Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations
<p>Cross-sections of the special-shaped PEC column.</p> "> Figure 2
<p>Detailed information of the CPEC columns.</p> "> Figure 3
<p>Experimental setup.</p> "> Figure 4
<p>Horizontal loading procedure.</p> "> Figure 5
<p>Diagram of strain gauges and LVDTs.</p> "> Figure 6
<p>Cracks development and failure pattern of CPEC-5-100-0.2-X. (<b>a</b>) Surface S1 at 1/70<span class="html-italic">H</span>. (<b>b</b>) Surface N1 at 1/50<span class="html-italic">H</span>. (<b>c</b>) Surface N1 at 1/40<span class="html-italic">H</span>. (<b>d</b>) Surface S3 at 1/25<span class="html-italic">H</span>. (<b>e</b>) Surface S3 at 1/22<span class="html-italic">H</span>.</p> "> Figure 7
<p>Failure modes of the CPEC specimens. (<b>a</b>) CPEC-0.2. (<b>b</b>) CPEC-0.35. (<b>c</b>) CPEC-0.5.</p> "> Figure 8
<p>Hysteretic curves and skeleton curves of all specimens. (<b>a</b>) CPEC-0.2. (<b>b</b>) CPEC-0.35. (<b>c</b>) CPEC-0.5. (<b>d</b>) Skeleton curves of all specimens.</p> "> Figure 8 Cont.
<p>Hysteretic curves and skeleton curves of all specimens. (<b>a</b>) CPEC-0.2. (<b>b</b>) CPEC-0.35. (<b>c</b>) CPEC-0.5. (<b>d</b>) Skeleton curves of all specimens.</p> "> Figure 9
<p>Characteristic points on skeleton curves.</p> "> Figure 10
<p>Strength degradation factor versus displacement curves of CPEC columns.</p> "> Figure 11
<p>Stiffness degradation curves of the CPEC columns.</p> "> Figure 12
<p>Calculation diagram of hysteretic energy dissipation curve.</p> "> Figure 13
<p>Cumulative energy consumption of the CPEC columns.</p> "> Figure 14
<p>Displacement–strain curves of CPEC-0.35. (<b>a</b>) Strain gauge 2 on steel flange. (<b>b</b>) Strain gauge 4 on steel flange. (<b>c</b>) Strain gauge 23 on link.</p> "> Figure 15
<p>Finite element model.</p> "> Figure 16
<p>Stress–strain relationship curve of concrete under uniaxial load cycle.</p> "> Figure 17
<p>Comparisons of experimental and simulated hysteresis and skeleton curves.</p> "> Figure 17 Cont.
<p>Comparisons of experimental and simulated hysteresis and skeleton curves.</p> "> Figure 18
<p>Comparisons of experimental and simulated failure mode of CPEC-0.35.</p> "> Figure 19
<p>Influence of design parameters on the skeleton curves of CPEC columns.</p> "> Figure A1
<p>FE models with different element sizes.</p> "> Figure A2
<p>Simulated results comparison between the models with different element sizes.</p> ">
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimens Design
2.2. Material Properties
2.3. Test Setup and Loading Protocols
3. Experimental Results and Discussion
3.1. Experimental Phenomena
3.2. Failure Modes
3.3. Load–Displacement (P-Δ) Hysteresis Curves and Skeleton Curves
3.4. Strength Degradation
3.5. Stiffness Degradation
3.6. Energy Dissipation
3.7. Strain Analysis
4. Finite Element Analyses
4.1. Establishment of the FE Model
4.2. Material Properties
4.3. Validations
4.4. Parametric Analysis
4.4.1. Load Ratio
4.4.2. Steel Yield Strength
4.4.3. Concrete Compressive Strength
4.4.4. Flange and Web Thickness
4.4.5. Sectional Aspect Ratio
4.4.6. Link Spacing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chicoine, T.; Tremblay, R.; Massicotte, B. Finite element modelling and design of partially encased composite columns. Steel Compos. Struct. 2002, 2, 171–194. [Google Scholar] [CrossRef]
- Begum, M.; Driver, R.G.; Elwi, A.E. Finite-element modeling of partially encased composite columns using the dynamic explicit method. J. Struct. Eng. 2007, 133, 326–334. [Google Scholar] [CrossRef]
- Song, Y.C.; Wang, R.P.; Li, J. Local and post-local buckling behavior of welded steel shapes in partially encased composite columns. Thin-Walled Struct. 2016, 108, 93–108. [Google Scholar] [CrossRef]
- Broderick, B.M.; Elnashai, A.S. Seismic resistance of composite beam-columns in multi-storey structures. Part 2: Analytical model and discussion of results. J. Constr. Steel Res. 1994, 30, 231–258. [Google Scholar] [CrossRef]
- Elnashai, A.S.; Elghazouli, A.Y. Performance of composite steel/concrete members under earthquake loading. Part I: Analytical model. Earthq. Eng. Struct. Dyn. 1993, 22, 315–345. [Google Scholar] [CrossRef]
- Dong, H.Y.; Qin, J.; Cao, W.L.; Wang, H. Investigation on axial compressive behavior of pentagonal section steel-reinforced concrete columns. J. Build. Eng. 2023, 66, 105954. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, B.; Jin, G.F.; Li, K.W.; Wang, Z.L. Seismic behavior of concrete-encased steel cross-shaped columns. J. Constr. Steel Res. 2015, 109, 24–33. [Google Scholar] [CrossRef]
- Jamkhaneh, M.E.; Kafi, M.A. Experimental and numerical investigation of octagonal partially encased composite columns subject to axial and torsion moment loading. Civ. Eng. J. 2017, 3, 939–955. [Google Scholar] [CrossRef]
- Jamkhaneh, M.E.; Kafi, M.A. Experimental investigation of octagonal partially encased composite columns subject to concentric and eccentric loading. J. Rehabil. Civ. Eng. 2019, 7, 121–134. [Google Scholar] [CrossRef]
- Zhan, X.X.; Qin, Z.W.; Li, J.; Chen, Y.Y. Global stability of axially loaded partially encased composite column with L-shaped section. J. Constr. Steel Res. 2023, 200, 107671. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.P. Mechanical behavior of cross-shaped partially encased composite columns under axial compression. J. Build. Technol. 2022, 4, 1–13. [Google Scholar] [CrossRef]
- Lai, B.L.; Liew, J.Y.R.; Venkateshwaran, A.; Li, S.; Xiong, M.X. Assessment of high-strength concrete encased steel composite columns subject to axial compression. J. Constr. Steel Res. 2020, 164, 105765. [Google Scholar] [CrossRef]
- Li, G.F.; Li, Y.P. Constitutive models of constrained concrete in cross-shaped PEC column under axial compression. J. Constr. Steel Res. 2024, 215, 108533. [Google Scholar] [CrossRef]
- Tao, S.Q.; Liu, Y.; Wang, J.F.; Yu, Q.J.; Zhao, J.H. Experimental investigation and design method of axial compression behavior of T-shaped partially encased steel-concrete composite stub columns. J. Build. Eng. 2024, 85, 108668. [Google Scholar] [CrossRef]
- Zhang, X.G.; Liu, X.Y.; Zhang, S.P.; Wang, J.B.; Fu, L.; Yang, J.N.; Huang, Y.J. Analysis on displacement-based seismic design method of recycled aggregate concrete-filled square steel tube frame structures. Struct. Concr. 2023, 24, 3461–3475. [Google Scholar] [CrossRef]
- Deng, E.F.; Wang, Y.H.; Zong, L.; Zhang, Z.; Zhang, J.F. Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies. Thin-Walled Struct. 2024, 197, 111563. [Google Scholar] [CrossRef]
- EN 1994-1-1; Design of Composite Steel and Concrete Structures. Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- GB/T 228.1-2021; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. State Administration for Market Regulation, and Standardization Administration: Beijing, China, 2021. (In Chinese)
- GB/T 50081-2019; Standard for Test Method of Mechanical Properties on Ordinary Concrete. China Building Industry Press: Beijing, China, 2019. (In Chinese)
- JGJ/T 101-2015; Specification for Seismic Test of Buildings. China Architecture & Building Press: Beijing, China, 2015. (In Chinese)
- Chen, Y.Y.; Wang, T.; Yang, J.; Zhao, X.Z. Test and numerical simulation of partially encased composite columns subject to axial and cyclic horizontal loads. Int. J. Steel Struct. 2010, 10, 385–393. [Google Scholar] [CrossRef]
- Wei, X.J.; Zhou, H.; Kamaris, G.S.; Gkantou, M.; Yun, F.Y.; Zuo, X.L.; Guo, X.R.; Ali, S.B. Cyclic behaviour of welded stainless steel beam-to-column connections: Experimental and numerical study. J. Constr. Steel Res. 2024, 218, 108736. [Google Scholar] [CrossRef]
- Xu, C.X.; Peng, S.; Deng, J.; Wan, C. Study on seismic behavior of encased steel jacket-strengthened earthquake damaged composite steel-concrete columns. J. Build. Eng. 2018, 17, 154–166. [Google Scholar] [CrossRef]
- Wei, J.G.; Ying, H.D.; Yang, Y.; Zhang, W.; Yuan, H.H.; Zhou, J. Seismic performance of concrete filled steel tubular composite columns with ultra high performance concrete plates. Eng. Struct. 2023, 278, 115500. [Google Scholar] [CrossRef]
- Han, L.H.; Zhao, X.L.; Tao, Z. Tests and mechanics model of concrete-filled SHS stub columns, columns and beam-columns. Steel Compos. Struct. 2001, 1, 51–74. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.H.; Qu, B. Shear transfer capacity of angle connectors in u-shaped composite girder: Experimental and numerical study. J. Struct. Eng. 2021, 147, 04021046. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical Stress-Strain Model for Confined Concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design Concrete Structures. China Building Industry Press: Beijing, China, 2010. (In Chinese)
- Guo, L.; Liu, Y.; Qu, B. Fully composite beams with u-shaped steel girders: Full-scale tests, computer simulations, and simplified analysis models. Eng. Struct. 2018, 177, 724–738. [Google Scholar] [CrossRef]
- Birtel, V.; Mark, P. Parameterised finite element modelling of RC beam shear failure. In Proceedings of the 19th Annual International ABAQUS Users’ Conference, Boston, MA, USA, 23–25 May 2006; pp. 95–108. [Google Scholar]
- Tian, H.W.; Zhou, Z.; Wei, Y.; Zhang, L.X. Experimental and numerical investigation on the seismic performance of concrete-filled UHPC tubular columns. J. Build. Eng. 2021, 43, 103118. [Google Scholar] [CrossRef]
- Chen, Z.P.; Chen, J.W.; Jiang, X.S.; Mo, L.L. Experimental research and finite element analysis on seismic behavior of square reinforced concrete columns with four interlocking spirals. Structures 2022, 39, 1–16. [Google Scholar] [CrossRef]
- Thai, H.T.; Vo, T.P. A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 2012, 54, 58–66. [Google Scholar] [CrossRef]
- Vo, T.P.; Thai, H.T. Vibration and buckling of composite beams using refined shear deformation theory. Int. J. Mech. Sci. 2012, 62, 67–76. [Google Scholar] [CrossRef]
- Kiani, K.; Nikkhoo, A.; Mehri, B. Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass. J. Vib. Acoust. 2009, 131, 051009. [Google Scholar] [CrossRef]
- Chitawadagi, M.V.; Narasimhan, M.C.; Kulkarni, S.M. Axial strength of circular concrete-filled steel tube columns—DOE approach. J. Constr. Steel Res. 2010, 66, 1248–1260. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, H.; Liu, F. Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire Mater. 2018, 42, 424–435. [Google Scholar] [CrossRef]
- Gaur, H.; Khidhir, B.; Manchiryal, R.K. Solution of structural mechanic’s problems by machine learning. Int. J. Hydromechatron. 2022, 5, 22–43. [Google Scholar] [CrossRef]
- Liu, B.; Lu, W. Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design. Int. J. Hydromechatron. 2022, 5, 336–365. [Google Scholar] [CrossRef]
- Wang, G.; Hao, Z.; Li, H.; Zhang, B. An activated variable parameter gradient-based neural network for time-variant constrained quadratic programming and its applications. CAAI Trans. Intell. Technol. 2023, 8, 670–679. [Google Scholar] [CrossRef]
- Du, H.; Du, S.; Li, W. Probabilistic time series forecasting with deep non-linear state space models. CAAI Trans. Intell. Technol. 2023, 8, 3–13. [Google Scholar] [CrossRef]
Coupons | Yield Strength fy (MPa) | Ultimate Strength fu (MPa) | Elastic Modulus Es (GPa) | Elongation Δ (%) |
---|---|---|---|---|
5 mm plate | 420.6 | 545.6 | 207.3 | 25.4 |
6 mm longitudinal rebars | 465.0 | 655 | 206.0 | 24.0 |
6 mm links | 460.0 | 650 | 205.0 | 23.0 |
Specimen ID | Direction | Yield Point | Peak Point | Ultimate Point | θu (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Δy (mm) | Py (kN) | Δmax (mm) | Pmax (kN) | Δu (mm) | Pu (kN) | ||||
CPEC-0.2 | + | 12.92 | 160.48 | 27.00 | 188.90 | 44.87 | 160.57 | 3.47 | 4.08 |
− | 12.13 | 161.05 | 27.36 | 190.00 | 48.58 | 161.50 | 4.00 | 4.42 | |
CPEC-0.35 | + | 12.51 | 174.85 | 21.90 | 199.14 | 42.97 | 169.27 | 3.44 | 3.91 |
− | 12.33 | 170.18 | 21.89 | 198.85 | 45.61 | 169.02 | 3.70 | 4.15 | |
CPEC-0.5 | + | 12.94 | 181.62 | 21.88 | 204.00 | 41.71 | 173.40 | 3.22 | 3.79 |
− | 12.86 | 191.93 | 21.88 | 211.15 | 43.76 | 179.48 | 3.40 | 3.98 |
Coupon ID | b × h × bf × tw × tf (mm) | fy (MPa) | fc (MPa) | n | s (mm) | NFE (kN) |
---|---|---|---|---|---|---|
CPEC-n-0.1 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.1 | 200 | 290.38 |
CPEC-n-0.2 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.2 | 200 | 279.82 |
CPEC-n-0.3 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-n-0.4 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.4 | 200 | 249.74 |
CPEC-n-0.5 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.5 | 200 | 225.55 |
CPEC-n-0.6 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.6 | 200 | 190.99 |
CPEC-n-0.7 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.7 | 200 | 141.09 |
CPEC-n-0.8 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.8 | 200 | 91.79 |
CPEC-fy-235 | 400 × 400 × 200 × 10 × 10 | 235 | 30 | 0.3 | 200 | 204.15 |
CPEC-fy-355 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-fy-420 | 400 × 400 × 200 × 10 × 10 | 420 | 30 | 0.3 | 200 | 298.04 |
CPEC-fy-460 | 400 × 400 × 200 × 10 × 10 | 460 | 30 | 0.3 | 200 | 316.65 |
CPEC-fc-30 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-fc-40 | 400 × 400 × 200 × 10 × 10 | 355 | 40 | 0.3 | 200 | 284.44 |
CPEC-fc-50 | 400 × 400 × 200 × 10 × 10 | 355 | 50 | 0.3 | 200 | 301.72 |
CPEC-tf-6 | 400 × 400 × 200 × 6 × 6 | 355 | 30 | 0.3 | 200 | 188.89 |
CPEC-tf-10 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-tf-12 | 400 × 400 × 200 × 12 × 12 | 355 | 30 | 0.3 | 200 | 304.81 |
CPEC-h/bf-2 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-h/bf-2.5 | 500 × 500 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 364.10 |
CPEC-h/bf-3 | 600 × 600 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 476.08 |
CPEC-s-100 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 100 | 282.45 |
CPEC-s-200 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 200 | 267.04 |
CPEC-s-400 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.3 | 400 | 257.97 |
CPEC-1 | 400 × 400 × 200 × 10 × 10 | 355 | 30 | 0.1 | 200 | 290.38 |
CPEC-2 | 400 × 400 × 200 × 10 × 10 | 355 | 40 | 0.8 | 200 | 98.95 |
CPEC-3 | 400 × 400 × 200 × 10 × 10 | 355 | 40 | 0.5 | 200 | 241.56 |
CPEC-4 | 400 × 400 × 200 × 6 × 6 | 460 | 40 | 0.3 | 200 | 236.49 |
CPEC-5 | 400 × 400 × 200 × 12 × 12 | 355 | 50 | 0.3 | 200 | 338.77 |
CPEC-6 | 400 × 400 × 200 × 12 × 12 | 460 | 30 | 0.8 | 200 | 104.83 |
CPEC-7 | 400 × 400 × 200 × 6 × 6 | 235 | 30 | 0.5 | 200 | 135.25 |
CPEC-8 | 500 × 500 × 200 × 12 × 12 | 235 | 30 | 0.8 | 200 | 60.25 |
CPEC-9 | 600 × 600 × 200 × 10 × 10 | 355 | 50 | 0.1 | 200 | 572.43 |
CPEC-10 | 500 × 500 × 200 × 6 × 6 | 460 | 30 | 0.5 | 200 | 263.8 |
CPEC-11 | 600 × 600 × 200 × 10 × 10 | 235 | 40 | 0.3 | 200 | 405.32 |
CPEC-12 | 400 × 400 × 200 × 10 × 10 | 355 | 40 | 0.8 | 100 | 105.35 |
CPEC-13 | 400 × 400 × 200 × 10 × 10 | 235 | 50 | 0.3 | 100 | 254.24 |
CPEC-14 | 400 × 400 × 200 × 10 × 10 | 355 | 40 | 0.1 | 400 | 300.54 |
CPEC-15 | 400 × 400 × 200 × 10 × 10 | 460 | 30 | 0.5 | 400 | 246.54 |
Parameters | Degree of Freedom, f | Sum of Squares, SSA | Variance, VA | F Value | Contribution (%) |
---|---|---|---|---|---|
n | 3 | 107,586 | 35,862 | 132.9 | 33.34 |
fy (MPa) | 2 | 24,475 | 12,237 | 45.4 | 11.38 |
fc (MPa) | 2 | 6239 | 3120 | 11.6 | 2.90 |
tf (mm) | 2 | 9784 | 4892 | 18.1 | 4.55 |
h/bf | 2 | 101,648 | 50,824 | 188.4 | 47.25 |
s (mm) | 2 | 709 | 355 | 1.3 | 0.33 |
Error | 20 | 5396 | 270 | N/A | 0.25 |
Total | 34 | 255,836 | N/A | N/A | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Liu, Y.; Wang, J. Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations. Buildings 2024, 14, 1932. https://doi.org/10.3390/buildings14071932
Xu Q, Liu Y, Wang J. Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations. Buildings. 2024; 14(7):1932. https://doi.org/10.3390/buildings14071932
Chicago/Turabian StyleXu, Qiuyu, Yong Liu, and Jingfeng Wang. 2024. "Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations" Buildings 14, no. 7: 1932. https://doi.org/10.3390/buildings14071932
APA StyleXu, Q., Liu, Y., & Wang, J. (2024). Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations. Buildings, 14(7), 1932. https://doi.org/10.3390/buildings14071932