Review of Big Data Implementation and Expectations in Smart Cities
<p>Number of publications, 2015–2023.</p> "> Figure 2
<p>Knowledge map of collaborative journals publishing on big data and smart cities, 2015–2023.</p> "> Figure 3
<p>Knowledge map of countries cooperating in research on big data and smart cities, 2015–2023.</p> "> Figure 4
<p>Knowledge map of cooperative institutions in research on big data and smart cities, 2015–2023.</p> "> Figure 5
<p>Knowledge map of cooperative institutions researching big data and smart cities, 2015–2023.</p> "> Figure 6
<p>Co-occurrence network of highly cited articles in the field of big data and smart cities, 2015–2023.</p> "> Figure 7
<p>Time-zone view of research subjects, 2015–2023.</p> "> Figure 8
<p>Keywords co-occurrence network for big data and smart cities research, 2015–2023.</p> "> Figure 9
<p>Annual variations in co-occurring keywords in research papers related to big data and smart cities, 2015–2023.</p> "> Figure 10
<p>Co-citation network and clusters of articles in big data and smart cities research, 2015–2023.</p> "> Figure 11
<p>Annual variations in co-occurring keywords in big data and smart city research papers, 2015–2023.</p> "> Figure 12
<p>Mainstream framework in big data research and smart cities.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Definition of Big Data and Smart Cities
2.1.1. Smart City
2.1.2. Big Data
2.1.3. Connection Between Big Data and Smart Cities
2.2. Development Mechanisms for Implementing Big Data in Smart Cities
2.2.1. Development Path
- (1)
- The starting stage: The concept of smart cities is proposed and understood during the starting stage, and big data technology starts to develop. A smart city is regarded as a concept that enhances the efficiency of urban management and services through information technology [49].
- (2)
- The technological accumulation stage: With the maturation of IoT, cloud computing, and mobile internet technologies, the construction of smart cities takes on a stronger technical foundation. Big data technology has also been rapidly developed during this stage, providing strong data processing and analysis capabilities for smart cities [50].
- (3)
- The application and exploration stage: Smart cities have begun to explore applications in various fields such as the economy, environment, transportation, healthcare, energy, etc., and they realise real-time monitoring and intelligent decision-making support for urban operations using big data technology [51]. Smart cities also commit to improving public service levels, optimising resource allocation, and transforming urban governance capabilities towards greater fairness and sustainability [52].
- (4)
- The integration and breakthrough stage: During this phase, smart cities deeply integrate data resources from IoT, cloud computing, and big data to achieve precise and intelligent urban management [53]. As the degree of intelligence in cities advances, overcoming technical hurdles, enhancing data management, and ensuring data security remain crucial for fully unleashing the value of data in their development [54].
2.2.2. Current Status
3. Data and Methodology
3.1. Data Sources
3.2. Research Methods
4. Results
4.1. Overview of Research Progress
4.1.1. Tendency of Publications
- National strategies drive significant growth (2015–2020)
- Decline and future potential in research (2021–2023)
4.1.2. Major Journal Analysis
4.1.3. Major Regions Analysis
4.1.4. Author Cooperation Distribution Analysis
4.1.5. Distribution of Contributing Institutions
4.2. Field of Research
4.2.1. Highly Cited Articles
- Convergence of computer science and technology, data science, and smart cities
- Convergence of ICT, big data, and smart cities
4.2.2. Research Areas
4.3. Research Hotspots and Research Strategies
4.3.1. Keyword Co-Occurrence Network
4.3.2. Keyword Co-Occurrence Time-Zone Analysis
- Rapid development (2015–2020)
- Gradual decline (2021–2023)
No. | Freq. | Centrality | Keywords | Year |
---|---|---|---|---|
The first period (2015–2020) | ||||
1 | 1059 | 0.03 | Big data | 2015 |
2 | 630 | 0.01 | Smart city | 2015 |
3 | 400 | 0.04 | City | 2015 |
4 | 361 | 0.05 | Internet | 2015 |
5 | 288 | 0.04 | IoT | 2015 |
6 | 196 | 0.02 | Challenges | 2016 |
7 | 191 | 0.02 | Things | 2016 |
8 | 181 | 0.03 | Framework | 2016 |
9 | 180 | 0.05 | Management | 2015 |
10 | 158 | 0.01 | Model | 2016 |
The second period (2021–2023) | ||||
11 | 16 | 0.01 | Digital twin | 2021 |
12 | 15 | 0.02 | Smart mobility | 2021 |
13 | 11 | 0.00 | Bibliometric analysis | 2021 |
14 | 9 | 0.01 | Circular economy | 2021 |
15 | 9 | 0.00 | Industry 4.0 | 2021 |
16 | 9 | 0.01 | Traffic flow prediction | 2021 |
17 | 9 | 0.03 | Urban development | 2021 |
18 | 8 | 0.00 | Digital transformation | 2021 |
19 | 8 | 0.00 | Sustainable mobility | 2021 |
20 | 7 | 0.01 | Federated learning | 2022 |
4.3.3. Keyword Clustering Analysis
- Innovation in big data-driven smart cities infrastructure and services:
- Energy management and environmental protection in smart cities:
- Data security and privacy protection in smart cities:
4.3.4. Research Clustering Timeline
4.3.5. Research Trends Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Law, K.H.; Lynch, J.P. Smart city: Technologies and challenges. IT Prof. 2019, 21, 46–51. [Google Scholar] [CrossRef]
- Shahat Osman, A.M.; Elragal, A. Smart cities and big data analytics: A data-driven decision-making use case. Smart Cities 2021, 4, 286–313. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Q.; Khan, S.; Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. Rev. 2021, 86, 106515. [Google Scholar] [CrossRef]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Peponi, A. Smart Cities, Smart Growth: Paving the Way to Urban Regeneration. Ph.D. Thesis, University of Lisbon, Institute of Geography and Spatial Planning, Lisbon, Portugal, 2023. [Google Scholar]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Yao, B.; Cenci, J.; Liao, C.; Zhang, J. Visualisation of High-Density City Research Evolution, Trends, and Outlook in the 21st Century. Land 2023, 12, 485. [Google Scholar] [CrossRef]
- Lenssen, G.G.; Smith, N.C. Ibm and sustainability: Creating a smarter planet. In Managing Sustainable Business: An Executive Education Case and Textbook; Springer: Berlin/Heidelberg, Germany, 2018; pp. 549–556. [Google Scholar]
- Marshall, A.; Dezuanni, M.; Burgess, J.; Thomas, J.; Wilson, C.K. Australian farmers left behind in the digital economy–Insights from the Australian Digital Inclusion Index. J. Rural Stud. 2020, 80, 195–210. [Google Scholar] [CrossRef]
- Tran, C.N.; Tat, T.T.H.; Tam, V.W.; Tran, D.H. Factors affecting intelligent transport systems towards a smart city: A critical review. Int. J. Constr. Manag. 2023, 23, 1982–1998. [Google Scholar] [CrossRef]
- Headquarters, I.S. I-Japan strategy 2015. Striving to Create a Citizen-Driven, Reassuring & Vibrant Digital Society; Japan Cabinet Office: Tokyo, Japan, 2009. [Google Scholar]
- Cheng, H.; Li, Z. Rethinking Urban Planning for Healthy Cities In The Wake Of COVID-19 Lessons From Wuhan. Built Environ. 2023, 49, 207–228. [Google Scholar]
- Bibri, S.E.; Krogstie, J. The core enabling technologies of big data analytics and context-aware computing for smart sustainable cities: A review and synthesis. J. Big Data 2017, 4, 38. [Google Scholar] [CrossRef]
- Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Jiang, D. The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun. 2020, 150, 158–166. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2224–2287. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Salahuddin, M.A.; Hussini, S.J.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart cities: A survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 2017, 19, 2456–2501. [Google Scholar] [CrossRef]
- Sookhak, M.; Tang, H.; He, Y.; Yu, F.R. Security and privacy of smart cities: A survey, research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 21, 1718–1743. [Google Scholar] [CrossRef]
- Kitchin, R. Getting Smarter About Smart Cities: Improving Data Privacy and Data Security; Data Protection Unit, Department of the Taoiseach: Dublin, Ireland, 2016. [Google Scholar]
- Bibri, S.E. On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. J. Big Data 2019, 6, 25. [Google Scholar] [CrossRef]
- Obringer, R.; Nateghi, R. What makes a city ‘smart’in the Anthropocene? A critical review of smart cities under climate change. Sustain. Cities Soc. 2021, 75, 103278. [Google Scholar] [CrossRef]
- Avanzini, V. Artificial Intelligence: Chinese approach in fighting the COVID-19 pandemic; Ca’ Foscari University of Venice: Venezia, Italy, 2021. [Google Scholar]
- Bibri, S.E.; Krogstie, J.; Kaboli, A.; Alahi, A. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotechnology 2024, 19, 100330. [Google Scholar] [CrossRef]
- Barry, E.S.; Merkebu, J.; Varpio, L. Understanding state-of-the-art literature reviews. J. Grad. Med. Educ. 2022, 14, 659–662. [Google Scholar] [CrossRef]
- Ren, K.; Sun, X.; Cenci, J.; Zhang, J. Assessment of Public Open Space Research Hotspots, Vitalities, and Outlook using Citespace. J. Asian Archit. Build. Eng. 2023, 22, 3799–3817. [Google Scholar] [CrossRef]
- Angelidou, M. Smart cities: A conjuncture of four forces. Cities 2015, 47, 95–106. [Google Scholar] [CrossRef]
- Anthopoulos, L.G. Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick? Springer: Berlin/Heidelberg, Germany, 2017; Volume 22. [Google Scholar]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; WW Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Baraniewicz-Kotasińska, S. Smart city. Four approaches to the concept of understanding. Urban Res. Pract. 2022, 15, 397–420. [Google Scholar] [CrossRef]
- Echebarria, C.; Barrutia, J.M.; Aguado-Moralejo, I. The Smart City journey: A systematic review and future research agenda. Innov. Eur. J. Soc. Sci. Res. 2021, 34, 159–201. [Google Scholar] [CrossRef]
- Colding, J.; Wallhagen, M.; Sörqvist, P.; Marcus, L.; Hillman, K.; Samuelsson, K.; Barthel, S. Applying a systems perspective on the notion of the smart city. Smart Cities 2020, 3, 420–429. [Google Scholar] [CrossRef]
- Bibri, S.E. A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustain. Cities Soc. 2018, 38, 758–794. [Google Scholar] [CrossRef]
- Kumar, V. Smart Environment for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–53. [Google Scholar]
- Ismagilova, E.; Hughes, L.; Dwivedi, Y.K.; Raman, K.R. Smart cities: Advances in research—An information systems perspective. Int. J. Inf. Manag. 2019, 47, 88–100. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, Y.; Liu, X.; Gu, D.; Hua, G. Urban big data and the development of city intelligence. Engineering 2016, 2, 171–178. [Google Scholar] [CrossRef]
- Guo, H.; Wang, L.; Chen, F.; Liang, D. Scientific big data and digital earth. Chin. Sci. Bull. 2014, 59, 5066–5073. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Hung Byers, A. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: San Francisco, CA, USA, 2011. [Google Scholar]
- Bhadani, A.K.; Jothimani, D. Big data: Challenges, opportunities, and realities. arXiv 2016, arXiv:1705.04928. [Google Scholar]
- Bughin, J.; Chui, M.; Manyika, J. Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Q. 2010, 56, 75–86. [Google Scholar]
- Irazábal, C.; Jirón, P. Latin American smart cities: Between worlding infatuation and crawling provincialising. Urban Stud. 2021, 58, 507–534. [Google Scholar] [CrossRef]
- Tomàs, M. The smart city and urban governance: The urban transformation of Barcelona, 2011–2023. Urban Res. Pract. 2023, 17, 588–605. [Google Scholar] [CrossRef]
- Kolesnichenko, O.; Mazelis, L.; Sotnik, A.; Yakovleva, D.; Amelkin, S.; Grigorevsky, I.; Kolesnichenko, Y. Sociological modeling of smart city with the implementation of UN sustainable development goals. Sustain. Sci. 2021, 16, 581–599. [Google Scholar] [CrossRef]
- Kumar, T.; Dahiya, B. Smart Economy in Smart Cities; Springer: Singapore, 2017; pp. 3–76. [Google Scholar]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef]
- Li, D.; Cao, J.; Yao, Y. Big data in smart cities. Sci. China. Inf. Sci. 2015, 58, 1–12. [Google Scholar] [CrossRef]
- Trencher, G. Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technol. Forecast. Soc. Change 2019, 142, 117–128. [Google Scholar] [CrossRef]
- Angelidou, M.; Psaltoglou, A.; Komninos, N.; Kakderi, C.; Tsarchopoulos, P.; Panori, A. Enhancing sustainable urban development through smart city applications. J. Sci. Technol. Policy Manag. 2018, 9, 146–169. [Google Scholar] [CrossRef]
- Alsaig, A.; Alagar, V.; Chammaa, Z.; Shiri, N. Characterization and efficient management of big data in iot-driven smart city development. Sensors 2019, 19, 2430. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Jung, C.; Seo, J.; Muhammad, D.; Han, J.; Yoon, Y.; Han, K. Urban planning and smart city decision management empowered by real-time data processing using big data analytics. Sensors 2018, 18, 2994. [Google Scholar] [CrossRef] [PubMed]
- Yang, H. Urban Governance in Transition; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Fadhel, M.A.; Duhaim, A.M.; Saihood, A.; Sewify, A.; Al-Hamadani, M.N.; Albahri, A.; Alzubaidi, L.; Gupta, A.; Mirjalili, S.; Gu, Y. Comprehensive systematic review of information fusion methods in smart cities and urban environments. Inf. Fusion 2024, 107, 102317. [Google Scholar] [CrossRef]
- Iqbal, R.; Doctor, F.; More, B.; Mahmud, S.; Yousuf, U. Big data analytics: Computational intelligence techniques and application areas. Technol. Forecast. Soc. Change 2020, 153, 119253. [Google Scholar] [CrossRef]
- Soomro, K.; Bhutta, M.N.M.; Khan, Z.; Tahir, M.A. Smart city big data analytics: An advanced review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1319. [Google Scholar] [CrossRef]
- Löfgren, K.; Webster, C.W.R. The value of Big Data in government: The case of ‘smart cities’. Big Data Soc. 2020, 7, 2053951720912775. [Google Scholar] [CrossRef]
- Manimuthu, A.; Dharshini, V.; Zografopoulos, I.; Priyan, M.; Konstantinou, C. Contactless technologies for smart cities: Big data, IoT, and cloud infrastructures. SN Comput. Sci. 2021, 2, 334. [Google Scholar] [CrossRef]
- Chang, V. An ethical framework for big data and smart cities. Technol. Forecast. Soc. Change 2021, 165, 120559. [Google Scholar] [CrossRef]
- Bello, S.A.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Delgado, J.M.D.; Akanbi, L.A.; Ajayi, A.O.; Owolabi, H.A. Cloud computing in construction industry: Use cases, benefits and challenges. Autom. Constr. 2021, 122, 103441. [Google Scholar] [CrossRef]
- Komninos, N.; Panori, A.; Kakderi, C. Smart cities beyond algorithmic logic: Digital platforms, user engagement and data science. In Smart Cities in the Post-Algorithmic Era; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 1–15. [Google Scholar]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Sikora-Fernandez, D.; Stawasz, D. The concept of smart city in the theory and practice of urban development management. Rom. J. Reg. Sci. 2016, 10, 86–99. [Google Scholar]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Aksnes, D.W.; Sivertsen, G. A criteria-based assessment of the coverage of Scopus and Web of Science. J. Data Inf. Sci. 2019, 4, 1–21. [Google Scholar] [CrossRef]
- Joss, S.; Cook, M.; Dayot, Y. Smart cities: Towards a new citizenship regime? A discourse analysis of the British smart city standard. J. Urban Technol. 2017, 24, 29–49. [Google Scholar] [CrossRef]
- Jiang, B.; Nordin, J.; Salleh, M.N.M. Research trends and directions in learning spaces: A scientometric analysis based on CiteSpace and VOSviewer. Int. J. Innov. Learn. 2024, 36, 21–52. [Google Scholar] [CrossRef]
- Song, Z.; Jia, G.; Luo, G.; Han, C.; Zhang, B.; Wang, X. Global research trends of Mycoplasma pneumoniae pneumonia in children: A bibliometric analysis. Front. Pediatr. 2023, 11, 1306234. [Google Scholar] [CrossRef]
- Zhang, J.; Cenci, J.; Becue, V.; Koutra, S.; Ioakimidis, C.S. Recent Evolution of Research on Industrial Heritage in Western Europe and China Based on Bibliometric Analysis. Sustainability 2020, 12, 5348. [Google Scholar] [CrossRef]
- Meng, F.; Lu, Z.; Li, X.; Han, W.; Peng, J.; Liu, X.; Niu, Z. Demand-side energy management reimagined: A comprehensive literature analysis leveraging large language models. Energy 2024, 291, 130303. [Google Scholar] [CrossRef]
- Exner, A.; Cepoiu, L.; Weinzierl, C.; Asara, V. Performing Smartness Differently-Strategic Enactments of a Global Imaginary in Three European Cities; Vienna University of Economics and Business: Vienna, Austria, 2018. [Google Scholar]
- New, J.; Castro, D.; Beckwith, M. How National Governments Can Help Smart Cities Succeed; Center for Data Innovation: Washington, DC, USA, 2017. [Google Scholar]
- Li, Q.; Lan, L.; Zeng, N.; You, L.; Yin, J.; Zhou, X.; Meng, Q. A framework for big data governance to advance RHINs: A case study of China. IEEE Access 2019, 7, 50330–50338. [Google Scholar] [CrossRef]
- Zyoud, S.H. Analysing and visualising global research trends on COVID-19 linked to sustainable development goals. Environ. Dev. Sustain. 2023, 25, 5459–5493. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, M.; Cenci, J. Rethinking urban decline in post-COVID19: Bibliometric analysis and countermeasures. Buildings 2023, 13, 2009. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Bozeman, B.; Fay, D.; Slade, C.P. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. J. Technol. Transf. 2013, 38, 1–67. [Google Scholar] [CrossRef]
- Wagner, C.S.; Park, H.W.; Leydesdorff, L. The continuing growth of global cooperation networks in research: A conundrum for national governments. PLoS ONE 2015, 10, e0131816. [Google Scholar] [CrossRef]
- Wu, C.; Cenci, J.; Wang, W.; Zhang, J. Resilient City: Characterisation, Challenges and Outlooks. Buildings 2022, 12, 516. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Reid, A. Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities. Technol. Forecast. Soc. Change 2019, 142, 56–69. [Google Scholar] [CrossRef]
- Shin, D.; Kim, T.; Choi, J.; Kim, J. Author name disambiguation using a graph model with node splitting and merging based on bibliographic information. Scientometrics 2014, 100, 15–50. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Miao, J. Eco-innovation in SMEs: A scientometric review. Environ. Sci. Pollut. Res. 2022, 29, 48105–48125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cenci, J.; Zhang, J. Systematic Bibliometric analysis of the cultural landscape. J. Asian Archit. Build. Eng. 2023, 23, 1142–1164. [Google Scholar] [CrossRef]
- Pu, G.; Zhu, X.; Dai, J.; Chen, X. Understand technological innovation investment performance: Evolution of industry-university-research cooperation for technological innovation of lithium-ion storage battery in China. J. Energy Storage 2022, 46, 103607. [Google Scholar] [CrossRef]
- Dong, D.; Chen, M.-L. Publication trends and co-citation mapping of translation studies between 2000 and 2015. Scientometrics 2015, 105, 1111–1128. [Google Scholar] [CrossRef]
- Kleminski, R.; Kazienko, P.; Kajdanowicz, T. Analysis of direct citation, co-citation and bibliographic coupling in scientific topic identification. J. Inf. Sci. 2022, 48, 349–373. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Talebkhah, M.; Sali, A.; Marjani, M.; Gordan, M.; Hashim, S.J.; Rokhani, F.Z. IoT and big data applications in smart cities: Recent advances, challenges, and critical issues. IEEE Access 2021, 9, 55465–55484. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Li, J.; Liu, G.; Yang, M.M.; Liu, S. A bibliometric review of a decade of research: Big data in business research–Setting a research agenda. J. Bus. Res. 2021, 131, 374–390. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualising the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, Z.-y.; Zou, X. Mapping the knowledge domain of smart-city research: A bibliometric and scientometric analysis. Sustainability 2019, 11, 6648. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Feizizadeh, B.; Ghamari, H. Three decades of research on smart cities: Mapping knowledge structure and trends. Sustainability 2021, 13, 7140. [Google Scholar] [CrossRef]
- Lozano, S.; Calzada-Infante, L.; Adenso-Díaz, B.; García, S. Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature. Scientometrics 2019, 120, 609–629. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.-J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Ozek, B.; Lu, Z.; Pouromran, F.; Radhakrishnan, S.; Kamarthi, S. Analysis of pain research literature through keyword co-occurrence networks. PLOS Digit. Health 2023, 2, e0000331. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tao, Z.; Zhu, Y.; Tao, L. Mapping theme trends and recognising hot spots in postmenopausal osteoporosis research: A bibliometric analysis. PeerJ 2019, 7, e8145. [Google Scholar] [CrossRef] [PubMed]
- Chopra, M.; Saini, N.; Kumar, S.; Varma, A.; Mangla, S.K.; Lim, W.M. Past, present, and future of knowledge management for business sustainability. J. Clean. Prod. 2021, 328, 129592. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutra, S.; Zhang, J. Zero-Carbon Communities: Research Hotspots, Evolution, and Prospects. Buildings 2022, 12, 674. [Google Scholar] [CrossRef]
- Hou, J.; Yang, X.; Chen, C. Emerging trends and new developments in information science: A document co-citation analysis (2009–2016). Scientometrics 2018, 115, 869–892. [Google Scholar] [CrossRef]
No. | Freq. | Cited Journal | Year |
---|---|---|---|
1 | 854 | IEEE Access | 2016 |
2 | 672 | Future Generation Computer Systems | 2015 |
3 | 661 | Sensors—Basel | 2015 |
4 | 646 | IEEE Internet of Things Journal | 2015 |
5 | 619 | Lecture Notes in Computer Science | 2015 |
6 | 575 | IEEE Communications Magazine | 2015 |
7 | 545 | Sustainable Cites and Society | 2017 |
8 | 533 | Cities | 2015 |
9 | 515 | Sustainability—Basel | 2017 |
10 | 417 | Computer Networks | 2015 |
No. | Freq. | Centrality | Country | Year |
---|---|---|---|---|
1 | 747 | 0.05 | China | 2015 |
2 | 417 | 0.05 | USA | 2015 |
3 | 288 | 0.16 | India | 2015 |
4 | 257 | 0.04 | Italy | 2015 |
5 | 232 | 0.08 | England | 2015 |
6 | 206 | 0.13 | Australia | 2015 |
7 | 165 | 0.05 | Saudi Arabia | 2015 |
8 | 159 | 0.11 | Spain | 2015 |
9 | 156 | 0.02 | South Korea | 2015 |
10 | 110 | 0.09 | Pakistan | 2017 |
No. | Freq. | Centrality | Author | Year |
---|---|---|---|---|
1 | 29 | 0.00 | Simon Elias Bibri | 2017 |
2 | 18 | 0.00 | Rashid Mehmood | 2017 |
3 | 15 | 0.00 | Luca Foschini | 2015 |
4 | 12 | 0.00 | Tan Yigitcanlar | 2020 |
5 | 12 | 0.00 | Anand Paul | 2016 |
6 | 11 | 0.00 | Jhon Krogstie | 2017 |
7 | 11 | 0.00 | Awais Ahmad | 2016 |
8 | 11 | 0.00 | Antonio Corradi | 2015 |
9 | 11 | 0.00 | Zaheer Allam | 2019 |
10 | 10 | 0.00 | M Mazhar Rathore | 2016 |
11 | 10 | 0.00 | Iyad Katib | 2017 |
No. | Freq. | Centrality | Institution | Country | Year |
---|---|---|---|---|---|
1 | 41 | 0.12 | Chinese Academy of Sciences | China | 2015 |
2 | 41 | 0.02 | Norwegian University of Science and Technology | Norway | 2017 |
3 | 41 | 0.07 | King Abdulaziz University | Saudi Arabia | 2016 |
4 | 34 | 0.04 | Egyptian Knowledge Bank | Egypt | 2017 |
5 | 30 | 0.04 | University of New South Wales Sydney | Australia | 2019 |
6 | 30 | 0.07 | Wuhan University | China | 2015 |
7 | 29 | 0.03 | University of London | England | 2015 |
8 | 29 | 0.15 | King Saud University | Saudi Arabia | 2017 |
9 | 26 | 0.08 | Deakin University | Australia | 2015 |
10 | 25 | 0.06 | Hong Kong Polytechnic University | China | 2018 |
No. | Year | Reference | Category | JIF | Citations | |
---|---|---|---|---|---|---|
Average Per | Total | |||||
1 | 2016 | Integration of Cloud computing and Internet of Things: A survey | Computer science | 7.5 | 134.67 | 1212 |
2 | 2020 | Literature review of Industry 4.0 and related technologies | Computer science; engineering | 8.3 | 158.4 | 792 |
3 | 2019 | Deep Learning in Mobile and Wireless Networking: A Survey | Computer science; telecommunications | 35.6 | 126.17 | 757 |
4 | 2018 | Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities | Construction and building technology | 11.7 | 101.14 | 708 |
5 | 2015 | Smart tourism: foundations and developments | Business and economics | 8.5 | 70.7 | 707 |
6 | 2017 | Smart sustainable cities of the future: An extensive interdisciplinary literature review | Construction and building technology | 11.7 | 80.63 | 645 |
7 | 2018 | Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction | Computer science; engineering; telecommunications | - | 90.29 | 632 |
8 | 2016 | The role of big data in smart city | Information science and library science | 21 | 58 | 522 |
9 | 2016 | Internet of Things and big data Analytics for Smart and Connected Communities | Computer science; engineering; telecommunications | 3.9 | 58 | 522 |
10 | 2016 | Urban planning and building smart cities based on the Internet of Things using big data analytics | Computer science; engineering; telecommunications | 5.6 | 53.22 | 479 |
11 | 2018 | Towards fog-driven loT eHealth: Promises and challenges of loT in medicine and healthcare | Computer science | 7.5 | 64 | 448 |
12 | 2018 | Machine learning for Internet of things data analysis: a survey | Telecommunications | 7.9 | 63.71 | 446 |
13 | 2017 | Big loT Data Analytics: Architecture, Opportunities, and Open Research Challenges | Computer science; engineering; telecommunications | 3.9 | 55.63 | 445 |
14 | 2018 | Distributed attack detection scheme using deep learning approach for Internet of Things | Computer science | 7.5 | 63 | 441 |
15 | 2015 | The ‘actually existing smart city’ | Development studies; business and economics; geography | 4.4 | 42.7 | 427 |
No. | Freq. | Centrality | Category | Year |
---|---|---|---|---|
1 | 805 | 0.13 | Computer science, information systems | 2015 |
2 | 786 | 0.16 | Engineering, electrical, and electronic | 2015 |
3 | 612 | 0.04 | Computer Science, theory and methods | 2015 |
4 | 540 | 0.07 | Telecommunications | 2015 |
5 | 369 | 0.10 | Computer science, AI | 2015 |
6 | 291 | 0.05 | Green and sustainable science and technology | 2015 |
7 | 251 | 0.32 | Computer science, interdisciplinary applications | 2015 |
8 | 209 | 0.06 | Environmental sciences | 2015 |
9 | 201 | 0.02 | Environmental studies | 2015 |
10 | 178 | 0.09 | Urban studies | 2015 |
No. | Freq. | Centrality | Keywords | Year |
---|---|---|---|---|
1 | 1059 | 0.03 | Big data | 2015 |
2 | 630 | 0.01 | Smart city | 2015 |
3 | 400 | 0.04 | City | 2015 |
4 | 361 | 0.05 | Internet | 2015 |
5 | 288 | 0.04 | IoT | 2015 |
6 | 196 | 0.02 | Challenges | 2016 |
7 | 191 | 0.02 | Things | 2016 |
8 | 181 | 0.03 | Framework | 2016 |
9 | 180 | 0.05 | Management | 2015 |
10 | 158 | 0.01 | Model | 2016 |
11 | 130 | 0.00 | AI | 2019 |
12 | 129 | 0.02 | System | 2015 |
13 | 128 | 0.02 | Big data analytics | 2015 |
14 | 125 | 0.02 | Machine learning | 2018 |
15 | 106 | 0.05 | technology | 2015 |
16 | 100 | 0.01 | Security | 2016 |
17 | 89 | 0.01 | Future | 2017 |
18 | 85 | 0.03 | Architecture | 2016 |
19 | 83 | 0.03 | Cloud computing | 2015 |
20 | 83 | 0.03 | Deep learning | 2018 |
Cluster ID | Size | Centrality | Keywords | Year |
---|---|---|---|---|
0 | 77 | 0.805 | IoT (internet of Things) (113.66, 1.0 × 10−4); cloud computing (53.71, 1.0 × 10−4); edge computing (32.41, 1.0 × 10−4) | 2017 |
1 | 76 | 0.654 | Digital transformation (19.39, 1.0 × 10−4); e-government (19.03, 1.0 × 10−4); sustainable city (18.21, 1.0 × 10−4); open data (17.68, 1.0 × 10−4); citizen participation (14.72, 0.001) | 2019 |
2 | 53 | 0.595 | Energy consumption (25.02, 1.0 × 10−4); energy efficiency (23.54, 1.0 × 10−4); transfer learning (14.95, 0.001); neural networks (14.67, 0.001); smart grid (13.2, 0.001) | 2018 |
3 | 53 | 0.734 | Deep learning (72.28, 1.0 × 10−4); machine learning (70.85, 1.0 × 10−4); intelligent transportation systems (27.21, 1.0 × 10−4); data models (25.15, 1.0 × 10−4); urban computing (21.1, 1.0 × 10−4) | 2019 |
4 | 47 | 0.688 | City logistics (11.42, 0.001); differential privacy (10.51, 0.005); green parks (10.51, 0.005); community detection (10.51, 0.005); prediction (9.34, 0.005) | 2019 |
5 | 47 | 0.555 | Big data architecture (17.33, 1.0 × 10−4); platformization (17.33, 1.0 × 10−4); electric vehicles (14.44, 0.001); sensor networks (13.9, 0.001); algorithmic governance (11.55, 0.001) | 2019 |
6 | 45 | 0.708 | Circular economy (18.92, 1.0 × 10−4); urban metabolism (18.92, 1.0 × 10−4); sustainable development (13.54, 0.001); industry 4 (11.22, 0.001) | 2019 |
7 | 38 | 0.852 | Smart card data (42.48, 1.0 × 10−4); data mining (34.17, 1.0 × 10−4); human mobility (33.33, 1.0 × 10−4); travel behavior (22.53, 1.0 × 10−4); mobile phone data (17.51, 1.0 × 10−4) | 2017 |
8 | 35 | 0.750 | Smart mobility (19.71, 1.0 × 10−4); sustainable mobility (16.52, 1.0 × 10−4); traffic flow prediction (16.52, 1.0 × 10−4); AI (15.67, 1.0 × 10−4); urban mobility (14.66, 0.001) | 2019 |
9 | 33 | 0.860 | Smart sustainable cities (33.79, 1.0 × 10−4); sustainable cities (23.57, 1.0 × 10−4); data-driven (23.45, 1.0 × 10−4); compact cities (23.4, 1.0 × 10−4); eco-cities (21.51, 1.0 × 10−4) | 2018 |
10 | 24 | 0.829 | Data storage (14.45, 0.001); electronic heath records (14.03, 0.001); smart (14.03, 0.001); data sharing (14.03, 0.001); medical data (14.03, 0.001) | 2019 |
11 | 20 | 0.915 | Social media (23.7, 1.0 × 10−4); operations management (11.52, 0.001); IoT (9.86, 0.005); digitalization (8.19, 0.005); resilience (7.82, 0.01) | 2017 |
Keywords | Year | Strength | Begin | End | 2015–2023 |
---|---|---|---|---|---|
Networks | 2015 | 3.44 | 2015 | 2016 | |
Human mobility | 2015 | 2.81 | 2015 | 2019 | |
Business intelligence | 2015 | 2.57 | 2015 | 2018 | |
Vision | 2016 | 2.73 | 2016 | 2019 | |
Geography | 2016 | 2.73 | 2016 | 2019 | |
Smart card data | 2017 | 3.35 | 2017 | 2020 | |
Cloud | 2015 | 3.32 | 2017 | 2018 | |
Fog computing | 2017 | 3.2 | 2017 | 2018 | |
Smart sustainable cities | 2017 | 2.71 | 2017 | 2020 | |
Things | 2016 | 2.71 | 2017 | 2018 | |
Data management | 2017 | 2.69 | 2017 | 2018 | |
Wireless sensor networks | 2017 | 2.50 | 2017 | 2018 | |
Urban forms | 2018 | 3.04 | 2018 | 2019 | |
Typology | 2018 | 3.03 | 2018 | 2020 | |
Issue | 2018 | 2.42 | 2018 | 2020 | |
Public participation | 2019 | 2.59 | 2019 | 2020 | |
Intelligent sensors | 2020 | 3.21 | 2020 | 2021 | |
Urban informatics | 2020 | 2.92 | 2020 | 2021 | |
Traffic flow prediction | 2021 | 2.69 | 2021 | 2023 | |
Industry 4.0 | 2021 | 2.69 | 2021 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Y.; Cenci, J.; Zhang, J. Review of Big Data Implementation and Expectations in Smart Cities. Buildings 2024, 14, 3717. https://doi.org/10.3390/buildings14123717
Zhuang Y, Cenci J, Zhang J. Review of Big Data Implementation and Expectations in Smart Cities. Buildings. 2024; 14(12):3717. https://doi.org/10.3390/buildings14123717
Chicago/Turabian StyleZhuang, Yingnan, Jeremy Cenci, and Jiazhen Zhang. 2024. "Review of Big Data Implementation and Expectations in Smart Cities" Buildings 14, no. 12: 3717. https://doi.org/10.3390/buildings14123717
APA StyleZhuang, Y., Cenci, J., & Zhang, J. (2024). Review of Big Data Implementation and Expectations in Smart Cities. Buildings, 14(12), 3717. https://doi.org/10.3390/buildings14123717