Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways
<p>Various failures of plate bearings.</p> "> Figure 2
<p>Structural composition of spherical bearing.</p> "> Figure 3
<p>Beam lifting operation.</p> "> Figure 4
<p>Bearing replacement construction.</p> "> Figure 5
<p>Flowchart of bridge bearing replacement construction.</p> "> Figure 6
<p>Dimensions of bridge piers (Unit: m).</p> "> Figure 7
<p>Test bridge measuring point layout diagram.</p> "> Figure 8
<p>Field records.</p> "> Figure 9
<p>Dynamic deflection of the middle section.</p> "> Figure 10
<p>Maximum dynamic deflection.</p> "> Figure 11
<p>Lateral amplitude.</p> "> Figure 12
<p>Lateral acceleration.</p> "> Figure 13
<p>Maximum lateral amplitude.</p> "> Figure 14
<p>Maximum lateral acceleration.</p> "> Figure 15
<p>Maximum vertical amplitude.</p> "> Figure 16
<p>Maximum vertical acceleration.</p> "> Figure 17
<p>Lateral displacement at bearings.</p> "> Figure 18
<p>Vertical displacement at bearings.</p> "> Figure 19
<p>Lateral displacement amplitude.</p> "> Figure 20
<p>Vertical displacement amplitude.</p> "> Figure 21
<p>Maximum lateral amplitude at the pier top.</p> "> Figure 22
<p>Simulation model and beam cross-section.</p> "> Figure 23
<p>Vertical loads (Unit:m).</p> "> Figure 24
<p>Lateral forces.</p> "> Figure 25
<p>Dynamic response at a speed of 55 km/h (pier height).</p> "> Figure 26
<p>Maximum dynamic response (pier height).</p> "> Figure 27
<p>Maximum dynamic response (bridge span).</p> ">
Abstract
:1. Introduction
2. Rapid Replacement Method for Spherical Bearings
3. On-Site Tests
3.1. Bearings Replacement
3.2. Test Scope and Measurement Point Arrangement
3.3. Test Results and Analysis
3.3.1. Dynamic Deflection of Middle Section
3.3.2. Lateral Vibration of Middle Section
3.3.3. Vertical Vibration of Middle Section
3.3.4. Dynamic Response of Bearings
3.3.5. Dynamic Response of Piers
4. Numerical Simulation
4.1. Model Establishment and Verification
4.2. Factor Analysis
4.2.1. Analysis Conditions
4.2.2. Pier Height
4.2.3. Bridge Span
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Luo, X.; Liu, J.; Wang, K. Dynamic response of railway bridges under heavy-haul freight trains. Adv. Civ. Eng. 2020, 13, 7486904. [Google Scholar] [CrossRef]
- Di, J.; Su, Y.; Han, Y.; Luo, J.; Qin, F.; Yan, R. Investigation on dynamic factors of railway steel-plate-concrete composite beam bridges with small and medium spans. Adv. Civ. Eng. 2024, 17, 4674117. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, X.Y. Impact of increasing load of heavy haul train on structural response of simply supported t-shape beam bridge. J. South China Univ. Technol. (Nat. Sci. Ed.) 2020, 48, 124–132. [Google Scholar]
- Zhang, D.; Zhai, W.; Wang, K. Dynamic interaction between heavy-haul train and track structure due to increasing axle load. Aust. J. Struct. Eng. 2017, 18, 190–203. [Google Scholar] [CrossRef]
- Nilimaa, J.; Blanksvärd, T.; Täljsten, B.; Elfgren, L. Unbonded Transverse Posttensioning of a Railway Bridge in Haparanda, Sweden. J. Bridge Eng. 2014, 19, 04013001. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, J.G.; Tian, B.; Xie, K.Z. Reinforcement technology on short-span bridges for heavy-haul railway based on the method of adding supports. J. Railw. Eng. Soc. 2024, 41, 42–48. [Google Scholar]
- Zeng, Z.; Peng, G.; Guo, W.; Huang, X.; Wang, W.; Hu, J.; Li, S.; Shuaibu, A.A.; Yuan, Y.; Du, X. Research on mechanical performance of improved low vibration track and its feasibility analysis for heavy-haul railway applications. Appl. Sci. 2021, 11, 10232. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, C.C.; Li, X.Z.; Wang, C.Y. Study on parameter influence of spherical seismic isolation bearing with double curved surfaces for beam bridge with long continuous units. Bridge Constr. 2022, 52, 94–100. [Google Scholar]
- Chen, S.L.; Xu, H.W.; Liu, Y.Q. Influence research of dynamic performance on heavy⁃haul railway simply⁃supported bridge accused by different bearing. J. Vib. Meas. Diagn. 2022, 42, 1147–1154+1245–1246. [Google Scholar]
- Jiang, H.; Song, G.S.; Liu, Z.S.; Guo, H.; Lu, W.L.; Zhou, Y.Z.; Zeng, C. Seismic reduction technology of a long-span railway steel truss arch bridge under near-fault earthquakes. J. Vib. Shock 2023, 42, 95–105. [Google Scholar]
- Peng, T.; Li, J.; Xu, Y.; Fan, L. Study on the seismic performance of a double spherical seismic isolation bearing. Earthq. Eng. Eng 2008, 7, 439–446. [Google Scholar] [CrossRef]
- Peng, T.; Yu, X.; Wang, Z.; Han, L. Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges. Earthq. Eng. Eng 2012, 11, 163–172. [Google Scholar] [CrossRef]
- Nie, G.B.; Wang, W.; Zhang, C.X.; Zhi, X.D.; Liu, K. Seismic evaluation of isolation performance on single layer cylindrical reticulated shells supported along four sides. Eng. Struct. 2024, 301, 117279. [Google Scholar] [CrossRef]
- He, W.; Wang, S.H.; Yan, Q.M. Research on the characteristics between spherical bearings and upper and lower structures. Railw. Eng. 2012, 52, 5–7. [Google Scholar]
- Yang, Y.; Zhang, Y.; Ju, J. Study on the mechanical properties of a type of spherical bearing. J. Theor. Appl. Mech. 2021, 59, 539–550. [Google Scholar] [CrossRef]
- Adamov, A.A.; Kamenskikh, A.A.; Pankova, A.P.; Strukova, V.I. Comparative analysis of the work of bridge spherical bearing at different antifriction layer locations. Lubricants 2022, 10, 207. [Google Scholar] [CrossRef]
- Adamov, A.A.; Kamenskikh, A.A.; Pankova, A.P. Influence analysis of the antifriction layer materials and thickness on the contact interaction of spherical bearings elements. Lubricants 2022, 10, 30. [Google Scholar] [CrossRef]
- Nosov, Y.O.; Kamenskikh, A.A. Influence analysis of lubricant recesses on the working capacity of the bridge span spherical bearing. Lubricants 2022, 10, 283. [Google Scholar] [CrossRef]
- Guo, J.; Geng, T.; Yan, H.; Du, L.; Zhang, Z.; Sun, C. Implementation of a load sensitizing bridge spherical bearing based on low-coherent fiber-optic sensors combined with neural network algorithms. Sensors 2021, 21, 37. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, L.; Cui, M.; Cheng, X.; Zou, Y.; Cui, Y.; Wu, G. Investigation and treatment of bearing diseases for typical expressway and high-speed railway bridges in Eastern China: A field practice campaign. Struct. Infrastruct. Eng. 2024, 20, 13–35. [Google Scholar] [CrossRef]
- Ma, F.; Li, H.; Hou, S.; Kang, X.; Wu, G. Defect investigation and replacement implementation of bearings for long-span continuous box girder bridges under operating high-speed railway networks: A case study. Struct. Infrastruct. Eng. 2022, 18, 678–693. [Google Scholar] [CrossRef]
- Ma, F.; Cheng, X.; Zhu, X.; Wu, G.; Feng, D.-C.; Hou, S.; Kang, X. Safety monitoring of bearing replacement for a concrete high-speed railway bridge based on acoustic emission. J. Perform. Constr. Facil. 2022, 36, 04022014. [Google Scholar] [CrossRef]
- Ministry of Railways of the People’s Republic of China. Code for Rating Existing Railway Bridges; China Railway Publishing House: Beijing, China, 2004. [Google Scholar]
Bridge | Pier Type | B (m) | H (m) | H0 (m) | H1 (m) | H2 (m) |
---|---|---|---|---|---|---|
1# | Cylindrical | 2.2 | 9.5 | 6.0 | 7.5 | 1.5 |
2# | Cylindrical | 2.2 | 6.0 | 2.5 | 4.0 | 1.5 |
Bridge | First Span (hours) | Second Span (hours) | Third Span (hours) |
---|---|---|---|
1# | 4.0 | 3.5 | 3.2 |
2# | 3.8 | 3.4 | 3.0 |
Equipment Name | Model | Range | Error | Application |
---|---|---|---|---|
High-speed dynamic data acquisition system | IMC C1-LEMO-ET | ±10 V | 0.1% | To collect bearing displacement data |
Intelligent signal acquisition and analysis system | INV3062 | ±10 V | 1% | To collect mid-span amplitude and acceleration data |
Vibration sensor | 891-II | 0.25~100 Hz | 1.0% | To convert vibration signals into electrical signals for subsequent data acquisition and analysis |
Displacement sensor | CDP-10 | 0~10 mm | 0.2% | To measure bearing displacement |
Displacement sensor | CDP-10 SDP-50C | 0~10 mm 0~50 mm | 0.2% | To measure bridge dynamic deflection |
Speed Range | Statistics | Span 1# | Span 2# | ||||
---|---|---|---|---|---|---|---|
Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | ||
V1 | Max | 5.280 | 5.972 | 13.1 | 5.280 | 5.750 | 8.9 |
Mean | 4.578 | 5.336 | 16.6 | 4.451 | 5.044 | 13.3 | |
V2 | Max | 5.682 | 5.950 | 4.7 | 5.668 | 5.690 | 0.4 |
Mean | 4.746 | 5.657 | 19.2 | 4.736 | 5.572 | 17.7 |
Speed Range | Span | Statistics | Maximum Lateral Amplitude | Maximum Lateral Acceleration | ||||
---|---|---|---|---|---|---|---|---|
Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | Plate Bearing (m/s2) | Spherical Bearing (m/s2) | Change (%) | |||
V1 | 1# | Max | 0.810 | 0.750 | −7.4 | 0.223 | 0.210 | −5.8 |
Mean | 0.586 | 0.443 | −24.4 | 0.209 | 0.137 | −34.4 | ||
V2 | 1# | Max | 0.820 | 0.510 | −37.8 | 0.413 | 0.247 | −40.2 |
Mean | 0.518 | 0.428 | −17.4 | 0.231 | 0.165 | −28.6 | ||
V1 | 2# | Max | 0.570 | 0.501 | −12.1 | 0.182 | 0.181 | −0.5 |
Mean | 0.464 | 0.396 | −14.7 | 0.205 | 0.130 | −36.6 | ||
V2 | 2# | Max | 0.660 | 0.560 | −15.2 | 0.392 | 0.271 | −30.9 |
Mean | 0.465 | 0.460 | −1.1 | 0.222 | 0.215 | −3.2 |
Speed Range | Span | Statistics | Maximum Vertical Amplitude | Maximum Vertical Acceleration | ||||
---|---|---|---|---|---|---|---|---|
Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | Plate Bearing (m/s2) | Spherical Bearing (m/s2) | Change (%) | |||
V1 | 1# | Max | 0.810 | 0.790 | −2.5 | 1.050 | 1.042 | −0.8 |
Mean | 0.661 | 0.584 | −11.6 | 0.876 | 0.661 | −24.5 | ||
V2 | 1# | Max | 0.950 | 0.720 | −10.5 | 1.310 | 1.070 | −18.3 |
Mean | 0.681 | 0.602 | −8.5 | 0.913 | 1.038 | 13.7 | ||
V1 | 2# | Max | 0.630 | 0.610 | −3.2 | 1.480 | 1.460 | −1.4 |
Mean | 0.490 | 0.448 | −8.6 | 0.905 | 0.699 | −22.8 | ||
V2 | 2# | Max | 0.780 | 0.541 | −30.6 | 1.540 | 1.480 | −3.9 |
Mean | 0.495 | 0.480 | −3.0 | 1.065 | 1.087 | 2.1 |
Speed Range | Span | Statistics | Lateral Displacement Amplitude | Vertical Displacement Amplitude | ||||
---|---|---|---|---|---|---|---|---|
Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | |||
V1 | 1# | Max | 0.261 | 0.182 | −30.3 | 0.216 | 0.100 | −53.7 |
Mean | 0.169 | 0.073 | −56.8 | 0.182 | 0.087 | −52.2 | ||
Standard deviation | 0.042 | 0.017 | −59.5 | 0.022 | 0.007 | −68.2 | ||
V2 | 1# | Max | 0.260 | 0.075 | −71.2 | 0.216 | 0.095 | −56.0 |
Mean | 0.142 | 0.060 | −57.7 | 0.169 | 0.081 | −52.1 | ||
Standard deviation | 0.027 | 0.010 | −63.0 | 0.015 | 0.010 | −33.3 | ||
V1 | 2# | Max | 0.258 | 0.081 | −68.6 | 0.220 | 0.101 | −54.1 |
Mean | 0.180 | 0.057 | −68.3 | 0.207 | 0.077 | −62.8 | ||
Standard deviation | 0.014 | 0.016 | 14.3 | 0.004 | 0.006 | 50.0 | ||
V2 | 2# | Max | 0.259 | 0.034 | −86.9 | 0.219 | 0.054 | −75.3 |
Mean | 0.175 | 0.030 | −82.9 | 0.204 | 0.050 | −75.5 | ||
Standard deviation | 0.034 | 0.002 | −94.1 | 0.017 | 0.002 | −88.2 |
Speed Range | Statistics | Span 1# | Span 2# | ||||
---|---|---|---|---|---|---|---|
Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | Plate Bearing (mm) | Spherical Bearing (mm) | Change (%) | ||
V1 | Max | 0.430 | 0.540 | 25.6 | 0.150 | 0.230 | 53.3 |
Mean | 0.363 | 0.421 | 16.0 | 0.131 | 0.185 | 41.2 | |
V2 | Max | 0.480 | 0.541 | 12.7 | 0.240 | 0.290 | 20.8 |
Mean | 0.365 | 0.497 | 36.2 | 0.168 | 0.230 | 36.9 |
Span (m) | Beam Length (m) | Beam Height (cm) | Beam Web Width (m) | Distance Between Beam Web Centers (cm) | Beam Top Width (m) | Beam Bottom Width (m) |
---|---|---|---|---|---|---|
8 | 8.5 | 55 | 1.06 | 170 | 1.92 | 1.06 |
10 | 10.5 | 70 | 0.46 | 170 | 1.92 | 1.06 |
12 | 12.5 | 85 | 0.26 | 180 | 1.92 | 1.06 |
16 | 16.5 | 110 | 0.26 | 180 | 1.92 | 1.06 |
Bearing Type | Vertical Rotational Stiffness (kN·m/rad) | Vertical Stiffness (kN/m) | Lateral Horizontal Stiffness (kN/m) |
---|---|---|---|
Spherical Bearing (GD) | 1 × 1010 | 1 × 106 | 1 × 1010 |
Spherical Bearing (HX) | 1 × 1010 | 1 × 106 | 1 × 104 |
Test Parameter | Test Results | Simulation Results | Deviation |
---|---|---|---|
Dynamic deflection of the middle section (mm) | 5.319 | 5.556 | −4.5% |
Lateral amplitude of middle section (mm) | 0.448 | 0.447 | 0.2% |
Lateral acceleration of middle section (m/s2) | 0.138 | 0.131 | 5.1% |
Vertical acceleration of middle section (m/s2) | 0.665 | 0.642 | 3.5% |
Pier top lateral amplitude (mm) | 0.414 | 0.433 | −4.6% |
Case | Research Focus | Bridge Span (m) | H1 (m) | Train Speed (km/h) |
---|---|---|---|---|
1 | Pier height variation | 16 | 1.5, 4.5, 7.5, 9.0, 10.0 | 55, 60, 65, 70, 75, 80 |
2 | Span differences | 8, 10, 12, 16 | 7.5 | 55, 60, 65, 70, 75, 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhou, Y.; Xie, K.; Zhang, P.; Li, C. Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways. Buildings 2025, 15, 619. https://doi.org/10.3390/buildings15040619
Chen S, Zhou Y, Xie K, Zhang P, Li C. Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways. Buildings. 2025; 15(4):619. https://doi.org/10.3390/buildings15040619
Chicago/Turabian StyleChen, Shuli, Ye Zhou, Kaize Xie, Panhui Zhang, and Chen Li. 2025. "Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways" Buildings 15, no. 4: 619. https://doi.org/10.3390/buildings15040619
APA StyleChen, S., Zhou, Y., Xie, K., Zhang, P., & Li, C. (2025). Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways. Buildings, 15(4), 619. https://doi.org/10.3390/buildings15040619