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Abstract: Construction safety requirements (SRs), which serve as critical information
encapsulating a wide range of safety-related issues, constitute a fundamental basis for
effective construction safety management. The constraints of the complex information
characteristics and uncertainty of knowledge migration, however, lead to the failure to
transform most of the requirement information into effective knowledge. This study pro-
poses a multi-stage knowledge transformation framework for realizing the transformation
of SRs from abstract information to canonical knowledge, and it accurately completes
the knowledge transformation through document matching, knowledge extraction, and
knowledge representation. Meanwhile, a semi-automated model was introduced into this
study to develop a domain ontology knowledge base for SRs and to represent each type of
knowledge through class definitions. The proposed framework was validated by testing
project documents collected from two types of building projects, and the results show that
the RD-based association rules can accurately match documents associated with SRs and
adapt to match different types of sentiment attribute documents. Moreover, the improved
TF-IDF algorithm improved by 20% in precision and recall, showing that the algorithm can
extract tacit knowledge by combining knowledge points. Further, the domain ontology
knowledge base facilitates normative documentation and representation for each type of
knowledge in SRs.

Keywords: construction safety requirements; knowledge transformation; ontology

1. Introduction
The extensive requirement information generated from construction safety manage-

ment is highly applicable and can support managers in decision making. This information
is part of the SRs and records the details of entities, actions, and objects [1]. Moreover,
managers can discover the tacit knowledge associated with SRs through knowledge transfer
and thus assess the safety status of the site [2,3]. In this context, transforming the various
types of requirements information into knowledge that can be directly applied to site safety
management is crucial for enhancing the performance of safety management.

SRs have complex information characteristics, which contain three types of ele-
ments of requirement information, and there is also strict correlation logic between the
elements [4–6]. Considering the constraints of the information characteristics, it is necessary
to analyze the content and element relationships before acquiring the core knowledge com-
municated through this information [7]. According to the impact mechanism of SRs, there
is a series of consequences that may be triggered when the requirements are violated [1,8].
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Specifically, the unfulfilled requirements may induce potential safety risks and lead to
corresponding safety incidents [9]. Accordingly, the subsequent information emerges when
the requirements are not met. Thus, this information can be categorized as tacit knowledge
and is equally valuable.

Previous studies have attempted to retrieve SRs in conjunction with content structure
and categorize them according to content attributes [2,4,10]. Considering the information
characteristics of SRs, some scholars have refined the information content based on entity
elements [11,12]. To be able to transform redundant information into valuable knowledge,
structured representations have also been used for knowledge transformation of SRs [13].
Meanwhile, ontology modeling also benefits from the ability to specify the classes and
relationships commonly used to manage the information of SRs [14,15]. Some scholars
have decoded the information of SRs to build a knowledge structure with knowledge
elements, classes, and subclasses as the main structure [1,16]. Further, ontology knowledge
has also been used for safety incident profiling to extract knowledge from SRs [16–18].
Although there have been some attempts in existing studies to transform the knowledge of
SRs, they failed to extract the complete knowledge of SRs (especially tacit knowledge) and
lacked normative documentation and representation for each type of knowledge. In this
context, the value of SRs is inadequately demonstrated in safety-related decisions, thereby
diminishing their role in guiding management practices on construction sites.

To address this limitation, this study aims to accurately capture the complete knowl-
edge embedded in SRs and develop a domain ontology knowledge base in conjunction with
a semi-automated model for normative documentation and representation of each type
of knowledge. Specifically, this paper proposes a multi-stage knowledge transformation
framework for transforming SRs from redundant information to normative knowledge.
The framework incorporates the dichotomous influence mechanism of SRs and analyses
the corresponding explicit and tacit knowledge. Meanwhile, this study also condenses
the knowledge transformation process of SRs and divides it into three stages: document
matching, knowledge extraction, and knowledge representation. Further, a semi-automated
model is introduced into the framework to develop a domain ontology knowledge base to
manage the transformed knowledge in a standardized manner.

The content of this paper is organized as follows: In the next section, we review the
research background of SRs in the areas of knowledge extraction, knowledge transfer, and
knowledge representation. Next, a multi-stage knowledge transformation framework is
constructed and combined with a semi-automated model to develop a domain ontology
knowledge base. The testing and knowledge transformation of the framework are recorded
in the result analysis of this study, and detailed knowledge extraction and transfer are
provided. Finally, the discussion and conclusions of this study are also elaborated in the
subsequent sections.

2. Literature Review
2.1. Knowledge Extract of SRs

Many scholars have executed a series of works on the information mining, analysis,
as well as processing of SRs [4,19,20]. Some scholars have proposed a hybrid granularity
specification knowledge base-building method, which uses ontology modeling software
to build a construction safety specification knowledge base and presents the requirement
information in the form of accident portraits [16,21]. By evaluating the safety-related auto-
mated system of a nuclear power plant, the critical matter analysis method has also been
introduced into the study of extracting requirements-related knowledge [22]. After acquir-
ing the requirements knowledge, the specification of the description of this knowledge
has also received attention. For instance, some scholars have used domain knowledge to
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describe the requirement information and developed a knowledge structure of requirement
information with the main structure of the knowledge elements, subjects, and subcategories
of subjects [23]. Further, ontology has been introduced to describe the knowledge structure
of SRs and to automate the identification of these requirements data in Revit [24].

In addition, the integration of multiple techniques has been used to uncover and
manage knowledge derived from SRs. For example, ontology modeling and document
modeling have been integrated to semi-automatically identify SRs from construction safety
standards and obtain knowledge through information representation [4,8,25]. Moreover,
the combination of natural language processing (NLP) and text mining (TM) has been used
to extract SRs from project documents and obtain effective knowledge through structured
representation [1,2,8]. Considering the uncertain safety risks brought by the COVID-19
pandemic to infrastructure construction, some scholars have integrated knowledge man-
agement and BIM for safety risk identification and explicitly presented the requirement
information under the corresponding risks through the extraction of topological relation-
ships and visualization [21,26].

These studies show that scholars have transitioned from focusing on information
retrieval of SRs to knowledge acquisition, and the modes of acquisition are thus gradu-
ally being enriched. Moreover, previous studies have also confirmed the rich value of
the multifaceted knowledge embedded in SRs that can contribute to safety strategies in
project management.

2.2. Knowledge Transfer for SRs

Due to the rich information content of SRs, some scholars have begun to pay attention
to the value transfer of requirement information in knowledge management. For instance,
some scholars combine the “2–4” phase model of behavioral safety to describe unsafe
behaviors and violations at the individual and organizational levels as safety knowledge,
applying it to safety corrective actions, safety standard determination, and safety project
inspection [27]. Accordingly, some requirement information can directly intervene in safety
decision making, including overtime information that can be used to send physical fitness
warnings through wearable devices [7,28], danger alerts for large heart rate fluctuations [29],
and siren alerts for risky behaviors [30,31].

In addition, SRs are used as a criterion for safety management implementation, and
potential risks in the current safety management model are assessed through requirements
consistency checks [7,31]. In particular, SRs were also used as safety target settings for
similar projects, and quantitative values from this information were extracted as key indi-
cators [32]. Also, previous studies have started to use normalization to extract knowledge
from SR and to assess the value of the knowledge. To extract knowledge comprehensively,
a new approach with modeling and reasoning capabilities has been used by scholars for
the semi-automatic identification of SRs from building safety standards and knowledge
transformation of safety-related information [1,4]. A system capable of providing safety
information following acts and regulations was developed to extract knowledge from SRs
and judge the value of the knowledge against defined norms [33]. Since knowledge assess-
ment of SRs is labor-intensive, automated extraction incorporating information technology
has begun to gain attention. For instance, information extraction methods embedded with
deep learning can be used to automatically extract named entities describing fall protection
requirements from building safety regulations and to resolve referential ambiguity [2,8].
Further, the combination of knowledge mining with machine learning and reinforcement
learning can improve SR knowledge extraction accuracy and canonical categorization of
knowledge [9,12,34].
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These studies show that SRs both realize the value extraction of single information and
acquire the knowledge associated with the requirement information through knowledge
migration. However, previous studies have failed to achieve a canonical representation of
multivariate knowledge and have lacked the extraction of tacit knowledge.

2.3. Knowledge Representation for SRs

The canonical representation of the knowledge to which SRs belong is a prerequisite for
their ability to be of value in project management and has also gained attention in previous
studies. Traditional studies tend to break down the information in SRs in terms of semantic
structure and divide the information structure according to lexical properties and word
categories [35,36]. To address the multiple types of emotions involved in the information
in SRs, knowledge representation methods that incorporate semantic emotions are also
used for the processing of fragmented safety knowledge [7,37]. Moreover, knowledge
graphs, as a commonly used knowledge specification representation vector, are also used
by some scholars to represent the knowledge of SRs. For instance, the relationship between
hypergraphs and knowledge graphs is established to improve the ability of knowledge
graphs to represent complex safety knowledge as well as knowledge aggregation [38]. To
mine the knowledge of multimodal information in SRs, previous studies have also defined
the energy function of ternary groups as textual features with correlation relationships
and multimodal features of entities to obtain semantically explicit knowledge [2]. Also,
methods such as metatheory, rule logic, and domain ontology have been gradually applied
to knowledge graphs to develop safety knowledge representation systems that are both
personalized and functional [16,39,40].

Compared to the knowledge representation method that employs manual decom-
position and processing of information semantics, intelligent representation models that
incorporate new information technologies have been gradually applied to the research.
Combining knowledge representation with deep learning enables the extraction of SRs from
unstructured text and enables an automated description of the relationship between safety
incidents and SRs [2,38]. Considering the uncertainty of the construction site, previous
research has automatically extracted information from texts and tables based on safety
scenarios and combined knowledge graphs with deep learning to achieve a canonical
representation of safety-related knowledge [23,41,42].

Previous studies have also represented the knowledge of SRs in the context of infor-
mation processing and have analyzed the semantic structure of this knowledge. However,
these studies lacked a structured representation of the knowledge associated with SRs;
in particular, semantic categories and structural features were not integrated into the
knowledge representation.

3. Methodology
3.1. Knowledge Transformation Framework for SRs

Considering the complexity of knowledge types in SRs, the corresponding knowledge
transformation needs to consider the characteristics of knowledge content. To realize the
transformation of SRs from abstract information to canonical knowledge, this paper ana-
lyzes the knowledge composition of ontology in the field of SRs and constructs a multi-stage
knowledge transformation framework by combining the mechanism of ontology knowl-
edge transformation (Figure 1). The mechanism defines both the scope of construction
safety management and the criteria for judging deviations in implementation.
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Figure 1. A knowledge transformation framework for SRs.

To design a rational knowledge transformation process for SRs, the whole framework
is divided into two modules (i.e., knowledge dissections and knowledge transformation).
Module 1 dissects the knowledge composition of SRs, including explicit and tacit knowl-
edge. The concept of explicit knowledge suggests that the knowledge can be expressed
in written text, diagrams, and numerical formulas. Accordingly, the requirement infor-
mation is structurally expressed, which is consistent with the characteristics of explicit
knowledge and therefore is explicit knowledge. Moreover, the three elements of SRs (entity,
behavior, and object) are directly expressed ontological knowledge [1]. Further, this explicit
knowledge can also be used to determine implementation deviations in construction safety
management through knowledge transfer.

In comparison to explicit knowledge, tacit knowledge is widely acknowledged as
knowledge that remains unarticulated and has not been effectively codified or trans-
formed [43]. Specifically, tacit knowledge needs to be extracted gradually as the SRs are
violated, including risk factors, potential consequences, accident levels, and response mea-
sures [4,16]. Accordingly, this knowledge is directly related to the SRs and can only be
converted from “not present” to “present” when the requirements are violated.

Module 2 depicts the knowledge transformation process of SRs, including docu-
ment matching, knowledge extraction, and knowledge representation. Document match-
ing involves retrieving project documents based on the content of SRs and establishing
requirement–document (RD) association rules to obtain valuable project documents. Con-
version to knowledge extraction involves extracting the tacit knowledge in the acquired
project documents and labeling the knowledge in response to different characteristics. Cor-
responding to knowledge representation, the extracted tacit knowledge is structurally ex-
pressed through a ternary model, and the domain ontology knowledge base is constructed.

3.2. The Association Between SRs and Documents

Since SRs are affected by semantic context, it may result in the matched documents
violating the actual requirements due to semantic sentiment deviation. In this regard, it is
also impossible to obtain each type of tacit knowledge. Thus, this study first identified the
semantic tendency of the document and then established RD association rules for matching
documents based on different semantic sentiments. Also, details of the individual variables
in the equation are recorded in Table A1 in the Appendix A.

3.2.1. Semantic Tendency Judgement for Project Documents

This paper introduces the semantic tendency degree of viewpoint words to make
semantic sentiment judgments on requirement information [44]. The semantic tendency
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degree indicates the degree of semantic preference for behavioral elements, and the words
corresponding to behavioral elements are viewpoint words. For example, the viewpoint
words in “qualified cement” and “inferior formwork” represent positive and negative
semantics in SRs, respectively.

The semantic tendency of viewpoint words is categorized into positive and negative
semantic tendencies based on semantic sentiment. Meanwhile, this study also used the seed
viewpoint words proposed by Rogers et al. [45] as a benchmark to calculate the semantic
tendency degree of SRs. Accordingly, wopi denotes the behavioral elements, and wseeds

denotes the seed viewpoint words, and the corresponding positive and negative semantic
tendency degrees (SO+

o and SO−o ) are calculated as follows.
SO+

o =
1
|SP|

∑
wseeds∈SP

cos(υi
wopi

, υ+j←seeds)

SO−o =
1
|SN |

∑
wseeds∈SN

cos(υi
wopi

, υ−j←seeds)
(1)

where υi
wopi

denotes the affinity vector of wopi in row i, and υ+j←seeds and υ−j←seeds are the row
j vectors corresponding to the positive and negative tendency seed viewpoint words in
the affinity matrix, respectively [1]. Moreover, the computation of similarity between wopi

and wseeds is taken from the positive and negative inclination viewpoint word sets Sp and
Sn, respectively.

According to the rules for calculating the semantic tendency degree, this paper clas-
sifies the documents to be associated as single-emotion documents and double-emotion
documents. Specifically, documents with only one semantic tendency (positive or negative)
of viewpoint words are defined as single-emotion documents, while documents with two
semantic tendencies (positive and negative) of viewpoint words are defined as double-
emotion documents. Meanwhile, the topic words of the documents are selected as the
associated words, while the object elements are selected as the representative words of the
SRs. The vocabulary can represent the core information of SRs, and two other elements can
also be discovered indirectly through the relationship between the vocabularies. As a result,
the semantic sentiment of each project document is obtained, and document matching can
be performed according to the corresponding semantic sentiment category.

3.2.2. Design of RD Association Rules

This paper introduces the concept of relatedness proposed by Al Qady and Kandil [46]
to the matching of vocabulary and documents and proposes the RD association rule
for requirements and documents, as in Equation (2). In particular, this rule applies
to single-emotion documents since it only considers the document to contain a single
emotion attribute. δi =

w
di
1st+w

di
2nd

wdi
i = 1, 2, . . . , N

Rel(w∗, di) = [λ1·Sso(w∗, w1st)+λ2·Sso(w∗, w2nd)]× δi

(2)

To address the association deviation of documents due to word count differences, a
weighting factor δi is introduced into the RD association rule. This coefficient represents
the proportion of the first two topic words to the total number of words in the document.
wdi

1st and wdi
2nd are the word counts of the two topic words, wdi is the total number of words

in the document, and N is the number of project documents to be matched. Sso(w∗, w1st)

and Sso(w∗, w2nd) denote the semantic similarity between the object element w∗ and the
two topic words (denoted as w1st and w2nd) in the project document to be evaluated, and
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the computation rule is as in Equation (3). λ1 and λ2 are moderators that take the value of
the relative importance of semantic similarity, typically taking values of 0.7 and 0.3.

Sso(w∗, w1st) = 1− [
Dis(w∗, w1st)

2× Dismax
]
1/u

(3)

where Dis(wi, wj) is the corresponding semantic distance, the size of which is generally
determined according to the semantic network. Furthermore, Dismax is the maximum
distance from the vocabulary to the root node, while u denotes the moderation factor
(usually taken as 2). In a single-emotion document, both positive and negative sentiments
can be matched as long as they are associated with SRs.

For double-emotion documents, the RD association rules need to be adjusted according
to their sentiment features [47]. Since the document contains both positive and negative
semantics, the degree of association is calculated by combining the two semantic emotions.
Therefore, this paper introduces the emotional attribute coefficient (EAC) based on the RD
association rule for single-emotion documents, which are positive and negative emotional
attributes, as in Equation (4).

Rel(w, di) = {PEa·[λ1·Sso(w∗, w1st) + λ2·Sso(w∗, w2nd)]

+ NEa·[λ1·Sso(w∗, w1st) + λ2·Sso(w∗, w2nd)]} × δi

= (PEa + NEa)× [λ1·Sso(w∗, w1st) + λ2·Sso(w∗, w2nd)]× δi

(4)

In Equation (4), PEa and NEa represent the proportion of positive and negative
semantics of viewpoint words, respectively, calculated as in Equation (5); wdi

p and wdi
N

are the number of positive and negative viewpoint words, respectively; wdi
P+N is the total

number of viewpoint words of the document. This amendment rule considers both positive
and negative semantics for the degree of satisfaction of the object elements so that it can be
more accurately associated with the relevant documents.

PEa =
wdi

p

wdi
P+N

, NEa =
wdi

N

wdi
P+N

(5)

3.3. Knowledge Extraction of Documents

To accurately extract the knowledge in the associated documents, a keyword retrieval
method was introduced into this study. Taking into account the current research trends,
it can be seen that the TF-IDF algorithm is a popular method in keyword analysis due
to the simplicity of the procedure [48–50]. The algorithm also considers the frequency
and distribution of vocabulary in the document, which can reflect the importance of
vocabulary [51]. Moreover, project documents are often long documents, and the rapid
computational ability of the algorithm is suitable for the processing of large-scale text data.
Therefore, the TF-IDF algorithm was screened for knowledge extraction in this study. For a
certain term, TF-IDF is expressed as Equation (6).

TF-IDF(wi) = t f × id f =
wd

i

wd
Total
× log(

N
nw

+ 0.01) (6)

where wd
i is the number of words (wi) in the document d, and wd

Total is the total number of
words in document d. N and nw denote the total number of documents in the document
set and the number of documents containing vocabulary wi, respectively. However, the
traditional TF-IDF algorithm primarily considers vocabulary weights based on word fre-
quency, neglecting lexical features and the distribution of vocabulary within the document.
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For documents containing tacit knowledge, keywords associated with different types of
knowledge often exhibit distinct characteristics in terms of lexical properties, positional
information, and distribution patterns within the document [52]. Consequently, relying
solely on word frequency can lead to retrieval biases. For this reason, this paper proposes an
improved TF-IDF algorithm by considering the weights of word properties, word positions,
and word spans.

(1) Word properties: According to the construction safety management terminology
proposed by Malekitabar et al. [53], requirement keywords are usually represented by
nouns or noun phrases, followed by verbs or quantifiers. In other words, a word can
be deemed to have a higher level of significance when it frequently appears within the
same lexical category; otherwise, its importance is considered lower. Thus, the given
lexical weighting factor (W_cla) is as follows, where wd

i_cla denotes the total number
of similar words in the document d:

W_cla =
wd

i

wd
i_cla

(7)

(2) Word positions: Research by scholars has shown that documents usually have key-
words indicating the subject of the article in the article title or subsection headings [54].
Project documents, as standardized records, retain the aforementioned characteristics.
Thus, the extraction of implicit knowledge keywords must account for the specificity
of word positions. Moreover, this study used three levels to calculate word weight
coefficients (W_loc), and wd∗

i_loc and wd
i_loc are the total number of words in article titles

and subsection headings, respectively:

W_loc =


1 + wd

i
wd∗

i_loc
, if location of wi ∈ (title or subsection headings)

1 + wd
i

wd
i_loc

, if location of wi ∈ (first or last paragraph)

1, otherwise

(8)

(3) Word spans.: There may be keyword recognition bias in the project document caused
by the frequent occurrence of word wi locally in the document, so it is necessary to
consider whether the keywords are distributed across the document. In other words,
an important characteristic of global keywords is the number of spanning paragraphs.
Equation (9) is used in this paper to calculate the spanning weight of the words, and
l_wi and L are the number of paragraphs in which the word is located and the total
number of document paragraphs, respectively:

W_spa = 1 +
l_wi

L
(9)

As a result, this paper combines the weight coefficients that affect the degree of impor-
tance of the keywords of tacit knowledge and proposes an improved TF-IDF calculation
rule, as shown in Equation (10).

TF-IDF(wi) =
wd

i

wd
Total
× log(

N
nw

+ 0.01)×W_cla×W_loc×W_spa (10)

Thus, the importance degree of each candidate keyword can be obtained by using this
rule, and the keywords corresponding to the tacit knowledge can be extracted based on the
priority ranking. As a result, four types of tacit knowledge can be obtained by analyzing
the relevant information of the keywords.
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3.4. Representation of Ontological Knowledge
3.4.1. Defining Ontology Classes and Relationships

Based on the explicit and tacit knowledge corresponding to SRs, the scope of domain
ontology knowledge includes SRs, risk factors, potential consequences, accident levels,
and response measures. Consequently, this knowledge is categorized into distinct classes,
each comprising multiple subclasses. Simultaneously, there are instances of each class,
and the content and association of these elements form the knowledge structure of the
entire ontology.

The object elements were used as information for SRs to be expressed in the ontol-
ogy due to their low probability of repetition in the same project. Further, this study
classified risk factors into five categories including human factors based on the 4M1E
approach [55,56]. The potential consequences were then identified as casualties, economic
losses, and construction disruptions. According to the hazard level of safety accidents,
they were divided into four classes including particularly significant accidents. Finally, the
response measures include safety risk prevention and safety accident disposal.

3.4.2. Attribute Definition and Creation of Ontologies

This paper represents the ontological knowledge of SRs in Protégé 5.5.0 and establishes
the object attributes and data attributes between each class. The attribute definition and
creation process of the ontology are depicted in Figure 2.
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Object attributes refer to the properties of a class associated with another class, i.e., the
edges of a directed graph in the semantic web. In this regard, this study identified several
object attributes based on the relationships between classes. From the knowledge deriva-
tion process of SRs, it is known that SRs “unsatisfied leads to” risk factors, indicating that
“unsatisfied leads to” is the object attribute that connects SRs to risk factors. Correspond-
ingly, the object attribute between risk factors and potential consequences is “may trigger”,
and the potential consequences belong to the degree of accidents and are connected by
the object attribute “categorized as”. Furthermore, the object attribute between potential
consequences and countermeasures is defined as “responding by”, indicating that different
potential consequences require appropriate measures.
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Data attributes characterize the properties of the class itself. Furthermore, data at-
tributes are configured in relation to specific instances, with their definition domains
(corresponding to different classes) and value domains (representing data ranges) explicitly
delineated. Diverse data attributes exist in various subclasses corresponding to SRs (includ-
ing worker, machine, and material), and therefore are set up adaptively. In contrast, the
contents of other classes or subclasses are more confusing and need to be defined according
to the characteristics of the class. For instance, the potential consequences were subdivided
into the subcategories of “casualties”, “economic losses”, and “construction interruption”,
and the corresponding data attributes were determined as the number of people, amount,
and time. Also, specific symbols were introduced to represent the data attributes, including
“string”, “int”, and “float”.

3.4.3. Instance Creation of Ontologies

For the domain ontology of SRs, the essence of creating instances expresses the classes
through specific content. After clarifying the relevant concepts, object attributes, and data
attributes of the domain ontology of SRs, appropriate instances were added for each class.
By adding instances, the objects of each class can be clarified, which helps the practical
application of ontology knowledge and logical reasoning. In this study, we added instances
for different levels of classes in the individual interface of Protégé 5.5.0 and edited the
related contents.

Also, the addition of instances must be combined with the definition of classes and
the setting of object properties and data attributes. Accordingly, the content of instances
in each class was obtained from real projects to build a reliable ontology knowledge base.
By mining the ontological knowledge expressed by instances, the contents of classes,
relationships between classes, attributes, and many other contents can be obtained, thus
realizing the transformation of domain ontological knowledge in SRs.

4. Result Analysis
4.1. Data Collection

To maximize the generalizability of the research findings, this study selected two types
of construction projects as case studies, based on project scale, construction techniques, and
management models. Given that the majority of construction projects are either civil or
industrial buildings, these two categories were chosen as examples to identify appropriate
projects for the case studies. The civil building is an 18-story monolithic building with a total
floor area of 11,214 m2. During the construction of this project, a steel mold support collapse
accident occurred and caused one death and nine injuries. The industrial building was a
production plant of a pharmaceutical factory, with a total construction area of 31,206.24 m2,
and the main body is a steel and frame structure. There was a heavy fall accident caused by
a falling steel beam, which resulted in one death and two injuries.

For the documents used for knowledge extraction, this study relied on the scraps of
Python 3.9 to crawl from accident cases published officially. Moreover, the project types
were identified as civil and industrial buildings, and the project sizes were similar to the
two cases. Meanwhile, the accident types were specified as “collapse of an object” and
“struck by falling object”. A total of 183 accident case files were collected for testing in
2021–2022. Further, by determining whether the cause of the accident, risk analysis, and
response measures were included in the project documents, 27 documents with incomplete
information were excluded, and 156 valid accident case documents were obtained. This
includes 117 documents related to civil buildings and 39 documents related to industrial
buildings. All accident case information was systematically organized, stored in document
form, and categorized with appropriate labels.
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4.2. Results of SRs and Document Matching

Before document matching, the SRs of these two types of buildings need to be clarified.
Thus, this study analyzed the key project documents of the two types of buildings, which
are Special Construction Plan for Steel Mould Construction and Minutes of the Safety
Management Meeting for Steel Structures Hoisting, respectively. Meanwhile, text mining
was used to analyze these two project documents to obtain information about SRs. Finally,
the object elements of civil construction were identified as “steel template”, “quality”,
“check”, “precision”, and “perpendicularity”, while the object elements for industrial
buildings were identified as “lifting”, “crane”, “wire rope”, “conductor”, and “signal”.

Concomitantly, the RD association rule was used to calculate the match between
the object elements of SRs and accident case documents, and accident cases with high
association degrees were selected as data sources for knowledge extraction. In this study,
three accident case documents with the strongest importance (top three associations) were
selected as target documents for knowledge extraction in conjunction with the calculation
results, and the results are depicted in Figure 3. Figure 3a shows that the largest match
for civil buildings is the accident case document corresponding to “quality” (Rel = 0.771),
which also corresponds to accidents mainly due to defective quality of formwork, which
is highly compatible with the requirement information recorded in the document Special
Construction Program for Steel Formwork Construction.
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In Figure 3b, the correlation degree of the documents in the first two levels is relatively
close, and there are deviations only in the documents corresponding to the keywords
“crane” and “conductor”. Moreover, the document with the largest correlation (Rel = 0.840)
records the accident caused by the driver’s faulty operation, which also matches the
requirement information recorded in the document Minutes of Safety Management Meeting
on Steel Structure Lifting. The results show that the documents matched according to the
RD association rules are consistent with the actual SRs, which indicates that the method
has a better effect on document matching.

Moreover, this study calculated the association results of single-emotion documents
and double-emotion documents separately, and the results are depicted in Figure 4. Among
them, the horizontal coordinate is the weight coefficient δi of the matching rule, which
indicates the variation of the association degree with δi, while the vertical coordinate is the
association degree. Meanwhile, “steel template” and “lifting” were selected as the object
elements for document matching in civil and industrial buildings, respectively, and the
top 10 accident case documents were finally associated as the analysis objects. Figure 4a
shows the retrieval status of a single-emotion document, where industrial buildings in the
weight coefficient δi are larger when the association degree is strong (δi > 0.1), while civil
buildings are relatively weak. Meanwhile, as δi increases, the corresponding document
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matching degree shows an increasing trend but fails to show an incremental increase. This
result reflects that the RD association rule is not much affected by δi in single-emotion
documents and is mainly affected by semantic similarity.
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The results from the double-emotion documents indicate that as δi increases, the
correlation curve gradually rises and becomes smoother. Notably, the maximum matching
degrees of “steel template” (Rel = 0.642) and “lifting“ (Rel = 0.813) demonstrate excellent
correlation effects, respectively. This also shows that the sentiment attribute refines the RD
association rule, which makes the rule compatible with the influence of both positive and
negative sentiments of documents to achieve more accurate associations. Moreover, the
scatter plot in Figure 4b shows the sentiment attributes when the association is maximized.
For instance, the sentiment attributes of “steel template” at the time of maximum relevance
are 0.14 (PEa) and 0.86 (NEa), respectively, and the relevance increased by 0.042 compared
to a single-emotion document, which suggests that there is a possibility of improving the
accuracy of document association when considering the double emotion of a document.
Thus, the weighting coefficients also strike a balance between document keyword share
and quantitative matching, making the associated documents more compatible with the
actual SRs.

4.3. Knowledge Extraction Results for Documents

To facilitate the improved TF-IDF algorithm to extract knowledge from documents,
the collected documents in this study were divided into a training set and a test set. The
test set comprises six accident case documents with high relevance, as matched above,
while the training set consists of the remaining 150 accident case documents. For improved
comparative analysis, this study selected the cause of the accident in each document as the
corpus and used the corresponding document label as the keyword. To comprehensively
compare the performance of different algorithms for the extraction of tacit knowledge
keywords, this study also applied the TextRank algorithm and the TF-IDF algorithm for
testing, corresponding to the evaluation metrics of precision, recall, and F-measure, and
the test results are recorded in Figure 5a,b,c, respectively.
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The results depicted in Figure 5 show that compared to the TextRank algorithm and
TF-IDF algorithm, the improved TF-IDF algorithm is better than the other two types of
algorithms in terms of precision rate and recall, and it performs well in analyzing almost
all the accident case documents. From the mean value, Figure 5a,b shows that the precision
rate of the traditional two types of algorithms is 0.3691 and 0.3857, while the recall rate
is 0.4651 and 0.4613. In contrast, the precision rate of the improved TF-IDF algorithm is
0.4618, and the recall rate is 0.5278. The results show that there is a significant improvement
in both precision rate and recall rate. Besides, Figure 5c shows that the F-value of the
improved TF-IDF algorithm is improved by nearly 20% compared to the conventional
method. This reflects to some extent that the improvement of the traditional TF-IDF
algorithm in this study can accurately grasp the critical contents of retrieval and accurately
obtain the tacit knowledge of SRs. Moreover, the knowledge extracted using the improved
TF-IDF algorithm needs to be compared with other algorithms to reduce the error.

In this study, the improved TF-IDF algorithm was utilized to analyze the associated
accident case documents and extract the effective tacit knowledge of SRs. To facilitate the
establishment of the domain ontology knowledge base, this study selected 10 safety risk
factors based on the weight ordering. The results in Figure 6a show that four factors were
extracted from the first document, and the factor with the highest weight was “irregularity”
(0.5142), followed by “substandard materials”. The safety risk factors in the second docu-
ment are “unqualified riser”, “uninspected”, and “insufficient safety awareness”, with a
maximum weight of 0.4405.

The importance of the third document is relatively low, with a maximum weight of only
0.3281. Also, most of the potential consequences are “casualties”. The factors categorized
as larger accidents at the accident level are “irregularity” and “substandard materials”,
both from the first document. For industrial buildings, Figure 6b shows that four factors
were also extracted from this document, with a maximum weight of 0.7233 corresponding
to “operating without a license” and the weight corresponding to “irregularity” is also
higher (0.5883). The last two documents extracted three factors, and the weights were lower.
Compared to civil buildings, the extracted tacit knowledge in industrial buildings is more
dependent on a particular document.
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To derive effective response measures, this study employed an improved TF-IDF
algorithm to extract tacit knowledge from accident case documents. The extraction results,
as shown in Figure 7, identify the response measures with the highest weights for the
corresponding factors. Additionally, more than three response measures were selected for
each factor through a combination of algorithmic analysis and manual evaluation. For
civil buildings, the response measure corresponding to the safety risk factor “irregularity”
is “induction training”, with a weight of 0.4502. The response measure corresponding
to the safety risk factor “substandard materials” is “induction training”, with a weight
of 0.4502. Accordingly, “substandard materials” corresponds to “check quality”. For
industrial buildings, “operating without a license” corresponds to “licensed to work”, and
“no construction zones” corresponds to “setting up construction exclusion zones”. These
responses were taken from accident case documents and are the most critical.

Buildings 2025, 15, x FOR PEER REVIEW  14  of  22 
 

 

Figure 6. Extracted tacit knowledge corresponding to SRs. 

The importance of the third document is relatively low, with a maximum weight of 

only  0.3281.  Also,  most  of  the  potential  consequences  are  “casualties”.  The  factors 

categorized as larger accidents at the accident level are “irregularity” and “substandard 

materials”, both from the first document. For industrial buildings, Figure 6b shows that 

four factors were also extracted from this document, with a maximum weight of 0.7233 

corresponding  to  “operating  without  a  license”  and  the  weight  corresponding  to 

“irregularity” is also higher (0.5883). The last two documents extracted three factors, and 

the weights were  lower. Compared  to civil buildings,  the extracted  tacit knowledge  in 

industrial buildings is more dependent on a particular document. 

To derive effective  response measures,  this  study employed an  improved TF-IDF 

algorithm to extract tacit knowledge from accident case documents. The extraction results, 

as shown  in Figure 7,  identify  the response measures with  the highest weights  for  the 

corresponding factors. Additionally, more than three response measures were selected for 

each  factor  through a combination of algorithmic analysis and manual evaluation. For 

civil buildings, the response measure corresponding to the safety risk factor “irregularity” 

is “induction training”, with a weight of 0.4502. The response measure corresponding to 

the safety risk  factor “substandard materials”  is “induction  training”, with a weight of 

0.4502.  Accordingly,  “substandard  materials”  corresponds  to  “check  quality”.  For 

industrial buildings, “operating without a license” corresponds to “licensed to work”, and 

“no construction zones” corresponds to “setting up construction exclusion zones”. These 

responses were taken from accident case documents and are the most critical. 

 

Figure 7. Maximum weighted response measures corresponding to each risk factor. Figure 7. Maximum weighted response measures corresponding to each risk factor.

4.4. Results of Ontological Knowledge Expression

(1) Determination of relationships between classes and attributes

To standardize the representation for each type of knowledge within SRs, it is essential
to define the relationships between each class and its corresponding attributes. The study
was conducted in two distinct stages.

Stage 1 involved determining the relationship between classes. This study identi-
fied the mechanism of SRs in conjunction with the classical construction safety manage-



Buildings 2025, 15, 569 15 of 21

ment paradigm, and this was used to determine the relationships between classes. For
instance, SRs induce risk factors once violated, and risk factors trigger potential conse-
quences. These are the relationships between the classes, which also serve as the basis for
attribute determination.

Stage 2 determined the attributes of the class. For SRs and risk factors, this study
determined the object attributes of “unsatisfied leads to”. For example, the object element
“steel template” is associated with “irregularity” by “unsatisfied leads to”. For industrial
buildings, the object element “lifting” is associated with “operating without a license” via
“unsatisfied leads to”. Accordingly, three attributes were identified between the risk factors
and the other classes. The object attribute identified between risk factors and potential
consequences is “may trigger”, while the object attribute identified between potential
consequences and accident level is “categorized as”. Additionally, some subcategories
are represented as data attributes, such as “yuan” for economic loss and “day” for de-
lay. This study obtained the relationship between the classes and realized the canonical
representation of the extracted knowledge.

(2) Import of instances

Next, this study imported instances of each class for constructing a complete do-
main ontology knowledge base for the knowledge transformation of SRs. Thus, instances
corresponding to each class were imported into Protégé, and annotations were added to
each class. According to the distribution of knowledge, the SRs class belongs to explicit
knowledge and includes 10 pieces of information corresponding to five keywords (object
elements). Moreover, six strongly correlated documents were obtained from the matching
results of the accident case documents for extracting the tacit knowledge of SRs. Further,
10 safety risk factors (i.e., risks that may be triggered when SRs are violated) were extracted
for both types of buildings. Accordingly, potential consequences, accident levels, and
response measures were extracted corresponding to the identified risk factors. At this stage,
instances of this knowledge can be generated and integrated into the platform.

In Figure 8a,b, instances of the imported knowledge are shown for civil and industrial
buildings, respectively, and the corresponding annotations are added. According to the
knowledge transformation framework of SRs, explicit and tacit knowledge can be extracted,
and the correlation between individual knowledge can be clarified. To reveal the correla-
tions between the knowledge, two requirement elements were used as examples in this
study. For two types of buildings, “steel template” and “lifting” were selected as object
elements, and the risk factors extracted from the former are “irregularity” and “substandard
materials”, respectively, The risk factors extracted from the former are “irregularity”, “sub-
standard materials”, and “loss of supervision” (the top three weights), and their potential
consequences are “casualties” and three response measures. The latter corresponded to the
factors “operating without a license”, “irregularity”, and “no construction zones”, and the
response measures also consisted of three items. The details are recorded in Table 1.
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Table 1. Knowledge details of selected SRs.

Case SRs Risk Factors Potential Consequences Accident Level Response Measures

Civilian
building

Steel
template

Personnel,
Facilities,

Management

Casualties, Economic losses,
Construction disruptions

Larger accidents
or major
accidents

1. Procure . . .. . .
2. Comprehensively . . .. . .
3. Check. . .. . .

Industrial
building Lifting

People,
Weather,

Management

Casualties, Economic losses,
Construction disruptions

General or major
accidents

1. The project. . .. . .
2. Immediately . . .. . .
3. Establish. . .. . .

Accordingly, the various types of knowledge of SRs are stored through the domain
ontology knowledge base, and the knowledge is represented according to different classes.
Meanwhile, the instances corresponding to each class are imported into the knowledge
base, adding substance to each class. The domain ontology knowledge base constructed in
this study based on Protégé is capable of both extracting the various types of knowledge
and describing the complex relationships between them. Further, SRs are transformed
into effective knowledge that can be used for safety management through information
recording and relationship grooming.

5. Discussion
A knowledge transformation framework was developed in this study for realizing the

transformation of SRs from abstract information to canonical knowledge, which is accu-
rately accomplished through document matching, knowledge extraction, and knowledge
representation. Overall, the main findings of this study are as follows:

(1) The relevance of the retrieved accident case documents according to the RD association
rules can reach 0.771 and 0.840, showing that the method has excellent performance
in document matching. Moreover, the document association accuracy of the object
elements needs to take into account the affective attributes of the documents so that
the associated accident case documents are closely related to the SRs for accurate
knowledge extraction. In other words, embedding document sentiment attributes into
the corresponding association rules is consistent with the previous studies proposing
to combine semantic sentiment fitness to assess document similarity [47,57]. Since
the behavior elements in the information structure of SRs have sentiment prefer-
ences, the combined consideration of document sentiment attributes also ensures the
applicability of the established RD association rules;

(2) The improved TF-IDF algorithm improved the precision and recall by 20%, which
shows that this study improved the traditional TF-IDF algorithm by combining word
properties, word positions, and word spans to accurately grasp the key of knowledge
extraction, thus obtaining more accurate tacit knowledge. Meanwhile, this study cal-
culated the weights of the corresponding tacit knowledge according to the improved
TF-IDF algorithm and sequentially obtained the tacit knowledge in the accident case
documents. Traditional TF-IDF algorithms ignore the effects of word properties, word
positions, and word spans on document topics, but project documents that harbor
knowledge of various types of SRs have these features [52,58]. Once the extraction
method fails to respond accurately to these features, it may result in biased knowledge
extraction. In contrast, the improved TF-IDF algorithm confirms the interference
of document features on knowledge extraction based on its excellent performance.
Further, it was shown that combining document features for knowledge extraction
can either obtain complete information that satisfies the requirements or uncover tacit
knowledge that is covered by “false topics”;
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(3) In this study, the analysis of the extracted explicit and tacit knowledge was completed,
and the classes and subclasses in the domain ontology were identified, including the
relationships between different classes and two attributes (object and data). More-
over, instances in the tacit knowledge were obtained and imported into Protégé,
thus creating a complete knowledge base of the domain ontology. As the structural
characteristics of information in SRs have been defined in previous studies, the corre-
sponding types of knowledge also have specific information structures [1,2,7,8]. The
results of the study show that dealing with explicit and tacit knowledge based on the
components (i.e., internal) and connecting relationships (i.e., external) of the knowl-
edge is a reasonable model that can express the information core of the knowledge
completely and accurately. Moreover, the domain ontology knowledge base achieves
normative documentation for each type of knowledge in SRs, which facilitates knowl-
edge application and value addition.

This paper introduces a semi-automated model to develop a domain ontology knowl-
edge base for knowledge transformation of SRs and tries to achieve a complete record
and standardized representation of requirement information. In this regard, the main
contributions of this study are as follows. First, this study developed a multi-stage knowl-
edge transformation framework that analyzes the explicit knowledge expressed by the
three elements in SRs and condenses the knowledge transformation process based on the
mechanism of action when requirements are violated. Meanwhile, this study also specified
a multi-stage knowledge expression model for relationships between classes, ontological
attributes, and instances based on this framework. Secondly, an RD association rule associ-
ating SRs and project documents was designed for matching documents and can obtain
the most relevant documents based on their sentiment attributes. The RD association rule
can accurately capture project documents directly related to SRs and use them as raw data
for knowledge extraction. Thirdly, word properties, word positions, and word spans were
fused into the keyword weights, and an improved TF-IDF algorithm was developed in this
study. This algorithm improves precision and recall compared to the TextRank algorithm
and traditional TF-IDF algorithm and can extract tacit knowledge based on weight ordering.
Finally, a domain ontology knowledge base was developed in this study, which achieves
the normative documentation and representation for explicit and implicit knowledge of SRs.
Moreover, this knowledge base can reveal the association relationship between the classes
in conjunction with the mechanism of action when SRs are violated, enabling dynamic
updating after the instance is imported.

The results of this study also provide implications for project management on con-
struction sites. The multi-stage knowledge framework proposed in this study can assist
project managers in acquiring knowledge of SRs associated with construction projects
and clarifying safety preferences for current techniques and segments. Meanwhile, the
mechanism of action when SRs are violated can identify potential safety risks to formulate
countermeasures in advance. Also, project managers can use the domain ontology knowl-
edge base in Protégé 5.5.0 to manage the various types of knowledge in SRs and evaluate
implementation deviations through knowledge retrieval and analysis. Moreover, project
managers can leverage the strategy generation within the knowledge base to facilitate
safety-related decision making.

6. Conclusions
As SRs present redundant information characteristics and possess the ability of knowl-

edge migration, a large amount of latent valuable knowledge is left unexplored. Moreover,
a large amount of knowledge fails to achieve normative documentation and representa-
tion, resulting in low utilization of this knowledge. Therefore, this study analyzed the
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knowledge transformation mechanism of SRs and developed a multi-stage knowledge
transformation framework for discovering and documenting various types of knowledge in
SRs. On the one hand, this study utilized the framework to obtain complete requirements
information and identified three elements for expressing ontological knowledge for repre-
senting explicit knowledge. Meanwhile, this study discovered the tacit knowledge when
SRs are violated through knowledge migration and identified the knowledge categories
and components. On the other hand, this study identified three stages (including document
matching, knowledge extraction, and knowledge representation) to realize the transfor-
mation of SRs from abstract information to canonical knowledge, which facilitates the
application of this knowledge for safety management. Also, a semi-automated model was
introduced to develop a domain ontology knowledge base for completing the normative
documentation and representation for each type of knowledge in the SRs, and the dynamic
updating of the knowledge base was realized by instance import.

Although this study attempted to uncover and transform complete knowledge about
SRs, there are still limitations. This study only extracted knowledge from project docu-
ments, while other types of data generated by the safety management process were not
utilized. These multi-source heterogeneous data (e.g., images, audio, etc.) also contain
a large amount of valuable requirement information waiting to be uncovered. With the
maturity of different types of data processing technologies, it will be possible in the future
to obtain information and perform knowledge transformations from multiple types of
data. Meanwhile, this study only improved the TF-IDF algorithm but failed to embed
the characteristics of SRs into other algorithms, therefore lacking the comparison of the
knowledge transformation effect between multiple algorithms. For instance, the TextRank
algorithm extracts knowledge based on recommender relationships, and there is a derived
relationship between the various types of knowledge in SRs. The next study can embed
this derived relationship into the TextRank algorithm to design recommendation rules to
complete the knowledge extraction under specific relationships. The LDA topic model
tends to combine topic clustering to obtain topic words, which can be improved based
on the knowledge of the same type of SRs in the future to achieve the topic extraction
of tacit knowledge without specific clues. Furthermore, there is still a large amount of
work requiring manual intervention (e.g., document tagging) in the knowledge transfor-
mation of SRs, which is both time-consuming and prone to bias. Autonomous labeling
by artificial intelligence (AI) brings convenience to this work and provides new ideas for
future research.
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Appendix A

Table A1. Notations table in the equation.

Variables Notion of Variables Variables Notion of Variables

wopi
Refers to viewpoint words (corresponding to
behavioral elements in SRs). SO+

o , SO−o
Refers to the positive and negative
semantic tendency.

wseeds Refers to seed viewpoint words. υi
wopi

Refers to the affinity vector of wopi in row i.

υ+j←seeds,

υ−j←seeds

Refers to the row j vectors corresponding to the
positive and negative tendency seed viewpoint
words in the affinity matrix, respectively.

Sp, Sn
Refers to the positive and negative inclination
viewpoint word sets.

wdi
1st, wdi

2nd Refers to the word counts of the two topic words. wdi
Refers to the total number of words in
the document.

Dis(wi, wj),
Dismax

Refers to the corresponding semantic distance
and the maximum distance from the vocabulary
to the root node.

PEa, NEa Refers to the proportion of positive and negative
semantics of viewpoint words, respectively.

wdi
p , wdi

N
Refers to the number of positive and negative
viewpoint words. wdi

P+N
Refers to the total number of viewpoint words of
the document.

wd
i , wd

Total
Refers to the number of words (wi) and total
number in the document. wd

i_cla
Refers to the total number of similar words in
the document.

wd∗
i_loc,

wd
i_loc

Refers to the total number of words in article
titles and subsection headings, respectively. l_wi, L

Refers to the number of paragraphs in which the
word is located and the total number of
document paragraphs, respectively.
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