
1964 10-deg | p | - | - | - | <0.001 *** | 0.035 * | 0.629 ns |
r | 0.398 | 0.194 | 0.044 | ||||
1978 | p | - | - | - | - | 0.006 ** | <0.001 *** |
r | 0.251 | 0.431 | |||||
2015 2-deg | p | - | - | - | - | - | 0.012 * |
r | 0.233 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.378 ns | 0.025 * | 0.442 ns | 0.123 ns | 0.010 ** |
r | 0.081 | 0.207 | 0.071 | 0.142 | 0.237 | ||
1951 | p | - | - | 0.009 ** | 0.733 ns | 0.064 ns | 0.004 ** |
r | 0.240 | 0.031 | 0.171 | 0.269 | |||
1964 10-deg | p | - | - | - | 0.010 ** | 0.331 ns | 0.491 ns |
r | 0.236 | 0.090 | 0.063 | ||||
1978 | p | - | - | - | - | 0.075 ns | 0.004 ** |
r | 0.164 | 0.262 | |||||
2015 2-deg | p | - | - | - | - | - | 0.117 ns |
r | 0.144 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.014 * | 0.787 ns | 0.012 * | 0.255 ns | 0.677 ns |
r | 0.227 | 0.025 | 0.231 | 0.105 | 0.038 | ||
1951 | p | - | - | 0.011 * | 0.934 ns | 0.129 ns | 0.008 ** |
r | 0.235 | 0.008 | 0.140 | 0.245 | |||
1964 10-deg | p | - | - | - | 0.010 ** | 0.165 ns | 0.803 ns |
r | 0.237 | 0.128 | 0.023 | ||||
1978 | p | - | - | - | - | 0.131 ns | 0.007 ** |
r | 0.139 | 0.247 | |||||
2015 2-deg | p | - | - | - | - | - | 0.134 ns |
r | 0.138 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | 0.594 ns | 0.039 * | 0.582 ns | 0.070 ns | 0.024 * |
r | 0.049 | 0.190 | 0.051 | 0.167 | 0.208 | ||
1951 | p | - | - | 0.083 ns | 0.967 ns | 0.142 ns | 0.050 * |
r | 0.160 | 0.004 | 0.135 | 0.181 | |||
1964 10-deg | p | - | - | - | 0.088 ns | 0.629 ns | 0.532 ns |
r | 0.157 | 0.045 | 0.057 | ||||
1978 | p | - | - | - | - | 0.149 ns | 0.052 ns |
r | 0.133 | 0.179 | |||||
2015 2-deg | p | - | - | - | - | - | 0.276 ns |
r | 0.100 |
1924 | 1951 | 1964 10-Deg | 1978 | 2015 2-Deg | 2015 10-Deg | ||
---|---|---|---|---|---|---|---|
1924 | p | - | <0.001 *** | <0.001 *** | <0.001 *** | 0.350 ns | <0.001 *** |
r | 0.565 | 0.436 | 0.576 | 0.086 | 0.521 | ||
1951 | p | - | - | <0.001 *** | 0.970 ns | <0.001 *** | <0.001 *** |
r | 0.794 | 0.003 | 0.546 | 0.830 | |||
1964 10-deg | p | - | - | - | <0.001 *** | <0.001 *** | 0.180 ns |
r | 0.801 | 0.474 | 0.123 | ||||
1978 | p | - | - | - | - | <0.001 *** | <0.001 *** |
r | 0.556 | 0.836 | |||||
2015 2-deg | p | - | - | - | - | - | <0.001 *** |
r | 0.551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Durmus, D. Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions. Buildings 2022, 12, 2220. https://doi.org/10.3390/buildings12122220
Song W, Durmus D. Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions. Buildings. 2022; 12(12):2220. https://doi.org/10.3390/buildings12122220
Chicago/Turabian StyleSong, Wangyang, and Dorukalp Durmus. 2022. "Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions" Buildings 12, no. 12: 2220. https://doi.org/10.3390/buildings12122220
APA StyleSong, W., & Durmus, D. (2022). Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions. Buildings, 12(12), 2220. https://doi.org/10.3390/buildings12122220