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Abstract: The air void system in concrete significantly affects its mechanical, thermal, and frost du-
rability properties. This study explored the use of ChatGPT, an AI tool, to generate Python code for 
analyzing air void parameters in hardened concrete, such as total air void content (A), specific sur-
face (α), and air void spacing factor (L). Initially, Python scripts were created by requesting 
ChatGPT-3.5 to convert MATLAB scripts developed by Fonseca and Scherer in 2015. The results 
from Python closely matched those from MATLAB when applied to polished sections of seven dif-
ferent concrete mixes, demonstrating ChatGPT’s effectiveness in code conversion. However, gener-
ating accurate code without referencing the original MATLAB scripts required detailed prompts, 
highlighting the need for a strong understanding of the test method. Finally, a Python script was 
applied to modify void reconstruction in 2D images into 3D by stereology, and comparing this with 
(3D) CT scanner results, showing comparable results. 
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1. Introduction 
Concrete contains both intentional and unintentional air voids, each playing a dis-

tinct role in its overall performance. Intentional air voids are introduced during the mix-
ing process, often through the addition of air-entraining agents, to improve the concrete’s 
resistance to freeze–thaw cycles [1–3]. These air voids form a network of tiny, uniformly 
distributed pores, which act as pressure relief zones during freezing. By providing space 
for ice expansion, these voids reduce internal stress, thereby enhancing durability under 
fluctuating temperatures [4,5]. In contrast, unintentional air voids result from improper 
mixing, compaction, or placement and may vary in size and distribution. These irregular 
voids can weaken the concrete matrix and reduce its overall strength and durability. The 
distribution, size, and quantity of both intentional and unintentional air voids are crucial 
in determining the material’s performance, especially in harsh environments where 
freeze–thaw durability is critical. Accurately quantifying these parameters is therefore es-
sential in ensuring concrete’s long-term structural integrity and durability [6]. 

The air void system in concrete is directly assessed by the air void content (%), the 
specific surface area of air voids (mm−1), and Powers’ spacing factor (mm) [7,8]. To achieve 
high frost durability in concrete, a low average air void spacing factor is desirable, 
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typically less than 0.20 mm. This is because a smaller spacing factor means that the air 
voids are more evenly distributed and closer together, allowing freezing water to expand 
into the voids more easily, which helps prevent damage from frost [9]. 

Image analysis, either in 2D on polished sections or 3D using X-ray tomography, is 
the primary tool for air void analysis in hardened concrete according to ASTM C457 and 
its corresponding European version EN 480 [10,11]. Reviews of spacing models and meas-
urements in 2D and 3D based on polished sections and tomography have been given by 
many researchers, see for example [12–15]. Snyder et al. [13] highlighted that understand-
ing the durability of concrete against freeze–thaw cycles requires a detailed analysis of its 
air void system. They noted that studying the small air bubbles in concrete typically in-
volves a multi-step process: sample preparation, identification of air voids, detailed anal-
ysis of their size and distribution, and assessment of the spacing between them. Each of 
these steps is supported by research across different engineering disciplines, but civil en-
gineering researchers often need to consult many sources to gather a complete picture. 
Snyder et al.’s work aims to bring all these aspects together, helping researchers to see the 
connections, analyze the air void structure effectively, and understand the basis of stand-
ard tests like ASTM C 457. Murotani et al. [14] analyzed the air voids in concrete as a 2D 
spatial point process. They found that the characteristic distance between voids, deter-
mined by the nearest neighbor distance function, closely aligned with the traditional spac-
ing factor. By comparing this with a cubic lattice model of air voids (The cubic lattice 
model of air voids is a conceptual and mathematical model used to represent the spatial 
distribution of air voids in concrete or other porous materials, and in this model, the air 
voids are assumed to be regularly spaced and arranged in a three-dimensional cubic lat-
tice structure), they showed that the characteristic distance could serve as an alternative 
quality parameter. They also introduced a simulation technique to estimate this distance, 
accounting for the random distribution of voids in cement paste. The results supported 
the use of point process statistics for evaluating the air void distribution in concrete. 

Program coding (computing) plays a vital role in the image analysis of concrete 
voids, as it does in most engineering fields. It automates the detection and examination of 
voids, making the process more efficient compared to manual methods. Automated algo-
rithms minimize human error and ensure consistent analysis across different samples and 
conditions. Through coding, programs can detect and quantify air voids within images, 
providing detailed metrics such as size, shape, and distribution. The coding also enables 
image segmentation to isolate voids from the surrounding concrete matrix and calculates 
statistical properties like void content, specific surface area, and spacing factors. Overall, 
program coding enhances the accuracy, efficiency, and depth of analysis, facilitating ad-
vanced visualization and comprehensive quality control. 

The trend of using open-source languages like Python is increasing due to their ac-
cessibility, versatility, rich ecosystem, ease of learning, strong community support, indus-
try adoption, educational benefits, and the ability to provide custom solutions. These fac-
tors collectively make open-source languages an attractive choice for a wide range of ap-
plications and users. Besides increasing the adoption of open-source programming, 
OpenAI is also a new topic in all research fields. ChatGPT (launched on 30 November 
2022) is a newly trained generic AI tool capable of prompting responses and follow-up 
questions [16]. In February 2023, an article in Nature revealed that roughly 80% of the 
surveyed researchers acknowledged utilizing ChatGPT or similar AI technologies at least 
once [17]. 

In this study, Python was specifically chosen because it offers comprehensive image-
processing libraries (e.g., OpenCV) and scientific tools (e.g., NumPy, SciPy) that are highly 
effective for air void analysis in concrete. Python’s open-source nature also makes it ac-
cessible to a wider audience, allowing researchers without access to MATLAB to replicate 
and build on our findings. Additionally, OpenAI’s ChatGPT, as a tool for Python code 
generation, enables efficient code development and iteration, making it an asset for rap-
idly advancing research. 
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The primary motivations for using ChatGPT varied among respondents. The most 
common reasons cited included utilizing ChatGPT or similar AI technologies for leisure 
and entertainment purposes, brainstorming in research endeavors, assistance in coding 
tasks, aid in creating presentations, preparing literature reviews, drafting research manu-
scripts, generating visual content, facilitating grant applications, utilizing within scientific 
research engines, and supporting coursework writing, in that order. Also, many research-
ers have explored ChatGPT’s capabilities in different fields such as public health [18], ed-
ucation [19], global warming [20], psychiatry [21], and the significant impact of its use in 
technological research [22]. Despite its advantages in several sections, such as its speed 
for code generation and giving hints for code development, the accuracy of the algorithm 
is a controversial issue. 

A study [23] examined ChatGPT’s effectiveness in solving coding problems accu-
rately and efficiently. By testing it with a range of problems from LeetCode, researchers 
found that ChatGPT achieved correct solutions in about 72% of cases. While it excelled at 
handling structured tasks, it faced challenges in revising code based on feedback, high-
lighting a need for better debugging capabilities. Another study [24] explored how AI can 
improve code generation by using a “self-collaboration” framework, where an AI like 
ChatGPT takes on different roles—analyst, coder, and tester—to simulate teamwork. 
They reported that this team-based approach helps AI handle difficult coding projects 
better than if it worked alone, boosting success rates by around 30–47%. Liu et al. [25] 
evaluated ChatGPT’s ability to generate and fix code across various languages, focusing 
on correctness, complexity, and security. ChatGPT performed better on older problems 
but struggled with self-correction, and fixing errors can increase code complexity. Though 
security issues arose, ChatGPT addressed most vulnerabilities with guidance, pointing to 
both its strengths and areas for improvement in coding tasks. However, an investigation 
by Feng et al. [26] reported that ChatGPT is mainly used for languages like Python and 
JavaScript, but surprisingly, most people feel fearful about using it, rather than happy or 
excited. 

Overall, this work evaluates the potential of OpenAI and Python-based coding ap-
proaches to accelerate and improve air void image analysis in hardened concrete. In our 
study, we utilized ChatGPT’s capabilities for code conversion and generation, building 
upon the experimental results and MATLAB code developed by Fonseca and Scherer. 
This allowed us to explore how ChatGPT can assist in converting and generating code 
within the context of our research, providing valuable insights into the evolving field of 
AI-driven code generation and enhancing the analysis process in concrete research. Fi-
nally we compared 3D CT scans of air voids with 3D void size distributions calculated 
from 2D polished sections using stereology. 

2. Materials and Methods 
As previously mentioned, the main objective of this study is to develop and assess 

Python-based code for analyzing air void distributions in concrete, with assistance from 
OpenAI’s ChatGPT for code generation. To fulfill this objective, our methodology consists 
of the following steps (Figure 1 presents the schematic flowchart of the study): 
A. Development of Python Scripts: We initially converted three existing MATLAB 

scripts (Fonseca and Scherer [27] (contains three separate processes: (1) reading the 
image and converting it; (2) basic image analysis based on input from the image con-
version and volumetric paste/aggregate ratio of the concrete mix (the scanning can 
only detect air voids but cannot measure aggregate volume fraction, so the latter is 
an important input in the analysis); and (3) the code plots 2D void distributions and 
reconstructs the 3D spheres))—responsible for scanning, calculation, and statistical 
analysis of air void distributions—into Python versions. This conversion laid the 
groundwork for a full comparison between MATLAB and Python in performing the 
analysis. 
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B. Compact Code Generation via ChatGPT: Using ChatGPT, we aimed to create a 
streamlined and optimized Python code by merging and compacting the three Py-
thon scripts into a single, efficient script. ChatGPT was prompted iteratively to refine 
the code, aiming for faster processing and easier implementation. 

C. Evaluation of ChatGPT’s Code Generation Capability: We evaluated ChatGPT’s 
ability to generate accurate and functional Python code based solely on prompt guid-
ance, without referencing the original MATLAB scripts. This assessment highlights 
ChatGPT’s potential for automating code conversion in scientific applications. 

D. Concrete Mix Data Source: The concrete mix designs and hardened air void data 
used in this study were sourced from previous research [28,29]. These data served as 
the foundation for testing and validating the Python code developed. 

E. Performance Assessment of Python vs. MATLAB: To assess the effectiveness of the 
Python code, we compared the air void analysis results produced by Python with 
those obtained using the original MATLAB scripts by Fonseca and Scherer [27]. This 
comparison allowed us to determine the accuracy and reliability of the Python-gen-
erated results. 

F. 3D Reconstruction Enhancement: Lastly, we developed a Python script to compare 
the stereological results with the CT scanner data. This script introduced a correction 
factor for improved 3D reconstruction, enhancing the accuracy of air void represen-
tation. 

1. Cast & Cure of 7 Samples (Table1)
2. Pre-Processing the Samples for Image Acquisition
3. Using Captured Images as Input Data in MATLAB 

and Python Codes
 

Converted 3 
Existing MATLAB 
Code (Fonseca and 
Scherer) to Python 

by ChatGPT  

Generated One 
Compacted Script of 
Python  (from Stage 

A) by ChatGPT 

1. Comparing the Results of Stage B with A
2. Comparing the Results of Stage C with A

Generated One 
Compacted Script of 
Python by ChatGPT 

(Only Prompt 
Guidance) 

A B C

AI Capability Evaluation

D

E

1. 3D Analysis by CT Scanner
2. Stereological Analysis

3. Developing Correction factor

F

 
Figure 1. The flowchart of this study. 

2.1. Python Script for Air Void Analysis Based on Fonseca and Scherer [27], Own Coding, and 
ChatGPT 

As mentioned, in the first step, the MATLAB scripts were copied to ChatGPT for the 
conversion of each step into the Python script. After that, we asked ChatGPT to combine 
these three scripts into a single Python script. During the conversion process, some errors 
occurred, so we copied the errors into the chat section and requested the corrections. After 
generating a correct version of code, we went a step further and asked ChatGPT to create 
a graph showing the cumulative measured voids versus the size of voids. We then re-
quested a stereological analysis to produce a 3D interpretation of the spherical diameter 
of voids versus the number of detected voids based on the 2D image. Finally, we prepared 
detailed prompts for ChatGPT to generate code for image analysis to detect the air void 
system (Appendix A). 
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2.2. Air Void Data 
Previous studies have shown that fly ash concrete requires more air-entraining agent 

(AEA) due to unburned carbon, which reduces the effectiveness of the AEA [30,31]. 
Achieving frost-resistant fly ash (FA) concrete with a stable air void system remains chal-
lenging because of the variable carbon content in fly ash and other factors like cenospheres 
and plerospheres that adsorb the AEA [32]. Common practices of increasing AEA dosage 
do not account for these variations, leading to inconsistent air entrainment and necessitat-
ing trial mixing for quality control. Here seven hardened high-volume fly ash concrete 
mixtures with different mix proportion with optimized type of AEA and order of adding 
AEA and a co-polymer superplasticizer (SP) [28,29] were used. 

Table 1 presents the composition used in the analysis, with the mix code specifying 
the water-to-binder ratio (w/b), fly ash-to-binder ratio (FA/b), and whether an air-entrain-
ing agent (AEA) was used. For instance, “0.40-33 AEA (ID: 4AE)“ indicates a w/b ratio of 
0.40, a FA/b ratio of 0.33, and air-entrained concrete. On the other hand, “0.40-33 0 AEA 
(ID: 4NAE)” represents a code for a non-air-entrained counterpart. The choice of concrete 
mixes was based on the standard requirements outlined in [33] for exposure class XF4 (in-
volving high saturation, seawater, and de-icing agents). However, some deviations from 
the standard were made: the fly ash-to-cement ratio was increased to 0.52, exceeding the 
maximum limit of 0.33 specified by the standard; the silica fume content in the binder was 
set at 4%, which is below the required minimum of 6%; and the effective water-to-cement 
ratio was higher than 0.45 [28]. 

Table 1. Composition of concrete mixes (kg/m3). 

 Mix Code
0.4, 

33%FA, 
AEA 

0.4, 
33%FA, 
0 AEA 

0.45, 
33%FA, 

AEA 

0.45, 
33%FA, 
0 AEA 

0.293, 
33%FA, 

AEA 

0.293, 
33%FA, 
0 AEA 

0.45, 
0%FA, 
AEA 

Constituents 
Mix ID  4AE 4NAE 45AE 45NAE 293AE 293NAE 45AE0FA 

Norcem Anleggsement FA 256.2 253.7 240.8 238.1 298.3 293.7 328.8 
Elkem Silica Fume 13.9 13.8 13.1 12.9 16.2 16.0 13.7 
Norcem Fly Ash 78.5 77.7 73.7 72.9 91.3 89.9 0.0 
Free water 139.4 138.0 147.5 145.8 118.9 117.1 154.1 
Absorbed water 6.3 6.5 6.3 6.6 6.2 6.7 6.3 
Årdal 0/8 mm, A-4956 1062.0 1104.6 1053.6 1104.6 1053.6 1121.5 1053.6 
Total moisture (free water) 36.1 34.2 37.9 39.8 37.9 38.1 37.9 
Årdal 8/16 mm, A-4751 774.8 805.9 768.6 805.9 768.6 818.2 768.6 
Total moisture (free water) 3.9 4.0 4.6 4.8 5.4 5.7 7.7 
Mapei Dynamon SX-23 3.0 3.1 2.4 2.8 5.9 6.5 2.7 
Incl. liquid part (free water) 2.3 2.4 1.8 2.2 4.6 5.0 2.1 
Mapeair 25 1:9 1.5 0.0 1.6 0.0 2.4 0.0 0.7 
Incl. liquid part (free water) 1.5 0.0 1.6 0.0 2.4 0.0 0.7 
Paste volume, m3 0.27 0.26 0.27 0.26 0.27 0.26 0.27 

We performed image analysis (IMA) on the polished sections of hardened specimens, 
each measuring 100 by 100 mm2, sawn out from a 150 mm cube, following the procedures 
outlined in [27] and ASTM C457M-16 [10]. Grinding was performed on a Struers 
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Tegramin-30 using Akasel Aka-Piatto diamond discs with grits of 220, 500, and 1200, ap-
plying a consistent pressure of 70-100 N until a reflective surface with well-defined air 
voids was achieved. The ground surface was then coated three times with a black marker 
(Edding 850). Air voids were filled with BaSO4 powder (particle size 1–4 μm) using finger 
tapping and pressing. Excess powder was removed first with a straight-edged plastic 
ruler and then with a slightly dampened finger. To prevent distortion of air void meas-
urements, cracks and imperfections in the aggregates were painted black under a micro-
scope using a fine-tipped marker. The prepared samples were placed on transparent foil 
and scanned at 3200 ppi, 16-bit grayscale, using an Epson Perfection V600 Photo scanner. 
The images were analyzed with a MATLAB script developed by Fonseca [27]. Figure 2 
displays the image of each sample used as input for the Python or MATLAB codes. 

The performance of the Python code for air void analysis—converted from MATLAB 
by ChatGPT (Steps 1 and 2, Appendix B) and generated by ChatGPT (Step 3, Appendix 
C)—was compared with the original MATLAB results to assess both the accuracy of the 
Python scripts and the capabilities of ChatGPT. Regarding the 3D analysis, the output of 
one of the samples (4AE) was compared with the 3D analysis of this sample using a Zeiss 
Metrotom 1500 CT scanner with VGStudio Max 3.0 software for image analysis [15]. It 
should be noted that stereology (stereology is a scientific method used to quantify three-
dimensional (3D) structures based on two-dimensional (2D) images or sections) and to-
mography (tomography is an imaging technique used to create detailed cross-sectional 
(slice) images of an object or body by analyzing the data collected from multiple angles) 
are entirely different; however, they can be comparable in characteristics like the trend of 
void frequency and spherical diameter. 

CT (computed tomography) is an imaging technique that uses X-rays to create de-
tailed cross-sectional images (slices) of an object or body. Multiple 2D images are taken 
from different angles around the object, and these are reconstructed to form a 3D repre-
sentation. CT provides direct visual information about the internal structure, allowing for 
the identification of various tissues, organs, or materials based on their densities. How-
ever, stereology is a method used to quantify 3D structures based on 2D images, such as 
microscope slides. It uses mathematical and statistical techniques to estimate volume, sur-
face area, number, and other characteristics from these 2D sections. While CT offers high-
resolution images for direct visual analysis, stereology enables quantitative 3D measure-
ments from 2D sections through statistical methods. 

   
4AE 45AE 293AE 

   
4NAE 45NAE 293NAE 
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45AE0FA 

Figure 2. The scanned image as an input for MATLAB and Python. 

3. Results 
3.1. Conversion of MATLAB to Python 
3.1.1. Converted Code 

The void systems in the hardened concrete of the seven mixes in Table 1 (Figure 2) 
were analyzed using the converted code and combined converted code. To validate the 
accuracy of our Python code, we conducted a thorough comparison with the results gen-
erated by the original MATLAB code. Figure 3 presents this comparative analysis by plot-
ting the values calculated by MATLAB on the x-axis against those calculated by Python 
on the y-axis for each parameter. A strong correlation was observed, with all three plots 
demonstrating an R2 value of 1.00. This correlation indicates that not only does the Python 
code replicate MATLAB’s functionality but it does so with high precision across multiple 
samples and parameters. 

Each of the three air void parameters analyzed—total air void content, specific sur-
face area, and spacing factor—play a critical role in assessing the durability and freeze–
thaw resistance of concrete. Total air void content is essential as it indicates the overall 
volume of air within the concrete, while specific surface area and spacing factor provide 
insights into the distribution of these voids, which can impact durability. The ability of 
our Python code to accurately reproduce these parameters underscores its capability to 
perform robust and comprehensive air void analyses, like MATLAB. 

One of the notable benefits of using Python in this study is that it is an open-source 
alternative to MATLAB, making it more accessible for researchers and practitioners in 
various settings who may not have access to MATLAB. Python’s ecosystem, particularly 
libraries like OpenCV, NumPy, and SciPy, proved to be efficient in the image-processing 
tasks essential to this analysis. 

Despite the high correlation coefficients observed, it is essential to note the slight 
computational differences between MATLAB and Python, which may contribute to minor 
variances in output under certain conditions. These differences are due to intrinsic varia-
tions in the image-processing functions and floating-point arithmetic between the two 
programming environments. However, our analysis showed that these differences are 
negligible for practical purposes, with the Python results aligning well within the accepta-
ble tolerance limits for air void analysis in concrete. In summary, each tool offers distinct 
advantages and limitations that impact the effectiveness of data analysis and usability in 
the field. 
1. Strengths and Limitations of Python: Python is an open-source language, meaning 

it is freely available and benefits from a large, collaborative community. Python of-
fers extensive libraries for image processing (like OpenCV and skimage) and data 
analysis, allowing for flexible and customizable code development. However, Py-
thon’s flexibility comes with limitations as it requires more effort to configure and 
integrate compared to MATLAB’s built-in functions. 

2. Strengths and Limitations of MATLAB: MATLAB is widely recognized for its pow-
erful image-processing and data analysis capabilities and is commonly used in engi-
neering fields. However, MATLAB is a commercial software, which can limit 
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accessibility due to licensing costs. Additionally, MATLAB’s proprietary nature may 
reduce its flexibility for some applications compared to the open-source Python en-
vironment. 

3. Comparative Performance in This Study: When comparing the specific outputs for 
the air void analysis, both tools provided comparable results in terms of accuracy, as 
shown by the high correlation coefficients in our analysis. However, in terms of code 
length and efficiency, Python, especially with the assistance of ChatGPT for code 
compaction, allowed us to create a streamlined version that was easier to modify for 
further testing (Section 3.1.2.). 

4. Limitations of Methodologies Employed: Both Python and MATLAB scripts rely on 
image-based analysis techniques, which are inherently limited by the resolution and 
quality of the images used. Any inaccuracies in image capture (e.g., low resolution, 
poor contrast) can affect the results. 

 
air void content (%) specific surface area (mm−1) 

 
spacing factor (mm) 

Figure 3. The results of MATLAB vs. Python based on converted code by ChatGPT. 

3.1.2. Combined Converted Code 
The combined converted code, as presented in Appendix B, merges all three steps of 

the MATLAB process into a single Python script. It should be noted that the achieved 
images (Figure 2) were inserted into the codes, and the calculation is based on the binary 
images (Figure 4). Figure 5 shows the frequency of the number of detected voids, and 
Figure 6 illustrates the cumulative void volume vs. the diameter. The graphs obtained for 
both sets of the number of voids and void content are identical to the results reported by 
MATLAB scripts analyzing the same seven polished sections, as documented in [29]. 
Hence, ChatGPT was able to translate the well-functioning MATLAB code into a compact 
Python script and make it work in a similar way, giving the same results with relatively 
little effort. 
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In summary, the analysis confirms that the newly developed Python code, supported 
by ChatGPT in converting the code components, performs air void analysis with a high 
level of accuracy comparable to the established MATLAB code. This opens new avenues 
for using Python-based tools in concrete research, offering a cost-effective, flexible, and 
widely accessible solution for analyzing the air void structure in concrete. 

   
4AE 45AE 293AE 

   

4NAE 45NAE 293NAE 

 
45AE0FA 

Figure 4. The binary image of samples. 
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293AE 4NAE 

  
45NAE 293NAE 

 
45AE0FA 

Figure 5. The number of voids vs. void diameter (by 2D polished sections). 
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293AE 4NAE 

  
45NAE 293NAE 
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Figure 6. The cumulative void volumes vs. void diameter (by 2D polished sections). 
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3.2. Generation of Python by Prompt 
Figure 7 shows a similar comparison to that in Figure 3 but this time between the air 

void analysis computed by the original MATLAB code (x-axis) and the air void analysis 
by the combined converted Python code (Appendix B), as well as the generated code pro-
duced without reference to Fonseca and Scherer’s MATLAB code (Appendix C). A closer 
examination reveals some correlation in total air void content between the two, though it 
is weaker than in Figure 3, with notable discrepancies, especially in specific surface area 
and Powers’ spacing factor, when comparing the ChatGPT-generated Python code to the 
original MATLAB code. These discrepancies indicate significant errors in the generated 
code, underscoring the limitations and challenges associated with relying solely on AI-
generated solutions for complex computational tasks. Further refinement and validation 
of the generated code are essential to resolve these discrepancies and ensure reliable, ac-
curate computational results. 

In Table 2, we compare the two codes presented in Appendices B and C. Overall 
differences in approach and complexity between the two scripts can lead to variations in 
the computed metrics, especially in specific surface area and Powers’ spacing factor, as 
shown in the comparison. ChatGPT 3.5 requires more detailed prompts to produce results 
comparable to the MATLAB code of Fonseca and Scherer. Both codes (combined con-
verted and generated) yield similar results for air void content in most samples, suggest-
ing that both methods effectively detect and quantify void spaces within the images. How-
ever, for specific surface area and spacing factor, there are noticeable differences, indicat-
ing the need for highly detailed prompts based on the ASTM C457 equations. 

Table 2. Combined converted code from MATLAB vs. generated code by prompts. 

Aspect Combined Converted Generated 
Library Dependencies OpenCV, NumPy, scikit-image, Matplotlib OpenCV, NumPy 

Functionality Comprehensive analysis and visualization 
Basic image thresholding and contour 
analysis 

Image Processing Extensive image analysis including thresholding 
and measurement 

Basic image processing such as 
thresholding  
and contour finding 

Input Handling Loads image file, performs optional cropping 

Image Display Matplotlib (plt) for display 
OpenCV (cv2) for displaying 
thresholded image 

Dependency Uses skimage for Otsu’s method Only relies on OpenCV and NumPy 
Thresholding 
Application Utilizes Otsu’s method for thresholding 

User Interaction Uses input () for user input Uses input () and OpenCV GUI for 
cropping 

Output Presentation Generates histograms and scatter plots for visual 
representation 

Prints metrics related to contours found 
in the image 

Computational 
Complexity Higher Lower 
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Figure 7. The results of the air void analysis by MATLAB vs. by Python combined converted and 
generated by ChatGPT (Appendices A and B): (a) air void content (%), (b) specific surface area 
(mm−1), and (c) spacing factor (mm). 

3.3. Computational Tomography vs. Stereology 
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3.3.1. CT Scanner 
In assessing the precision of 3D image reconstruction, a comparison was made be-

tween the frequency and diameters of voids derived from the CT scanning results [15]. 
Figure 8 illustrates the CT scanner output and the frequency of air voids detected based 
on their equivalent diameter for sample 4AE. A total of 652,809 voids were identified with 
equivalent diameters ranging from 1 to 300 μm, 90,094 voids were detected with diame-
ters between 300 and 1000 μm, and 1050 voids were found with diameters between 1000 
and 2000 μm. Figure 9 also shows the cumulative void volume as a function of void di-
ameter, determined through 3D analysis using the CT scanner. This plot includes one scan 
of the large concrete slice (20 mm by 100 mm by 100 mm) used for image analysis and 
nine scans of individual small cubes sawn from the large slice [15]. These results indicate 
that sample size may influence CT scanner results. In this study, we retained the large 
sample size because it was also used for image analysis. 
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Figure 8. The equivalent diameter of detected air voids by the CT scanner: (a) visualization of all 
voids in large (100 mm by 100 mm by 20 mm) specimen, (b) frequency (sample 4AE). 

 
Figure 9. The results of the 3D analysis by the CT scanner (sample 4AE). 

Figure 10 shows the sphericity of detected voids by the CT scanner versus the surface 
area (mm2) and volume of voids (mm3). The sphericity of a void measures how closely the 
shape of the void resembles a perfect sphere. It is defined as the ratio of the surface area 
of a sphere (with the same volume as the void) to the actual surface area of the void. 
Mathematically, sphericity (ϕ) is given by [34] Sphericityሺϕሻ ൌ Surface area of a sphere with the same volume as the voidActual surface area of the void  

For a perfect sphere, the sphericity value is 1. As the shape of the void deviates from a 
sphere (becomes more elongated or irregular), the sphericity decreases, with values rang-
ing between 0 and 1 as follows: 

∅ ൌ 𝜋ଵଷሺ6𝑉ሻଶ/ଷ𝐴  

where V is the volume of the void, and A is the actual surface area of the void. 
It should be noted that the observed surface area in the Figure 10 refers to the total 

area that covers the entire outer surface of a three-dimensional void, considering all of its 
contours and dimensions. Hence it accounts for the entire surface of the air voids, includ-
ing any curves, slopes, or irregularities. However, the projection area (in the XY-plane) is 
the area of a void when viewed directly from above, onto a flat, two-dimensional plane 
that corresponds to the XY-plane of the object. Therefore it represents the “shadow” or 
outline of the air voids as seen from a perpendicular viewpoint to the XY-plane (The size 
of void which appears in 2D when looking at it from top-down view). The surface area vs 
XY-plane area of detected voids is shown in Figure 11. The results clearly indicate the 
differences between these values. As expected the projected area is much smaller than the 
corresponding void surface, but as seen from Figure 11 it is even smaller than the ratio 
(area circle/area void) which should be 1/4 for a perfect sphere. 
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Figure 10. The sphericity of detected voids. (sample 4AE). 

 
Figure 11. The surface area vs. projected XY area (sample 4AE). 

3.3.2. Stereology 
The Saltykov method is used in material science to estimate the size distribution of 

particles (like air voids) in a sample based on the 2D slice of the sample. It is a way to 
understand the 3D size distribution from a 2D view [27,35]: N୅ሺi, jሻ ൌ N୴ሺjሻ∆ ቄඥjଶ െ ሺi െ 1ሻଶ െ ඥjଶ െ iଶቅ 

where NA represents the number of profiles per unit area and NV represents the number 
of spheres per unit volume, and ∆ is the bin which shows the particle classes. A Python 
script was applied (Appendix C) for fast and accurate calculation. This Python script 



Buildings 2024, 14, 3712 17 of 29 
 

focused on identifying circular air voids within the binary image and calculating their 
diameters. After computing these diameters, the code organizes them into a histogram, 
which shows the distribution of different diameters within the image. This code estimates 
the radius of the air voids, assuming they have circular shapes (If the shape is not a perfect 
circle, it gives “equivalent diameter”—the diameter of a circle that has the same area as 
the non-circular shape.). The area of a circle is given by Area = π × radius2, so r ൌ ඥA/π. 
NV is the number of air voids per unit volume for each diameter range (= size distribution 
by number density). In summary, considering Figure 6 (sample 4AE) and Figure 9, the 2D 
image analysis has a similar trend as those measured by a CT scanner. However, the num-
ber of detected voids by the CT scanner (specially in small samples) is much higher than 
by stereological analysis of the 2D image by Python script. It can be attributed to the res-
olution differences of these two methods. The results in Figures 8 and 12 showed, how-
ever, that 3D-scanning can give comparable results to reconstructed 2D polished sections 
(stereological analysis). 

As previously discussed (refer to Figure 11), the surface area of a 2D section (for in-
stance, projection XY) can significantly differ from the surface area of a 3D image. To ad-
dress this discrepancy, we modified the 3D reconstruction from the 2D image using the 
following approach: 
1. The sphericity of all 770,447 voids detected by the CT scanner was categorized based 

on their XY projection area. The categorization was performed in intervals of 0.01 
mm2 for areas under 0.1 mm2, 0.1 mm2 intervals for areas up to 2 mm2, and 0.5 mm2 
intervals for areas up to 5 mm2. Python scripts were used for efficient computation 
(please see Figure 13). 

2. The circular surface area of the 2D image was calculated through image analysis by 
detected diameters. 

3. The mean value obtained from the first step was applied as a correction factor (k) for 
the surface area of the 2D image. 

4. The void volumes were then reconstructed using this modified approach. So, we pro-
posed the following equation for the volume of reconstructed voids based on the 2D 
image: 𝑉௥௘௖ ൌ 16 ൉ ሺ𝑘 ൉ 𝐴ଶ஽𝜋ଵ/ଷ ሻଷ/ଶ 
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Figure 12. The computed sphere distribution based on Saltykov’s classical sphere reconstruction 
method (sample 4AE). 

 
Figure 13. Sphericity distribution (sample 4AE). 

The Figure 13 shows that as the projected area of the voids increases, there is a general 
trend toward lower sphericity values like in Figure 10. This trend suggests that larger 
voids tend to be less spherical. This could be because larger voids are more likely to have 
irregular shapes or more complex geometries that deviate from a simple spherical shape. 
The box plots indicate the median, quartiles, and variability in sphericity for each area 
range, with the outliers providing further insight into the diversity of void shapes. Figure 
14 compares the corrected void volume V-rec  to the detected diameter. It shows a clear 
relationship between the void size (as detected by its diameter) and the reconstructed vol-
ume. The blue dots representing the corrected 3D volume, while the red represent the 
uncorrected 2D area. The deviation between the two data sets indicates the significance of 
the correction factor k in the equation for reconstructed void volume and the method’s 
efficacy in adjusting the 2D measurements for more accurate 3D volume estimates. 



Buildings 2024, 14, 3712 19 of 29 
 

 
Figure 14. Corrected volume (V-rec) and circle area of 2D voids vs. detected diameter. 

4. Conclusions 
This study explored the application of Python alongside MATLAB in analyzing air 

void systems in concrete, emphasizing Python’s growing role and potential in this field. 
By leveraging AI tools like ChatGPT, we demonstrated that Python can effectively stream-
line the code generation process for air void analysis, offering a practical alternative to 
MATLAB with comparable results. Our findings suggest that transitioning between pro-
gramming languages for such analyses can be achieved with minimal effort and high ac-
curacy. 

We also examined potential sources of discrepancies between the results generated 
by MATLAB and Python. Minor differences may arise due to variations in library imple-
mentations, numerical precision, or default settings across these platforms, especially in 
handling image processing and mathematical functions. While these discrepancies were 
minimal, they underscore the importance of understanding each tool’s unique character-
istics to ensure consistency in quantitative analysis. Additionally, this discussion high-
lights the need for further research into Python’s accuracy and reliability, especially when 
applied to complex civil engineering calculations traditionally dominated by MATLAB. 

Furthermore, this study extended 2D Python-generated air void parameters to 3D 
interpretations using CT scan data. While stereology and tomography are distinct meth-
ods, the consistency in void frequency and spherical diameter trends indicates that Py-
thon, supported by AI, is promising for future applications in 3D void analysis. However, 
further research is needed to fully realize AI’s potential in this domain. 

Key insights include the observed reduction in void sphericity with increasing area, 
and the development of a sphericity correction method to improve 3D volume estimations 
derived from 2D data. This correction method is especially valuable when 3D imaging 
resources are unavailable, enhancing the accuracy of material property assessments. 

In conclusion, integrating Python, aided by AI tools like ChatGPT, offers significant 
advantages in the advanced analysis of concrete air voids. Python’s accessibility, flexibil-
ity, and cost-effectiveness, combined with its robust AI and machine learning capabilities, 
make it an increasingly attractive option for civil engineering applications. As Python con-
tinues to expand in academic and professional contexts, it has the potential to transform 
air void analysis and other complex material studies, making advanced analyses more 
accessible and adaptable to a wide range of research and industry needs. 
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Appendix A 
Prompt for Code Development Using ChatGPT 
 First Step: Code Conversion 

• Authors> Please transfer the following MATLAB codes to one script of Python. 
(We pasted the MATLAB scripts, separately) 
 ChatGPT> Here’s the Python code equivalent of the given MATLAB code: 

(The Python code was generated in just 2 or 3 s, and it worked correctly, see 
Figure 2) 

This process continued for the two other scripts of MATLAB. Then, 
 Second Step: Combined Code Conversion 

• Authors> Please combine all these three codes into one compacted script. 
 ChatGPT> Certainly! Here’s the compacted script that combines all three 

Python code snippets. (However, the generated code was wrong) 
So, we returned to the chat (before pasting the reconstruct MATLAB script) and 

asked it to combine the first and second scripts. The generated code was missing parts 
and contained errors. 

• Authors> The paste solids and threshold should be asked before running. 
 ChatGPT> Certainly! Here’s the updated code that asks for the paste solids 

and threshold before running the basic analysis function. (Then, the code 
was generated, and we continued the chat to add or ignore minor issues) 

For the final steps of 2D analysis and giving the results of the void system, we asked 
it to complete the code by generating some graphs. 

• Authors> We need to graph the frequency of voids and cumulative voids vs. the 
void size. 
 ChatGPT> Certainly! Here’s an updated version of the code that includes 

plotting the frequency of voids and cumulative voids versus void size. 
The code was generated and worked. We just continued chatting about minor issues 

like graph color or axis captions. As mentioned earlier, we further asked it to complete the 
generated code for 3D analysis. Before fulfilling this step, we tried to check the quality of 
the code through the following questions: 

• Authors> What is this code? (And the Python code was pasted) 
 ChatGPT> This code appears to be a Python script for analyzing an image. 

Here is a breakdown of its functionality: The code imports necessary librar-
ies such as OpenCV (cv2), NumPy (np), scikit-image filters (skimage. filters), 
scikit-image measure (skimage. measure), os, PIL (Image), and matplotlib—
pyplot as plt. The function read_image takes a filename, folder path, crop-
ping flag, and threshold value as input. It reads the image using OpenCV 
(cv2.imread) and converts it to grayscale. If the cropping flag is set, the user 
can select a region of interest (ROI) in the image. The function returns the 
file path, original image, and grayscale image. The function analyze_image 
takes the file path, original image, grayscale image, paste/solids ratio, and 
custom threshold value as input. It analyzes the image by performing the 
following steps: Retrieving the image dimensions and resolution from the 
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image file using the PIL library calculating the resolution and size of each 
pixel in microns. If a threshold value is not provided, it uses Otsu’s method 
to find the threshold value for image binarization. Creating a binary image 
based on the threshold value. Labeling the connected components (regions) 
in the binary image. Measuring properties of the connected components us-
ing region props. Extracting relevant properties such as the components 
area, diameter, and radius. Calculating the void content as a percentage of 
the image area. Calculating the specific surface (surface area per unit vol-
ume). Computing the Powers spacing factor based on the paste/solid ratio 
and void content. Displaying the grayscale image using OpenCV. Printing 
the number of detected voids. Sorting the diameters and areas of voids in 
ascending order. Calculating the cumulative void content. Calculating the 
number of voids for different diameter ranges. Plotting the number of voids 
for different diameter ranges as a bar chart. Plotting the void diameters vs. 
cumulative void content. The main part of the code checks if the script is 
being run directly (not imported as a module) by using the __name__ vari-
able. It calls the read_image function to read and crop the image, sets the 
paste/solids ratio and threshold values, and then calls the analyze_image 
function to analyze the image. Overall, this script reads an image, performs 
image analysis, and generates plots to visualize the void content and void 
distribution based on the provided parameters. 

• Authors> Update the code for 3D stereological analysis and show the 2D graph 
for spherical diameter vs. the number of voids. 
 ChatGPT> To update the code for 3D stereological analysis and show a 2D 

graph for spherical diameter vs. the number of voids, you will need to make 
several modifications. Here’s an updated version of the code. (And it pre-
pared the script) 

• Authors> It is the cumulative graph. We need the frequency graph to show the 
number of voids regarding its spherical diameter. 
 ChatGPT> Apologies for the confusion. To create a frequency graph show-

ing the number of voids based on their spherical diameter, you’ll need to 
modify the code as follows. (The code was generated entirely, and we 
stopped at this point. Please see Appendix B). 

 Third Step: Code Generation without reference to Fonseca and Scherer’s MATLAB 
code: 
In the third step, the scope was to find out the capability of ChatGPT in code gener-

ation without the MATLAB script, we explained to it our request as follows: 
• Authors> Write a Python script that converts an original grayscale image with 

pixels going from 0 = black to 255 = white into a black-and-white image. Use 
Otsu’s method for thresholding so that each pixel in the converted image is either 
0 = black or 1 = white. Determine the threshold value between black and white in 
the original grayscale image between 0 and 255 and also enable the option for the 
user of the code to select and crop the area of the original image that should be 
analyzed or continue without selecting and crop the area of the original image. 
Then, for the black and white image, I need to know the air void content A of the 
sample (%). Then, calculate the specific surface of the air voids, and calculate spac-
ing factor, based on the methods and equation in Procedure C of ASTM 
C457/C457M-16. Please give the option to crop or not crop the image. 
 ChatGPT> Here’s a Python script that accomplishes your requirements us-

ing OpenCV for image processing and calculations: (Appendix C) 

Appendix B 
Python code converted (based on MATLAB and accumulated void volume plus 3D 

stereological parameters). 
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# Importing required libraries 

import cv2  # OpenCV library for image processing 

import numpy as np  # NumPy for numerical operations 

import skimage.filters as filters  # skimage.filters for image thresholding methods 

import skimage.measure as measure  # skimage.measure for region measurements (e.g., 

area, perimeter) 

import os  # os module to handle file paths 

from PIL import Image  # PIL for image handling and metadata extraction 

import matplotlib.pyplot as plt  # Matplotlib for plotting data and visualizations 

import sys  # sys library, though not used here, generally useful for system operations 

# Set to None to allow loading very large images 

Image.MAX_IMAGE_PIXELS = None  # Removes pixel limit to handle large images 

# Function to read an image, crop if needed, and convert to grayscale 

def read_image(filename, folder='', crop=False, paste_solids=0.5, thresh=None): 

    # Combine folder and filename into a full file path if a folder is specified 

    filepath = os.path.join(folder, filename) if folder else filename 

    # Load the image from the specified file path 

    img = cv2.imread(filepath) 

    # If cropping is enabled, allow the user to select a region of interest (ROI) 

    if crop: 

        roi = cv2.selectROI(img)  # Select ROI on the image 

        # Crop the image to the selected ROI area 

        img = img[int(roi[1]):int(roi[1] + roi[3]), int(roi[0]):int(roi[0] + roi[2])] 

    # Convert the image to grayscale 

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    # Return the file path, original image, and grayscale image 

    return filepath, img, gray 

# Function to analyze the voids in an image 

def analyze_image(filepath, img, gray, paste_solids, thresh=None): 

    # Define millimeters per inch constant for DPI conversion 

    mmpi = 25.4 

    # Open the image using PIL to access DPI information 

    with Image.open(filepath) as img: 

        xR, yR = img.info['dpi']  # Get horizontal and vertical DPI 

    # Calculate pixels per millimeter (ppmm) based on DPI 

    ppmm = xR.numerator / xR.denominator / mmpi 

    # Calculate pixel size in microns 

    pixsize = 25400 / xR.numerator 

    # Print resolution and pixel size details 

    print(f"The resolution of the image is {xR} pixels/inch or {ppmm} pixels/mm.") 

    print(f"The size of each pixel is {pixsize} microns.") 

    # If no threshold is provided, use Otsu's method to determine threshold 
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    if thresh is None: 

        threshold_value = filters.threshold_otsu(gray) 

    else: 

        threshold_value = thresh  # Use custom threshold if provided 

    # Create a binary image by thresholding the grayscale image 

    binary_image = gray > threshold_value 

    # Label the connected regions (voids) in the binary image 

    label_image = measure.label(binary_image) 

    # Get properties (e.g., area, perimeter) for each labeled region 

    props = measure.regionprops(label_image) 

    # Calculate the area (in pixels) for each void 

    area_pixels = [prop.area for prop in props] 

    # Calculate the diameter (in microns) for each void based on area 

    diameter_microns = [2 * np.sqrt(prop.area / np.pi) * 1000 / ppmm for prop in props] 

    # Convert diameter from microns to millimeters 

    diameter_mm = [d / 1000 for d in diameter_microns] 

    # Get image dimensions (height and width) 

    m, n = gray.shape 

    # Calculate the percentage of the image area that is voids 

    void_content = sum(area_pixels) / (m * n) * 100 

    # Print void content as a percentage 

    print(f"The void content is {void_content} percent.") 

    # Calculate the total perimeter of all voids 

    Ptot = sum([prop.perimeter for prop in props]) 

    # Calculate the total area of all voids 

    Atot = sum([prop.area for prop in props]) 

    # Calculate specific surface in pixels (surface area per unit volume) 

    specsurfpix = Ptot / Atot * 4 / np.pi 

    # Convert specific surface to mm^-1 by scaling with ppmm 

    specsurf = specsurfpix * ppmm 

    # Print the specific surface value 

    print(f"The specific surface is {specsurf} mm^-1.") 

    # Calculate p_A value based on paste solids and void content 

    p_A = paste_solids * (100 - void_content) / void_content 

    # Calculate the Powers spacing factor based on specific surface and p_A 

    if p_A < 4.342: 

        Pspacef = p_A / specsurf 

    else: 

        Pspacef = (3 / specsurf) * (1.4 * (1 + p_A) ** (1 / 3) - 1) 

    # Print the Powers spacing factor 

    print(f"The Powers spacing factor is {Pspacef} mm.") 

    plt.figure(figsize=(8, 6)) # Plot various analyses of the image and voids 
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    # Display the grayscale image 

    plt.subplot(2, 2, 1) 

    plt.imshow(gray, cmap='gray') 

    plt.axis('off')  # Turn off axis 

    plt.title('Grayscale Image') 

    # Plot a histogram of void diameters 

    plt.subplot(2, 2, 2) 

    plt.hist(diameter_microns, bins=np.arange(0, 500, 10), color='red') 

    plt.xlim(0, 2000) 

    plt.xlabel('Void Diameter (microns)') 

    plt.ylabel('Number of Voids') 

    plt.title('Void Diameter vs Number of Voids') 

    # Plot cumulative void content as a function of void diameter 

    plt.subplot(2, 2, 3) 

    diameters_sorted, areas_sorted = zip(*sorted(zip(diameter_microns, area_pixels))) 

    cumulative_void_content = np.cumsum(areas_sorted) / (m * n) * 100 

    plt.plot(diameters_sorted, cumulative_void_content) 

    plt.xlim(0, 6000) 

    plt.xlabel('Void Diameter (microns)') 

    plt.ylabel('Cumulative Void Content (%)') 

    plt.title('Cumulative Void Content vs Void Diameter') 

    # Scatter plot of spherical diameter vs number of voids 

    plt.subplot(2, 2, 4) 

    num_voids = len(area_pixels) 

    plt.scatter(diameter_mm, range(num_voids), color='blue') 

    plt.xlabel('Spherical Diameter (mm)') 

    plt.ylabel('Number of Detected Voids') 

    plt.title('Spherical Diameter vs Number of Detected Voids') 

    # Adjust layout to avoid overlapping 

    plt.tight_layout() 

    plt.show() 

if __name__ == '__main__': # Main block to execute the analysis 

    # Read the image file and obtain grayscale version 

    filepath, img, gray = read_image('4AE.tif', crop=False) 

        paste_solids = 0.266 # Set paste solids content 

    custom_threshold = None     # Set custom threshold (None uses default threshold 

method) 

    analyze_image(filepath, img, gray, paste_solids, custom_threshold)    # Analyze the 

image using the defined function 
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Appendix C. Python Code Generated from Prompt Only 
import cv2 

import numpy as np 

import matplotlib.pyplot as plt  # For displaying images with Matplotlib 

# Define the function for Otsu's thresholding 

def otsu_threshold(img): 

    # Apply Otsu's thresholding to binarize the image 

    _, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 

    return thresh 

# Define the function to calculate air void content 

def get_air_void_content(img): 

    # Count white pixels (voids) in the thresholded image 

    white_pixels = np.count_nonzero(img == 255) 

    total_pixels = img.shape[0] * img.shape[1] 

    air_void_content = (white_pixels / total_pixels) * 100 

    return air_void_content 

# Define the function to calculate contour properties 

def get_contours_properties(thresh): 

    # Find contours in the thresholded image 

    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

    total_area = 0 

    total_length = 0 

    for contour in contours: 

        total_area += cv2.contourArea(contour)  # Sum of areas of contours 

        total_length += cv2.arcLength(contour, True)  # Sum of perimeter lengths 

    # Calculate the Powers spacing factor and specific surface area 

    power_spacing_factor = total_length / total_area 

    specific_surface_area = total_area / np.count_nonzero(thresh == 255) 

    return power_spacing_factor, specific_surface_area 

# Main function to process the image 

def main(): 

    # Prompt user to enter the path to the image 

    image_path = input("Enter the path to the image: ") 

    img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)  # Load image in grayscale 

    crop_option = input("Would you like to crop the image? (yes/no): ").lower() 

    if crop_option == 'yes': 

        print("Please select the area to crop. Press Enter to confirm the selection.") 

        roi = cv2.selectROI("Select ROI", img)  # Allow user to select region of 

interest 

        cv2.destroyAllWindows() 

        img = img[int(roi[1]):int(roi[1] + roi[3]), int(roi[0]):int(roi[0] + roi[2])]  

# Crop the image to ROI 
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    # Apply Otsu's threshold to binarize the image 

    thresh = otsu_threshold(img) 

    # Display thresholded image using Matplotlib 

    plt.imshow(thresh, cmap='gray') 

    plt.title("Thresholded Image") 

    plt.axis('off') 

    plt.show() 

    # Calculate air void content and contour properties 

    air_void_content = get_air_void_content(thresh) 

    power_spacing_factor, specific_surface_area = get_contours_properties(thresh) 

    # Print results 

    print(f"Air Void Content (%): {air_void_content:.2f}") 

    print(f"Power Spacing Factor (L): {power_spacing_factor:.2f} mm") 

    print(f"Specific Surface Area: {specific_surface_area:.2f} mm^-1") 

# Ensure main function runs if script is executed 

if __name__ == "__main__": 

    main() 

Appendix D. Python Script Developed for Air Void Distribution 
# Importing necessary libraries 

import cv2  # OpenCV library for image processing 

import numpy as np  # NumPy for numerical operations 

import matplotlib.pyplot as plt  # Matplotlib for plotting 

from scipy.ndimage import label  # Scipy for labeling connected components 

# Function to compute a histogram of void diameters in a binary image 

def compute_2d_diameter_histogram(image, bin_width=1): 

    # Label each connected component (void) in the binary image 

    labeled_array, num_features = label( 

        image)  # labeled_array assigns a unique number to each component, num_features 

gives the count of components 

    diameters = []  # List to store calculated diameters of each void 

    # Iterate through each labeled component (void) 

    for i in range(1, num_features + 1): 

        # Create a binary mask for the current component 

        component = (labeled_array == i).astype(np.uint8)  # Binary mask of the 

component 

        # Calculate the area (number of pixels) of the component 

        area = np.sum(component)  # Area in terms of pixels 

        # Calculate the radius and then the diameter, assuming a circular shape 

        radius = np.sqrt(area / np.pi)  # Radius from area using formula for a circle 

        diameter = 2 * radius  # Diameter as twice the radius 

        diameters.append(diameter)  # Add diameter to the list 
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    # Compute histogram of diameters, using bins based on the specified bin_width 

    hist, bin_edges = np.histogram(diameters, bins=np.arange(0, max(diameters) + 

bin_width, bin_width)) 

    # Return histogram values and bin edges (excluding last edge, as hist aligns with 

bin centers) 

    return hist, bin_edges[:-1] 

# Function to calculate number density per unit volume (Nv) based on the histogram 

def calculate_nv(hist, bin_centers, bin_width): 

    num_classes = len(bin_centers)  # Number of diameter classes (bins) 

    nv = np.zeros_like(hist, dtype=float)  # Initialize Nv array with zeros, same size 

as hist 

    # Loop through each bin (diameter class) 

    for j in range(num_classes): 

        sum_term = 0  # Sum term for calculating Nv for the j-th bin 

        # Inner loop accumulates the terms for bins greater than or equal to the 

current j-th bin 

        for i in range(j, num_classes): 

            # Term is the square root of the difference in diameter squared 

            term = np.sqrt((bin_centers[i] ** 2 - bin_centers[j] ** 2)) 

            sum_term += hist[i] * term  # Accumulate weighted count of voids 

        # Calculate Nv for the j-th bin by dividing sum_term by bin_width 

        nv[j] = sum_term / bin_width 

    return nv  # Return the array of Nv values 

# Request user to input the path to the image file 

image_path = input("Enter the path to the 2D image (e.g., '4AE.tif'): ") 

# Read the image in grayscale mode 

img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) 

# Apply a binary threshold to create a binary (black and white) image 

_, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)  # Threshold value is 

127, creating a binary mask 

# Define bin width for the histogram (in pixels) 

bin_width = 1  # Unit in pixels 

# Compute the 2D diameter histogram of air voids in the binary image 

hist, bin_centers = compute_2d_diameter_histogram(binary_img, bin_width) 

# Calculate number density (Nv) for each diameter bin 

nv_result = calculate_nv(hist, bin_centers, bin_width) 

# Plot the results 

plt.figure(figsize=(10, 6))  # Create a figure with specified size 

# Plot the Nv values as a bar chart with bin_centers as x-axis (diameter) 

plt.bar(bin_centers, nv_result, width=bin_width, align='center', alpha=0.7) 

plt.xlabel('Computed Sphere Diameter [pixels]')  # Label for x-axis 

plt.ylabel('Number Density of Air Voids per unit volume')  # Label for y-axis 
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plt.title('Air Void Size Distribution (Diameter in Pixels)')  # Title of the plot 

plt.grid(True)  # Enable grid for easier viewing 

plt.show()  # Display the plot 
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