

Buildings 2024, 14, 3712. https://doi.org/10.3390/buildings14123712 www.mdpi.com/journal/buildings

Article

Analysis of Concrete Air Voids: Comparing
OpenAI-Generated Python Code with MATLAB Scripts and
Enhancing 2D Image Processing Using 3D CT Scan Data
Iman Asadi 1,2,*, Andrei Shpak 3 and Stefan Jacobsen 4

1 Td-Lab Sustainable Mineral Resources, Department for Knowledge and Communication Management,
Faculty of Business and Globalization, University for Continuing Education Krems,
3500 Krems an der Donau, Austria

2 Built Environment and Engineering Program (BEE), College of Sport, Health, and Engineering (CoSHE),
Victoria University, Melbourne, VIC 8001, Australia

3 Department of Architecture, Building Materials and Structures, SINTEF Community, 7034 Trondheim,
Norway; andrei.shpak@sintef.no

4 Department of Structural Engineering, Norwegian University of Science and Technology,
7491 Trondheim, Norway; stefan.jacobsen@ntnu.no

* Correspondence: iman.asadi@donau-uni.ac.at or iman.asadi@vu.edu.au

Abstract: The air void system in concrete significantly affects its mechanical, thermal, and frost du-
rability properties. This study explored the use of ChatGPT, an AI tool, to generate Python code for
analyzing air void parameters in hardened concrete, such as total air void content (A), specific sur-
face (α), and air void spacing factor (L). Initially, Python scripts were created by requesting
ChatGPT-3.5 to convert MATLAB scripts developed by Fonseca and Scherer in 2015. The results
from Python closely matched those from MATLAB when applied to polished sections of seven dif-
ferent concrete mixes, demonstrating ChatGPT’s effectiveness in code conversion. However, gener-
ating accurate code without referencing the original MATLAB scripts required detailed prompts,
highlighting the need for a strong understanding of the test method. Finally, a Python script was
applied to modify void reconstruction in 2D images into 3D by stereology, and comparing this with
(3D) CT scanner results, showing comparable results.

Keywords: fly ash; air-entrained concrete; python; cumulative air voids; MATLAB

1. Introduction
Concrete contains both intentional and unintentional air voids, each playing a dis-

tinct role in its overall performance. Intentional air voids are introduced during the mix-
ing process, often through the addition of air-entraining agents, to improve the concrete’s
resistance to freeze–thaw cycles [1–3]. These air voids form a network of tiny, uniformly
distributed pores, which act as pressure relief zones during freezing. By providing space
for ice expansion, these voids reduce internal stress, thereby enhancing durability under
fluctuating temperatures [4,5]. In contrast, unintentional air voids result from improper
mixing, compaction, or placement and may vary in size and distribution. These irregular
voids can weaken the concrete matrix and reduce its overall strength and durability. The
distribution, size, and quantity of both intentional and unintentional air voids are crucial
in determining the material’s performance, especially in harsh environments where
freeze–thaw durability is critical. Accurately quantifying these parameters is therefore es-
sential in ensuring concrete’s long-term structural integrity and durability [6].

The air void system in concrete is directly assessed by the air void content (%), the
specific surface area of air voids (mm−1), and Powers’ spacing factor (mm) [7,8]. To achieve
high frost durability in concrete, a low average air void spacing factor is desirable,

Citation: Asadi, I.; Shpak, A.;

Jacobsen, S. Analysis of Concrete Air

Voids: Comparing

OpenAI-Generated Python Code

with MATLAB Scripts and

Enhancing 2D Image Processing

Using 3D CT Scan Data. Buildings

2024, 14, 3712. https://doi.org/

10.3390/buildings14123712

Academic Editor: Grzegorz Ludwik

Golewski

Received: 15 October 2024

Revised: 10 November 2024

Accepted: 14 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Buildings 2024, 14, 3712 2 of 29

typically less than 0.20 mm. This is because a smaller spacing factor means that the air
voids are more evenly distributed and closer together, allowing freezing water to expand
into the voids more easily, which helps prevent damage from frost [9].

Image analysis, either in 2D on polished sections or 3D using X-ray tomography, is
the primary tool for air void analysis in hardened concrete according to ASTM C457 and
its corresponding European version EN 480 [10,11]. Reviews of spacing models and meas-
urements in 2D and 3D based on polished sections and tomography have been given by
many researchers, see for example [12–15]. Snyder et al. [13] highlighted that understand-
ing the durability of concrete against freeze–thaw cycles requires a detailed analysis of its
air void system. They noted that studying the small air bubbles in concrete typically in-
volves a multi-step process: sample preparation, identification of air voids, detailed anal-
ysis of their size and distribution, and assessment of the spacing between them. Each of
these steps is supported by research across different engineering disciplines, but civil en-
gineering researchers often need to consult many sources to gather a complete picture.
Snyder et al.’s work aims to bring all these aspects together, helping researchers to see the
connections, analyze the air void structure effectively, and understand the basis of stand-
ard tests like ASTM C 457. Murotani et al. [14] analyzed the air voids in concrete as a 2D
spatial point process. They found that the characteristic distance between voids, deter-
mined by the nearest neighbor distance function, closely aligned with the traditional spac-
ing factor. By comparing this with a cubic lattice model of air voids (The cubic lattice
model of air voids is a conceptual and mathematical model used to represent the spatial
distribution of air voids in concrete or other porous materials, and in this model, the air
voids are assumed to be regularly spaced and arranged in a three-dimensional cubic lat-
tice structure), they showed that the characteristic distance could serve as an alternative
quality parameter. They also introduced a simulation technique to estimate this distance,
accounting for the random distribution of voids in cement paste. The results supported
the use of point process statistics for evaluating the air void distribution in concrete.

Program coding (computing) plays a vital role in the image analysis of concrete
voids, as it does in most engineering fields. It automates the detection and examination of
voids, making the process more efficient compared to manual methods. Automated algo-
rithms minimize human error and ensure consistent analysis across different samples and
conditions. Through coding, programs can detect and quantify air voids within images,
providing detailed metrics such as size, shape, and distribution. The coding also enables
image segmentation to isolate voids from the surrounding concrete matrix and calculates
statistical properties like void content, specific surface area, and spacing factors. Overall,
program coding enhances the accuracy, efficiency, and depth of analysis, facilitating ad-
vanced visualization and comprehensive quality control.

The trend of using open-source languages like Python is increasing due to their ac-
cessibility, versatility, rich ecosystem, ease of learning, strong community support, indus-
try adoption, educational benefits, and the ability to provide custom solutions. These fac-
tors collectively make open-source languages an attractive choice for a wide range of ap-
plications and users. Besides increasing the adoption of open-source programming,
OpenAI is also a new topic in all research fields. ChatGPT (launched on 30 November
2022) is a newly trained generic AI tool capable of prompting responses and follow-up
questions [16]. In February 2023, an article in Nature revealed that roughly 80% of the
surveyed researchers acknowledged utilizing ChatGPT or similar AI technologies at least
once [17].

In this study, Python was specifically chosen because it offers comprehensive image-
processing libraries (e.g., OpenCV) and scientific tools (e.g., NumPy, SciPy) that are highly
effective for air void analysis in concrete. Python’s open-source nature also makes it ac-
cessible to a wider audience, allowing researchers without access to MATLAB to replicate
and build on our findings. Additionally, OpenAI’s ChatGPT, as a tool for Python code
generation, enables efficient code development and iteration, making it an asset for rap-
idly advancing research.

Buildings 2024, 14, 3712 3 of 29

The primary motivations for using ChatGPT varied among respondents. The most
common reasons cited included utilizing ChatGPT or similar AI technologies for leisure
and entertainment purposes, brainstorming in research endeavors, assistance in coding
tasks, aid in creating presentations, preparing literature reviews, drafting research manu-
scripts, generating visual content, facilitating grant applications, utilizing within scientific
research engines, and supporting coursework writing, in that order. Also, many research-
ers have explored ChatGPT’s capabilities in different fields such as public health [18], ed-
ucation [19], global warming [20], psychiatry [21], and the significant impact of its use in
technological research [22]. Despite its advantages in several sections, such as its speed
for code generation and giving hints for code development, the accuracy of the algorithm
is a controversial issue.

A study [23] examined ChatGPT’s effectiveness in solving coding problems accu-
rately and efficiently. By testing it with a range of problems from LeetCode, researchers
found that ChatGPT achieved correct solutions in about 72% of cases. While it excelled at
handling structured tasks, it faced challenges in revising code based on feedback, high-
lighting a need for better debugging capabilities. Another study [24] explored how AI can
improve code generation by using a “self-collaboration” framework, where an AI like
ChatGPT takes on different roles—analyst, coder, and tester—to simulate teamwork.
They reported that this team-based approach helps AI handle difficult coding projects
better than if it worked alone, boosting success rates by around 30–47%. Liu et al. [25]
evaluated ChatGPT’s ability to generate and fix code across various languages, focusing
on correctness, complexity, and security. ChatGPT performed better on older problems
but struggled with self-correction, and fixing errors can increase code complexity. Though
security issues arose, ChatGPT addressed most vulnerabilities with guidance, pointing to
both its strengths and areas for improvement in coding tasks. However, an investigation
by Feng et al. [26] reported that ChatGPT is mainly used for languages like Python and
JavaScript, but surprisingly, most people feel fearful about using it, rather than happy or
excited.

Overall, this work evaluates the potential of OpenAI and Python-based coding ap-
proaches to accelerate and improve air void image analysis in hardened concrete. In our
study, we utilized ChatGPT’s capabilities for code conversion and generation, building
upon the experimental results and MATLAB code developed by Fonseca and Scherer.
This allowed us to explore how ChatGPT can assist in converting and generating code
within the context of our research, providing valuable insights into the evolving field of
AI-driven code generation and enhancing the analysis process in concrete research. Fi-
nally we compared 3D CT scans of air voids with 3D void size distributions calculated
from 2D polished sections using stereology.

2. Materials and Methods
As previously mentioned, the main objective of this study is to develop and assess

Python-based code for analyzing air void distributions in concrete, with assistance from
OpenAI’s ChatGPT for code generation. To fulfill this objective, our methodology consists
of the following steps (Figure 1 presents the schematic flowchart of the study):
A. Development of Python Scripts: We initially converted three existing MATLAB

scripts (Fonseca and Scherer [27] (contains three separate processes: (1) reading the
image and converting it; (2) basic image analysis based on input from the image con-
version and volumetric paste/aggregate ratio of the concrete mix (the scanning can
only detect air voids but cannot measure aggregate volume fraction, so the latter is
an important input in the analysis); and (3) the code plots 2D void distributions and
reconstructs the 3D spheres))—responsible for scanning, calculation, and statistical
analysis of air void distributions—into Python versions. This conversion laid the
groundwork for a full comparison between MATLAB and Python in performing the
analysis.

Buildings 2024, 14, 3712 4 of 29

B. Compact Code Generation via ChatGPT: Using ChatGPT, we aimed to create a
streamlined and optimized Python code by merging and compacting the three Py-
thon scripts into a single, efficient script. ChatGPT was prompted iteratively to refine
the code, aiming for faster processing and easier implementation.

C. Evaluation of ChatGPT’s Code Generation Capability: We evaluated ChatGPT’s
ability to generate accurate and functional Python code based solely on prompt guid-
ance, without referencing the original MATLAB scripts. This assessment highlights
ChatGPT’s potential for automating code conversion in scientific applications.

D. Concrete Mix Data Source: The concrete mix designs and hardened air void data
used in this study were sourced from previous research [28,29]. These data served as
the foundation for testing and validating the Python code developed.

E. Performance Assessment of Python vs. MATLAB: To assess the effectiveness of the
Python code, we compared the air void analysis results produced by Python with
those obtained using the original MATLAB scripts by Fonseca and Scherer [27]. This
comparison allowed us to determine the accuracy and reliability of the Python-gen-
erated results.

F. 3D Reconstruction Enhancement: Lastly, we developed a Python script to compare
the stereological results with the CT scanner data. This script introduced a correction
factor for improved 3D reconstruction, enhancing the accuracy of air void represen-
tation.

1. Cast & Cure of 7 Samples (Table1)
2. Pre-Processing the Samples for Image Acquisition
3. Using Captured Images as Input Data in MATLAB

and Python Codes

Converted 3
Existing MATLAB
Code (Fonseca and
Scherer) to Python

by ChatGPT

Generated One
Compacted Script of
Python (from Stage

A) by ChatGPT

1. Comparing the Results of Stage B with A
2. Comparing the Results of Stage C with A

Generated One
Compacted Script of
Python by ChatGPT

(Only Prompt
Guidance)

A B C

AI Capability Evaluation

D

E

1. 3D Analysis by CT Scanner
2. Stereological Analysis

3. Developing Correction factor

F

Figure 1. The flowchart of this study.

2.1. Python Script for Air Void Analysis Based on Fonseca and Scherer [27], Own Coding, and
ChatGPT

As mentioned, in the first step, the MATLAB scripts were copied to ChatGPT for the
conversion of each step into the Python script. After that, we asked ChatGPT to combine
these three scripts into a single Python script. During the conversion process, some errors
occurred, so we copied the errors into the chat section and requested the corrections. After
generating a correct version of code, we went a step further and asked ChatGPT to create
a graph showing the cumulative measured voids versus the size of voids. We then re-
quested a stereological analysis to produce a 3D interpretation of the spherical diameter
of voids versus the number of detected voids based on the 2D image. Finally, we prepared
detailed prompts for ChatGPT to generate code for image analysis to detect the air void
system (Appendix A).

Buildings 2024, 14, 3712 5 of 29

2.2. Air Void Data
Previous studies have shown that fly ash concrete requires more air-entraining agent

(AEA) due to unburned carbon, which reduces the effectiveness of the AEA [30,31].
Achieving frost-resistant fly ash (FA) concrete with a stable air void system remains chal-
lenging because of the variable carbon content in fly ash and other factors like cenospheres
and plerospheres that adsorb the AEA [32]. Common practices of increasing AEA dosage
do not account for these variations, leading to inconsistent air entrainment and necessitat-
ing trial mixing for quality control. Here seven hardened high-volume fly ash concrete
mixtures with different mix proportion with optimized type of AEA and order of adding
AEA and a co-polymer superplasticizer (SP) [28,29] were used.

Table 1 presents the composition used in the analysis, with the mix code specifying
the water-to-binder ratio (w/b), fly ash-to-binder ratio (FA/b), and whether an air-entrain-
ing agent (AEA) was used. For instance, “0.40-33 AEA (ID: 4AE)“ indicates a w/b ratio of
0.40, a FA/b ratio of 0.33, and air-entrained concrete. On the other hand, “0.40-33 0 AEA
(ID: 4NAE)” represents a code for a non-air-entrained counterpart. The choice of concrete
mixes was based on the standard requirements outlined in [33] for exposure class XF4 (in-
volving high saturation, seawater, and de-icing agents). However, some deviations from
the standard were made: the fly ash-to-cement ratio was increased to 0.52, exceeding the
maximum limit of 0.33 specified by the standard; the silica fume content in the binder was
set at 4%, which is below the required minimum of 6%; and the effective water-to-cement
ratio was higher than 0.45 [28].

Table 1. Composition of concrete mixes (kg/m3).

 Mix Code
0.4,

33%FA,
AEA

0.4,
33%FA,
0 AEA

0.45,
33%FA,

AEA

0.45,
33%FA,
0 AEA

0.293,
33%FA,

AEA

0.293,
33%FA,
0 AEA

0.45,
0%FA,
AEA

Constituents
Mix ID 4AE 4NAE 45AE 45NAE 293AE 293NAE 45AE0FA

Norcem Anleggsement FA 256.2 253.7 240.8 238.1 298.3 293.7 328.8
Elkem Silica Fume 13.9 13.8 13.1 12.9 16.2 16.0 13.7
Norcem Fly Ash 78.5 77.7 73.7 72.9 91.3 89.9 0.0
Free water 139.4 138.0 147.5 145.8 118.9 117.1 154.1
Absorbed water 6.3 6.5 6.3 6.6 6.2 6.7 6.3
Årdal 0/8 mm, A-4956 1062.0 1104.6 1053.6 1104.6 1053.6 1121.5 1053.6
Total moisture (free water) 36.1 34.2 37.9 39.8 37.9 38.1 37.9
Årdal 8/16 mm, A-4751 774.8 805.9 768.6 805.9 768.6 818.2 768.6
Total moisture (free water) 3.9 4.0 4.6 4.8 5.4 5.7 7.7
Mapei Dynamon SX-23 3.0 3.1 2.4 2.8 5.9 6.5 2.7
Incl. liquid part (free water) 2.3 2.4 1.8 2.2 4.6 5.0 2.1
Mapeair 25 1:9 1.5 0.0 1.6 0.0 2.4 0.0 0.7
Incl. liquid part (free water) 1.5 0.0 1.6 0.0 2.4 0.0 0.7
Paste volume, m3 0.27 0.26 0.27 0.26 0.27 0.26 0.27

We performed image analysis (IMA) on the polished sections of hardened specimens,
each measuring 100 by 100 mm2, sawn out from a 150 mm cube, following the procedures
outlined in [27] and ASTM C457M-16 [10]. Grinding was performed on a Struers

Buildings 2024, 14, 3712 6 of 29

Tegramin-30 using Akasel Aka-Piatto diamond discs with grits of 220, 500, and 1200, ap-
plying a consistent pressure of 70-100 N until a reflective surface with well-defined air
voids was achieved. The ground surface was then coated three times with a black marker
(Edding 850). Air voids were filled with BaSO4 powder (particle size 1–4 μm) using finger
tapping and pressing. Excess powder was removed first with a straight-edged plastic
ruler and then with a slightly dampened finger. To prevent distortion of air void meas-
urements, cracks and imperfections in the aggregates were painted black under a micro-
scope using a fine-tipped marker. The prepared samples were placed on transparent foil
and scanned at 3200 ppi, 16-bit grayscale, using an Epson Perfection V600 Photo scanner.
The images were analyzed with a MATLAB script developed by Fonseca [27]. Figure 2
displays the image of each sample used as input for the Python or MATLAB codes.

The performance of the Python code for air void analysis—converted from MATLAB
by ChatGPT (Steps 1 and 2, Appendix B) and generated by ChatGPT (Step 3, Appendix
C)—was compared with the original MATLAB results to assess both the accuracy of the
Python scripts and the capabilities of ChatGPT. Regarding the 3D analysis, the output of
one of the samples (4AE) was compared with the 3D analysis of this sample using a Zeiss
Metrotom 1500 CT scanner with VGStudio Max 3.0 software for image analysis [15]. It
should be noted that stereology (stereology is a scientific method used to quantify three-
dimensional (3D) structures based on two-dimensional (2D) images or sections) and to-
mography (tomography is an imaging technique used to create detailed cross-sectional
(slice) images of an object or body by analyzing the data collected from multiple angles)
are entirely different; however, they can be comparable in characteristics like the trend of
void frequency and spherical diameter.

CT (computed tomography) is an imaging technique that uses X-rays to create de-
tailed cross-sectional images (slices) of an object or body. Multiple 2D images are taken
from different angles around the object, and these are reconstructed to form a 3D repre-
sentation. CT provides direct visual information about the internal structure, allowing for
the identification of various tissues, organs, or materials based on their densities. How-
ever, stereology is a method used to quantify 3D structures based on 2D images, such as
microscope slides. It uses mathematical and statistical techniques to estimate volume, sur-
face area, number, and other characteristics from these 2D sections. While CT offers high-
resolution images for direct visual analysis, stereology enables quantitative 3D measure-
ments from 2D sections through statistical methods.

4AE 45AE 293AE

4NAE 45NAE 293NAE

Buildings 2024, 14, 3712 7 of 29

45AE0FA

Figure 2. The scanned image as an input for MATLAB and Python.

3. Results
3.1. Conversion of MATLAB to Python
3.1.1. Converted Code

The void systems in the hardened concrete of the seven mixes in Table 1 (Figure 2)
were analyzed using the converted code and combined converted code. To validate the
accuracy of our Python code, we conducted a thorough comparison with the results gen-
erated by the original MATLAB code. Figure 3 presents this comparative analysis by plot-
ting the values calculated by MATLAB on the x-axis against those calculated by Python
on the y-axis for each parameter. A strong correlation was observed, with all three plots
demonstrating an R2 value of 1.00. This correlation indicates that not only does the Python
code replicate MATLAB’s functionality but it does so with high precision across multiple
samples and parameters.

Each of the three air void parameters analyzed—total air void content, specific sur-
face area, and spacing factor—play a critical role in assessing the durability and freeze–
thaw resistance of concrete. Total air void content is essential as it indicates the overall
volume of air within the concrete, while specific surface area and spacing factor provide
insights into the distribution of these voids, which can impact durability. The ability of
our Python code to accurately reproduce these parameters underscores its capability to
perform robust and comprehensive air void analyses, like MATLAB.

One of the notable benefits of using Python in this study is that it is an open-source
alternative to MATLAB, making it more accessible for researchers and practitioners in
various settings who may not have access to MATLAB. Python’s ecosystem, particularly
libraries like OpenCV, NumPy, and SciPy, proved to be efficient in the image-processing
tasks essential to this analysis.

Despite the high correlation coefficients observed, it is essential to note the slight
computational differences between MATLAB and Python, which may contribute to minor
variances in output under certain conditions. These differences are due to intrinsic varia-
tions in the image-processing functions and floating-point arithmetic between the two
programming environments. However, our analysis showed that these differences are
negligible for practical purposes, with the Python results aligning well within the accepta-
ble tolerance limits for air void analysis in concrete. In summary, each tool offers distinct
advantages and limitations that impact the effectiveness of data analysis and usability in
the field.
1. Strengths and Limitations of Python: Python is an open-source language, meaning

it is freely available and benefits from a large, collaborative community. Python of-
fers extensive libraries for image processing (like OpenCV and skimage) and data
analysis, allowing for flexible and customizable code development. However, Py-
thon’s flexibility comes with limitations as it requires more effort to configure and
integrate compared to MATLAB’s built-in functions.

2. Strengths and Limitations of MATLAB: MATLAB is widely recognized for its pow-
erful image-processing and data analysis capabilities and is commonly used in engi-
neering fields. However, MATLAB is a commercial software, which can limit

Buildings 2024, 14, 3712 8 of 29

accessibility due to licensing costs. Additionally, MATLAB’s proprietary nature may
reduce its flexibility for some applications compared to the open-source Python en-
vironment.

3. Comparative Performance in This Study: When comparing the specific outputs for
the air void analysis, both tools provided comparable results in terms of accuracy, as
shown by the high correlation coefficients in our analysis. However, in terms of code
length and efficiency, Python, especially with the assistance of ChatGPT for code
compaction, allowed us to create a streamlined version that was easier to modify for
further testing (Section 3.1.2.).

4. Limitations of Methodologies Employed: Both Python and MATLAB scripts rely on
image-based analysis techniques, which are inherently limited by the resolution and
quality of the images used. Any inaccuracies in image capture (e.g., low resolution,
poor contrast) can affect the results.

air void content (%) specific surface area (mm−1)

spacing factor (mm)

Figure 3. The results of MATLAB vs. Python based on converted code by ChatGPT.

3.1.2. Combined Converted Code
The combined converted code, as presented in Appendix B, merges all three steps of

the MATLAB process into a single Python script. It should be noted that the achieved
images (Figure 2) were inserted into the codes, and the calculation is based on the binary
images (Figure 4). Figure 5 shows the frequency of the number of detected voids, and
Figure 6 illustrates the cumulative void volume vs. the diameter. The graphs obtained for
both sets of the number of voids and void content are identical to the results reported by
MATLAB scripts analyzing the same seven polished sections, as documented in [29].
Hence, ChatGPT was able to translate the well-functioning MATLAB code into a compact
Python script and make it work in a similar way, giving the same results with relatively
little effort.

Buildings 2024, 14, 3712 9 of 29

In summary, the analysis confirms that the newly developed Python code, supported
by ChatGPT in converting the code components, performs air void analysis with a high
level of accuracy comparable to the established MATLAB code. This opens new avenues
for using Python-based tools in concrete research, offering a cost-effective, flexible, and
widely accessible solution for analyzing the air void structure in concrete.

4AE 45AE 293AE

4NAE 45NAE 293NAE

45AE0FA

Figure 4. The binary image of samples.

Buildings 2024, 14, 3712 10 of 29

4AE 45AE

293AE 4NAE

45NAE 293NAE

45AE0FA

Figure 5. The number of voids vs. void diameter (by 2D polished sections).

Buildings 2024, 14, 3712 11 of 29

4AE 45AE

293AE 4NAE

45NAE 293NAE

45AE0FA

Figure 6. The cumulative void volumes vs. void diameter (by 2D polished sections).

Buildings 2024, 14, 3712 12 of 29

3.2. Generation of Python by Prompt
Figure 7 shows a similar comparison to that in Figure 3 but this time between the air

void analysis computed by the original MATLAB code (x-axis) and the air void analysis
by the combined converted Python code (Appendix B), as well as the generated code pro-
duced without reference to Fonseca and Scherer’s MATLAB code (Appendix C). A closer
examination reveals some correlation in total air void content between the two, though it
is weaker than in Figure 3, with notable discrepancies, especially in specific surface area
and Powers’ spacing factor, when comparing the ChatGPT-generated Python code to the
original MATLAB code. These discrepancies indicate significant errors in the generated
code, underscoring the limitations and challenges associated with relying solely on AI-
generated solutions for complex computational tasks. Further refinement and validation
of the generated code are essential to resolve these discrepancies and ensure reliable, ac-
curate computational results.

In Table 2, we compare the two codes presented in Appendices B and C. Overall
differences in approach and complexity between the two scripts can lead to variations in
the computed metrics, especially in specific surface area and Powers’ spacing factor, as
shown in the comparison. ChatGPT 3.5 requires more detailed prompts to produce results
comparable to the MATLAB code of Fonseca and Scherer. Both codes (combined con-
verted and generated) yield similar results for air void content in most samples, suggest-
ing that both methods effectively detect and quantify void spaces within the images. How-
ever, for specific surface area and spacing factor, there are noticeable differences, indicat-
ing the need for highly detailed prompts based on the ASTM C457 equations.

Table 2. Combined converted code from MATLAB vs. generated code by prompts.

Aspect Combined Converted Generated
Library Dependencies OpenCV, NumPy, scikit-image, Matplotlib OpenCV, NumPy

Functionality Comprehensive analysis and visualization
Basic image thresholding and contour
analysis

Image Processing Extensive image analysis including thresholding
and measurement

Basic image processing such as
thresholding
and contour finding

Input Handling Loads image file, performs optional cropping

Image Display Matplotlib (plt) for display
OpenCV (cv2) for displaying
thresholded image

Dependency Uses skimage for Otsu’s method Only relies on OpenCV and NumPy
Thresholding
Application Utilizes Otsu’s method for thresholding

User Interaction Uses input () for user input Uses input () and OpenCV GUI for
cropping

Output Presentation Generates histograms and scatter plots for visual
representation

Prints metrics related to contours found
in the image

Computational
Complexity Higher Lower

Buildings 2024, 14, 3712 13 of 29

Figure 7. The results of the air void analysis by MATLAB vs. by Python combined converted and
generated by ChatGPT (Appendices A and B): (a) air void content (%), (b) specific surface area
(mm−1), and (c) spacing factor (mm).

3.3. Computational Tomography vs. Stereology

Buildings 2024, 14, 3712 14 of 29

3.3.1. CT Scanner
In assessing the precision of 3D image reconstruction, a comparison was made be-

tween the frequency and diameters of voids derived from the CT scanning results [15].
Figure 8 illustrates the CT scanner output and the frequency of air voids detected based
on their equivalent diameter for sample 4AE. A total of 652,809 voids were identified with
equivalent diameters ranging from 1 to 300 μm, 90,094 voids were detected with diame-
ters between 300 and 1000 μm, and 1050 voids were found with diameters between 1000
and 2000 μm. Figure 9 also shows the cumulative void volume as a function of void di-
ameter, determined through 3D analysis using the CT scanner. This plot includes one scan
of the large concrete slice (20 mm by 100 mm by 100 mm) used for image analysis and
nine scans of individual small cubes sawn from the large slice [15]. These results indicate
that sample size may influence CT scanner results. In this study, we retained the large
sample size because it was also used for image analysis.

Buildings 2024, 14, 3712 15 of 29

Figure 8. The equivalent diameter of detected air voids by the CT scanner: (a) visualization of all
voids in large (100 mm by 100 mm by 20 mm) specimen, (b) frequency (sample 4AE).

Figure 9. The results of the 3D analysis by the CT scanner (sample 4AE).

Figure 10 shows the sphericity of detected voids by the CT scanner versus the surface
area (mm2) and volume of voids (mm3). The sphericity of a void measures how closely the
shape of the void resembles a perfect sphere. It is defined as the ratio of the surface area
of a sphere (with the same volume as the void) to the actual surface area of the void.
Mathematically, sphericity (ϕ) is given by [34] Sphericityሺϕሻ ൌ Surface area of a sphere with the same volume as the voidActual surface area of the void

For a perfect sphere, the sphericity value is 1. As the shape of the void deviates from a
sphere (becomes more elongated or irregular), the sphericity decreases, with values rang-
ing between 0 and 1 as follows:

∅ ൌ 𝜋ଵଷሺ6𝑉ሻଶ/ଷ𝐴

where V is the volume of the void, and A is the actual surface area of the void.
It should be noted that the observed surface area in the Figure 10 refers to the total

area that covers the entire outer surface of a three-dimensional void, considering all of its
contours and dimensions. Hence it accounts for the entire surface of the air voids, includ-
ing any curves, slopes, or irregularities. However, the projection area (in the XY-plane) is
the area of a void when viewed directly from above, onto a flat, two-dimensional plane
that corresponds to the XY-plane of the object. Therefore it represents the “shadow” or
outline of the air voids as seen from a perpendicular viewpoint to the XY-plane (The size
of void which appears in 2D when looking at it from top-down view). The surface area vs
XY-plane area of detected voids is shown in Figure 11. The results clearly indicate the
differences between these values. As expected the projected area is much smaller than the
corresponding void surface, but as seen from Figure 11 it is even smaller than the ratio
(area circle/area void) which should be 1/4 for a perfect sphere.

Buildings 2024, 14, 3712 16 of 29

Figure 10. The sphericity of detected voids. (sample 4AE).

Figure 11. The surface area vs. projected XY area (sample 4AE).

3.3.2. Stereology
The Saltykov method is used in material science to estimate the size distribution of

particles (like air voids) in a sample based on the 2D slice of the sample. It is a way to
understand the 3D size distribution from a 2D view [27,35]: N୅ሺi, jሻ ൌ N୴ሺjሻ∆ ቄඥjଶ െ ሺi െ 1ሻଶ െ ඥjଶ െ iଶቅ

where NA represents the number of profiles per unit area and NV represents the number
of spheres per unit volume, and ∆ is the bin which shows the particle classes. A Python
script was applied (Appendix C) for fast and accurate calculation. This Python script

Buildings 2024, 14, 3712 17 of 29

focused on identifying circular air voids within the binary image and calculating their
diameters. After computing these diameters, the code organizes them into a histogram,
which shows the distribution of different diameters within the image. This code estimates
the radius of the air voids, assuming they have circular shapes (If the shape is not a perfect
circle, it gives “equivalent diameter”—the diameter of a circle that has the same area as
the non-circular shape.). The area of a circle is given by Area = π × radius2, so r ൌ ඥA/π.
NV is the number of air voids per unit volume for each diameter range (= size distribution
by number density). In summary, considering Figure 6 (sample 4AE) and Figure 9, the 2D
image analysis has a similar trend as those measured by a CT scanner. However, the num-
ber of detected voids by the CT scanner (specially in small samples) is much higher than
by stereological analysis of the 2D image by Python script. It can be attributed to the res-
olution differences of these two methods. The results in Figures 8 and 12 showed, how-
ever, that 3D-scanning can give comparable results to reconstructed 2D polished sections
(stereological analysis).

As previously discussed (refer to Figure 11), the surface area of a 2D section (for in-
stance, projection XY) can significantly differ from the surface area of a 3D image. To ad-
dress this discrepancy, we modified the 3D reconstruction from the 2D image using the
following approach:
1. The sphericity of all 770,447 voids detected by the CT scanner was categorized based

on their XY projection area. The categorization was performed in intervals of 0.01
mm2 for areas under 0.1 mm2, 0.1 mm2 intervals for areas up to 2 mm2, and 0.5 mm2
intervals for areas up to 5 mm2. Python scripts were used for efficient computation
(please see Figure 13).

2. The circular surface area of the 2D image was calculated through image analysis by
detected diameters.

3. The mean value obtained from the first step was applied as a correction factor (k) for
the surface area of the 2D image.

4. The void volumes were then reconstructed using this modified approach. So, we pro-
posed the following equation for the volume of reconstructed voids based on the 2D
image: 𝑉௥௘௖ ൌ 16 ൉ ሺ𝑘 ൉ 𝐴ଶ஽𝜋ଵ/ଷ ሻଷ/ଶ

Buildings 2024, 14, 3712 18 of 29

Figure 12. The computed sphere distribution based on Saltykov’s classical sphere reconstruction
method (sample 4AE).

Figure 13. Sphericity distribution (sample 4AE).

The Figure 13 shows that as the projected area of the voids increases, there is a general
trend toward lower sphericity values like in Figure 10. This trend suggests that larger
voids tend to be less spherical. This could be because larger voids are more likely to have
irregular shapes or more complex geometries that deviate from a simple spherical shape.
The box plots indicate the median, quartiles, and variability in sphericity for each area
range, with the outliers providing further insight into the diversity of void shapes. Figure
14 compares the corrected void volume V-rec to the detected diameter. It shows a clear
relationship between the void size (as detected by its diameter) and the reconstructed vol-
ume. The blue dots representing the corrected 3D volume, while the red represent the
uncorrected 2D area. The deviation between the two data sets indicates the significance of
the correction factor k in the equation for reconstructed void volume and the method’s
efficacy in adjusting the 2D measurements for more accurate 3D volume estimates.

Buildings 2024, 14, 3712 19 of 29

Figure 14. Corrected volume (V-rec) and circle area of 2D voids vs. detected diameter.

4. Conclusions
This study explored the application of Python alongside MATLAB in analyzing air

void systems in concrete, emphasizing Python’s growing role and potential in this field.
By leveraging AI tools like ChatGPT, we demonstrated that Python can effectively stream-
line the code generation process for air void analysis, offering a practical alternative to
MATLAB with comparable results. Our findings suggest that transitioning between pro-
gramming languages for such analyses can be achieved with minimal effort and high ac-
curacy.

We also examined potential sources of discrepancies between the results generated
by MATLAB and Python. Minor differences may arise due to variations in library imple-
mentations, numerical precision, or default settings across these platforms, especially in
handling image processing and mathematical functions. While these discrepancies were
minimal, they underscore the importance of understanding each tool’s unique character-
istics to ensure consistency in quantitative analysis. Additionally, this discussion high-
lights the need for further research into Python’s accuracy and reliability, especially when
applied to complex civil engineering calculations traditionally dominated by MATLAB.

Furthermore, this study extended 2D Python-generated air void parameters to 3D
interpretations using CT scan data. While stereology and tomography are distinct meth-
ods, the consistency in void frequency and spherical diameter trends indicates that Py-
thon, supported by AI, is promising for future applications in 3D void analysis. However,
further research is needed to fully realize AI’s potential in this domain.

Key insights include the observed reduction in void sphericity with increasing area,
and the development of a sphericity correction method to improve 3D volume estimations
derived from 2D data. This correction method is especially valuable when 3D imaging
resources are unavailable, enhancing the accuracy of material property assessments.

In conclusion, integrating Python, aided by AI tools like ChatGPT, offers significant
advantages in the advanced analysis of concrete air voids. Python’s accessibility, flexibil-
ity, and cost-effectiveness, combined with its robust AI and machine learning capabilities,
make it an increasingly attractive option for civil engineering applications. As Python con-
tinues to expand in academic and professional contexts, it has the potential to transform
air void analysis and other complex material studies, making advanced analyses more
accessible and adaptable to a wide range of research and industry needs.

Buildings 2024, 14, 3712 20 of 29

Author Contributions: Conceptualization, I.A. and S.J.; methodology, I.A. and S.J.; software, I.A.;
formal analysis, I.A.; investigation, A.S.; data curation, A.S.; writing—original draft preparation,
I.A.; writing—review and editing, S.J. and A.S.; visualization, I.A.; supervision, S.J. All authors have
read and agreed to the published version of the manuscript.

Funding: Open Access Funding by the University for Continuing Education Krems.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
Prompt for Code Development Using ChatGPT
 First Step: Code Conversion

• Authors> Please transfer the following MATLAB codes to one script of Python.
(We pasted the MATLAB scripts, separately)
 ChatGPT> Here’s the Python code equivalent of the given MATLAB code:

(The Python code was generated in just 2 or 3 s, and it worked correctly, see
Figure 2)

This process continued for the two other scripts of MATLAB. Then,
 Second Step: Combined Code Conversion

• Authors> Please combine all these three codes into one compacted script.
 ChatGPT> Certainly! Here’s the compacted script that combines all three

Python code snippets. (However, the generated code was wrong)
So, we returned to the chat (before pasting the reconstruct MATLAB script) and

asked it to combine the first and second scripts. The generated code was missing parts
and contained errors.

• Authors> The paste solids and threshold should be asked before running.
 ChatGPT> Certainly! Here’s the updated code that asks for the paste solids

and threshold before running the basic analysis function. (Then, the code
was generated, and we continued the chat to add or ignore minor issues)

For the final steps of 2D analysis and giving the results of the void system, we asked
it to complete the code by generating some graphs.

• Authors> We need to graph the frequency of voids and cumulative voids vs. the
void size.
 ChatGPT> Certainly! Here’s an updated version of the code that includes

plotting the frequency of voids and cumulative voids versus void size.
The code was generated and worked. We just continued chatting about minor issues

like graph color or axis captions. As mentioned earlier, we further asked it to complete the
generated code for 3D analysis. Before fulfilling this step, we tried to check the quality of
the code through the following questions:

• Authors> What is this code? (And the Python code was pasted)
 ChatGPT> This code appears to be a Python script for analyzing an image.

Here is a breakdown of its functionality: The code imports necessary librar-
ies such as OpenCV (cv2), NumPy (np), scikit-image filters (skimage. filters),
scikit-image measure (skimage. measure), os, PIL (Image), and matplotlib—
pyplot as plt. The function read_image takes a filename, folder path, crop-
ping flag, and threshold value as input. It reads the image using OpenCV
(cv2.imread) and converts it to grayscale. If the cropping flag is set, the user
can select a region of interest (ROI) in the image. The function returns the
file path, original image, and grayscale image. The function analyze_image
takes the file path, original image, grayscale image, paste/solids ratio, and
custom threshold value as input. It analyzes the image by performing the
following steps: Retrieving the image dimensions and resolution from the

Buildings 2024, 14, 3712 21 of 29

image file using the PIL library calculating the resolution and size of each
pixel in microns. If a threshold value is not provided, it uses Otsu’s method
to find the threshold value for image binarization. Creating a binary image
based on the threshold value. Labeling the connected components (regions)
in the binary image. Measuring properties of the connected components us-
ing region props. Extracting relevant properties such as the components
area, diameter, and radius. Calculating the void content as a percentage of
the image area. Calculating the specific surface (surface area per unit vol-
ume). Computing the Powers spacing factor based on the paste/solid ratio
and void content. Displaying the grayscale image using OpenCV. Printing
the number of detected voids. Sorting the diameters and areas of voids in
ascending order. Calculating the cumulative void content. Calculating the
number of voids for different diameter ranges. Plotting the number of voids
for different diameter ranges as a bar chart. Plotting the void diameters vs.
cumulative void content. The main part of the code checks if the script is
being run directly (not imported as a module) by using the __name__ vari-
able. It calls the read_image function to read and crop the image, sets the
paste/solids ratio and threshold values, and then calls the analyze_image
function to analyze the image. Overall, this script reads an image, performs
image analysis, and generates plots to visualize the void content and void
distribution based on the provided parameters.

• Authors> Update the code for 3D stereological analysis and show the 2D graph
for spherical diameter vs. the number of voids.
 ChatGPT> To update the code for 3D stereological analysis and show a 2D

graph for spherical diameter vs. the number of voids, you will need to make
several modifications. Here’s an updated version of the code. (And it pre-
pared the script)

• Authors> It is the cumulative graph. We need the frequency graph to show the
number of voids regarding its spherical diameter.
 ChatGPT> Apologies for the confusion. To create a frequency graph show-

ing the number of voids based on their spherical diameter, you’ll need to
modify the code as follows. (The code was generated entirely, and we
stopped at this point. Please see Appendix B).

 Third Step: Code Generation without reference to Fonseca and Scherer’s MATLAB
code:
In the third step, the scope was to find out the capability of ChatGPT in code gener-

ation without the MATLAB script, we explained to it our request as follows:
• Authors> Write a Python script that converts an original grayscale image with

pixels going from 0 = black to 255 = white into a black-and-white image. Use
Otsu’s method for thresholding so that each pixel in the converted image is either
0 = black or 1 = white. Determine the threshold value between black and white in
the original grayscale image between 0 and 255 and also enable the option for the
user of the code to select and crop the area of the original image that should be
analyzed or continue without selecting and crop the area of the original image.
Then, for the black and white image, I need to know the air void content A of the
sample (%). Then, calculate the specific surface of the air voids, and calculate spac-
ing factor, based on the methods and equation in Procedure C of ASTM
C457/C457M-16. Please give the option to crop or not crop the image.
 ChatGPT> Here’s a Python script that accomplishes your requirements us-

ing OpenCV for image processing and calculations: (Appendix C)

Appendix B
Python code converted (based on MATLAB and accumulated void volume plus 3D

stereological parameters).

Buildings 2024, 14, 3712 22 of 29

Importing required libraries

import cv2 # OpenCV library for image processing

import numpy as np # NumPy for numerical operations

import skimage.filters as filters # skimage.filters for image thresholding methods

import skimage.measure as measure # skimage.measure for region measurements (e.g.,

area, perimeter)

import os # os module to handle file paths

from PIL import Image # PIL for image handling and metadata extraction

import matplotlib.pyplot as plt # Matplotlib for plotting data and visualizations

import sys # sys library, though not used here, generally useful for system operations

Set to None to allow loading very large images

Image.MAX_IMAGE_PIXELS = None # Removes pixel limit to handle large images

Function to read an image, crop if needed, and convert to grayscale

def read_image(filename, folder='', crop=False, paste_solids=0.5, thresh=None):

 # Combine folder and filename into a full file path if a folder is specified

 filepath = os.path.join(folder, filename) if folder else filename

 # Load the image from the specified file path

 img = cv2.imread(filepath)

 # If cropping is enabled, allow the user to select a region of interest (ROI)

 if crop:

 roi = cv2.selectROI(img) # Select ROI on the image

 # Crop the image to the selected ROI area

 img = img[int(roi[1]):int(roi[1] + roi[3]), int(roi[0]):int(roi[0] + roi[2])]

 # Convert the image to grayscale

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Return the file path, original image, and grayscale image

 return filepath, img, gray

Function to analyze the voids in an image

def analyze_image(filepath, img, gray, paste_solids, thresh=None):

 # Define millimeters per inch constant for DPI conversion

 mmpi = 25.4

 # Open the image using PIL to access DPI information

 with Image.open(filepath) as img:

 xR, yR = img.info['dpi'] # Get horizontal and vertical DPI

 # Calculate pixels per millimeter (ppmm) based on DPI

 ppmm = xR.numerator / xR.denominator / mmpi

 # Calculate pixel size in microns

 pixsize = 25400 / xR.numerator

 # Print resolution and pixel size details

 print(f"The resolution of the image is {xR} pixels/inch or {ppmm} pixels/mm.")

 print(f"The size of each pixel is {pixsize} microns.")

 # If no threshold is provided, use Otsu's method to determine threshold

Buildings 2024, 14, 3712 23 of 29

 if thresh is None:

 threshold_value = filters.threshold_otsu(gray)

 else:

 threshold_value = thresh # Use custom threshold if provided

 # Create a binary image by thresholding the grayscale image

 binary_image = gray > threshold_value

 # Label the connected regions (voids) in the binary image

 label_image = measure.label(binary_image)

 # Get properties (e.g., area, perimeter) for each labeled region

 props = measure.regionprops(label_image)

 # Calculate the area (in pixels) for each void

 area_pixels = [prop.area for prop in props]

 # Calculate the diameter (in microns) for each void based on area

 diameter_microns = [2 * np.sqrt(prop.area / np.pi) * 1000 / ppmm for prop in props]

 # Convert diameter from microns to millimeters

 diameter_mm = [d / 1000 for d in diameter_microns]

 # Get image dimensions (height and width)

 m, n = gray.shape

 # Calculate the percentage of the image area that is voids

 void_content = sum(area_pixels) / (m * n) * 100

 # Print void content as a percentage

 print(f"The void content is {void_content} percent.")

 # Calculate the total perimeter of all voids

 Ptot = sum([prop.perimeter for prop in props])

 # Calculate the total area of all voids

 Atot = sum([prop.area for prop in props])

 # Calculate specific surface in pixels (surface area per unit volume)

 specsurfpix = Ptot / Atot * 4 / np.pi

 # Convert specific surface to mm^-1 by scaling with ppmm

 specsurf = specsurfpix * ppmm

 # Print the specific surface value

 print(f"The specific surface is {specsurf} mm^-1.")

 # Calculate p_A value based on paste solids and void content

 p_A = paste_solids * (100 - void_content) / void_content

 # Calculate the Powers spacing factor based on specific surface and p_A

 if p_A < 4.342:

 Pspacef = p_A / specsurf

 else:

 Pspacef = (3 / specsurf) * (1.4 * (1 + p_A) ** (1 / 3) - 1)

 # Print the Powers spacing factor

 print(f"The Powers spacing factor is {Pspacef} mm.")

 plt.figure(figsize=(8, 6)) # Plot various analyses of the image and voids

Buildings 2024, 14, 3712 24 of 29

 # Display the grayscale image

 plt.subplot(2, 2, 1)

 plt.imshow(gray, cmap='gray')

 plt.axis('off') # Turn off axis

 plt.title('Grayscale Image')

 # Plot a histogram of void diameters

 plt.subplot(2, 2, 2)

 plt.hist(diameter_microns, bins=np.arange(0, 500, 10), color='red')

 plt.xlim(0, 2000)

 plt.xlabel('Void Diameter (microns)')

 plt.ylabel('Number of Voids')

 plt.title('Void Diameter vs Number of Voids')

 # Plot cumulative void content as a function of void diameter

 plt.subplot(2, 2, 3)

 diameters_sorted, areas_sorted = zip(*sorted(zip(diameter_microns, area_pixels)))

 cumulative_void_content = np.cumsum(areas_sorted) / (m * n) * 100

 plt.plot(diameters_sorted, cumulative_void_content)

 plt.xlim(0, 6000)

 plt.xlabel('Void Diameter (microns)')

 plt.ylabel('Cumulative Void Content (%)')

 plt.title('Cumulative Void Content vs Void Diameter')

 # Scatter plot of spherical diameter vs number of voids

 plt.subplot(2, 2, 4)

 num_voids = len(area_pixels)

 plt.scatter(diameter_mm, range(num_voids), color='blue')

 plt.xlabel('Spherical Diameter (mm)')

 plt.ylabel('Number of Detected Voids')

 plt.title('Spherical Diameter vs Number of Detected Voids')

 # Adjust layout to avoid overlapping

 plt.tight_layout()

 plt.show()

if __name__ == '__main__': # Main block to execute the analysis

 # Read the image file and obtain grayscale version

 filepath, img, gray = read_image('4AE.tif', crop=False)

 paste_solids = 0.266 # Set paste solids content

 custom_threshold = None # Set custom threshold (None uses default threshold

method)

 analyze_image(filepath, img, gray, paste_solids, custom_threshold) # Analyze the

image using the defined function

Buildings 2024, 14, 3712 25 of 29

Appendix C. Python Code Generated from Prompt Only
import cv2

import numpy as np

import matplotlib.pyplot as plt # For displaying images with Matplotlib

Define the function for Otsu's thresholding

def otsu_threshold(img):

 # Apply Otsu's thresholding to binarize the image

 _, thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

 return thresh

Define the function to calculate air void content

def get_air_void_content(img):

 # Count white pixels (voids) in the thresholded image

 white_pixels = np.count_nonzero(img == 255)

 total_pixels = img.shape[0] * img.shape[1]

 air_void_content = (white_pixels / total_pixels) * 100

 return air_void_content

Define the function to calculate contour properties

def get_contours_properties(thresh):

 # Find contours in the thresholded image

 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 total_area = 0

 total_length = 0

 for contour in contours:

 total_area += cv2.contourArea(contour) # Sum of areas of contours

 total_length += cv2.arcLength(contour, True) # Sum of perimeter lengths

 # Calculate the Powers spacing factor and specific surface area

 power_spacing_factor = total_length / total_area

 specific_surface_area = total_area / np.count_nonzero(thresh == 255)

 return power_spacing_factor, specific_surface_area

Main function to process the image

def main():

 # Prompt user to enter the path to the image

 image_path = input("Enter the path to the image: ")

 img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # Load image in grayscale

 crop_option = input("Would you like to crop the image? (yes/no): ").lower()

 if crop_option == 'yes':

 print("Please select the area to crop. Press Enter to confirm the selection.")

 roi = cv2.selectROI("Select ROI", img) # Allow user to select region of

interest

 cv2.destroyAllWindows()

 img = img[int(roi[1]):int(roi[1] + roi[3]), int(roi[0]):int(roi[0] + roi[2])]

Crop the image to ROI

Buildings 2024, 14, 3712 26 of 29

 # Apply Otsu's threshold to binarize the image

 thresh = otsu_threshold(img)

 # Display thresholded image using Matplotlib

 plt.imshow(thresh, cmap='gray')

 plt.title("Thresholded Image")

 plt.axis('off')

 plt.show()

 # Calculate air void content and contour properties

 air_void_content = get_air_void_content(thresh)

 power_spacing_factor, specific_surface_area = get_contours_properties(thresh)

 # Print results

 print(f"Air Void Content (%): {air_void_content:.2f}")

 print(f"Power Spacing Factor (L): {power_spacing_factor:.2f} mm")

 print(f"Specific Surface Area: {specific_surface_area:.2f} mm^-1")

Ensure main function runs if script is executed

if __name__ == "__main__":

 main()

Appendix D. Python Script Developed for Air Void Distribution
Importing necessary libraries

import cv2 # OpenCV library for image processing

import numpy as np # NumPy for numerical operations

import matplotlib.pyplot as plt # Matplotlib for plotting

from scipy.ndimage import label # Scipy for labeling connected components

Function to compute a histogram of void diameters in a binary image

def compute_2d_diameter_histogram(image, bin_width=1):

 # Label each connected component (void) in the binary image

 labeled_array, num_features = label(

 image) # labeled_array assigns a unique number to each component, num_features

gives the count of components

 diameters = [] # List to store calculated diameters of each void

 # Iterate through each labeled component (void)

 for i in range(1, num_features + 1):

 # Create a binary mask for the current component

 component = (labeled_array == i).astype(np.uint8) # Binary mask of the

component

 # Calculate the area (number of pixels) of the component

 area = np.sum(component) # Area in terms of pixels

 # Calculate the radius and then the diameter, assuming a circular shape

 radius = np.sqrt(area / np.pi) # Radius from area using formula for a circle

 diameter = 2 * radius # Diameter as twice the radius

 diameters.append(diameter) # Add diameter to the list

Buildings 2024, 14, 3712 27 of 29

 # Compute histogram of diameters, using bins based on the specified bin_width

 hist, bin_edges = np.histogram(diameters, bins=np.arange(0, max(diameters) +

bin_width, bin_width))

 # Return histogram values and bin edges (excluding last edge, as hist aligns with

bin centers)

 return hist, bin_edges[:-1]

Function to calculate number density per unit volume (Nv) based on the histogram

def calculate_nv(hist, bin_centers, bin_width):

 num_classes = len(bin_centers) # Number of diameter classes (bins)

 nv = np.zeros_like(hist, dtype=float) # Initialize Nv array with zeros, same size

as hist

 # Loop through each bin (diameter class)

 for j in range(num_classes):

 sum_term = 0 # Sum term for calculating Nv for the j-th bin

 # Inner loop accumulates the terms for bins greater than or equal to the

current j-th bin

 for i in range(j, num_classes):

 # Term is the square root of the difference in diameter squared

 term = np.sqrt((bin_centers[i] ** 2 - bin_centers[j] ** 2))

 sum_term += hist[i] * term # Accumulate weighted count of voids

 # Calculate Nv for the j-th bin by dividing sum_term by bin_width

 nv[j] = sum_term / bin_width

 return nv # Return the array of Nv values

Request user to input the path to the image file

image_path = input("Enter the path to the 2D image (e.g., '4AE.tif'): ")

Read the image in grayscale mode

img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Apply a binary threshold to create a binary (black and white) image

_, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # Threshold value is

127, creating a binary mask

Define bin width for the histogram (in pixels)

bin_width = 1 # Unit in pixels

Compute the 2D diameter histogram of air voids in the binary image

hist, bin_centers = compute_2d_diameter_histogram(binary_img, bin_width)

Calculate number density (Nv) for each diameter bin

nv_result = calculate_nv(hist, bin_centers, bin_width)

Plot the results

plt.figure(figsize=(10, 6)) # Create a figure with specified size

Plot the Nv values as a bar chart with bin_centers as x-axis (diameter)

plt.bar(bin_centers, nv_result, width=bin_width, align='center', alpha=0.7)

plt.xlabel('Computed Sphere Diameter [pixels]') # Label for x-axis

plt.ylabel('Number Density of Air Voids per unit volume') # Label for y-axis

Buildings 2024, 14, 3712 28 of 29

plt.title('Air Void Size Distribution (Diameter in Pixels)') # Title of the plot

plt.grid(True) # Enable grid for easier viewing

plt.show() # Display the plot

References
1. Das, A.; Song, Y.; Mantellato, S.; Wangler, T.; Lange, D.A.; Flatt, R.J. Effect of processing on the air void system of 3D printed

concrete. Cem. Concr. Res. 2022, 156, 106789.
2. Wong, H.; Pappas, A.; Zimmerman, R.; Buenfeld, N. Effect of entrained air voids on the microstructure and mass transport

properties of concrete. Cem. Concr. Res. 2011, 41, 1067–1077.
3. Rath, S.; Puthipad, N.; Attachaiyawuth, A.; Ouchi, M. Critical size of entrained air to stability of air volume in mortar of self-

compacting concrete at fresh stage. J. Adv. Concr. Technol. 2017, 15, 29–37.
4. Shah, H.A.; Yuan, Q.; Zuo, S. Air entrainment in fresh concrete and its effects on hardened concrete-a review. Constr. Build.

Mater. 2021, 274, 121835.
5. Asadi, I.; Skjølsvold, O.; Kanstad, T.; Jacobsen, S. Frost-salt Testing Non-air Entrained High-performance Fly-ash Concrete Part

II: Parameter Study of Effect of Internal Cracking on Glue Spall Stress. Nord. Concr. Res. 2024, 70, 43–55.
6. True, G.F. Development of Image Analysis Techniques to Assist Evaluation of Both Air Void Structure and Aggregate Shape

Factors in Concrete. Ph.D. Thesis, University of Wolverhampton, Wolverhampton, UK, 2011.
7. Powers, T.C.; Willis, T. The air requirement of frost-resistant concrete. Highw. Res. Board Proc. 1949, 29, 184–211.
8. Chung, S.-Y.; Sikora, P.; Rucinska, T.; Stephan, D.; Abd Elrahman, M. Comparison of the pore size distributions of concretes

with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 2020, 162, 110182.
9. Cai, H.; Liu, X. Freeze-thaw durability of concrete: Ice formation process in pores. Cem. Concr. Res. 1998, 28, 1281–1287.
10. ASTM C 457-90; Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened

Concrete. ASTM International: West Conshohocken, PA, USA, 1998.
11. EN 480-11; Determination of Air Void Characteristics in Hardened Concrete. European Committee for Standardization:

Brussels, Belgium, 2005.
12. Pleau, R. La Caractérisation du Réseau de Bulles D’air Dans le Béton Durci Comme Outil D’évaluation de la Durabilité au Gel du Béton;

Université Laval: Quebec City, QC, Canada, 1992.
13. Snyder, K.A.; Hover, K.C.; Natesaiyer, K. The Stereological and Statistical Properties of Entrained Voids in Concrete: A

Mathematical Basis for Air Void System Characterization. In Materials Science of Concrete VI; Wiley: Hoboken, NJ, USA, 2001.
14. Murotani, T.; Igarashi, S.; Koto, H. Distribution analysis and modeling of air voids in concrete as spatial point processes. Cem.

Concr. Res. 2019, 115, 124–132.
15. Asadi, I.; Endrerud, P.E.; Jacobsen, S. X-ray tomography to characterize the air-void system of hardened concrete with varying

sample size. In Proceedings of the fib International Congress, Oslo, Norway, 12–16 June 2022.
16. OpenAI. ChatGPT: Optimizing Language Models for Dialogue. Available online: https://chatgpt.r4wand.eu.org/ (accessed on

4 February 2023).
17. Quick uptake of ChatGPT, and more—This week’s best science graphics. Nature, 28 February 2023.
18. Biswas, S.S. Role of chat gpt in public health. Ann. Biomed. Eng. 2023, 51, 868–869.
19. Adeshola, I.; Adepoju, A.P. The opportunities and challenges of ChatGPT in education. Interact. Learn. Environ. 2023, 1–14.
20. Biswas, S.S. Potential use of chat gpt in global warming. Ann. Biomed. Eng. 2023, 51, 1126–1127.
21. Cheng, S.W.; Chang, C.W.; Chang, W.J.; Wang, H.W.; Liang, C.S.; Kishimoto, T.; Chang, J.P.C.; Kuo, J.S.; Su, K.P. The now and

future of ChatGPT and GPT in psychiatry. Psychiatry Clin. Neurosci. 2023, 77, 592–596.
22. Rice, S.; Crouse, S.R.; Winter, S.R.; Rice, C. The advantages and limitations of using ChatGPT to enhance technological research.

Technol. Soc. 2024, 76, 102426.
23. Sakib, F.A.; Khan, S.H.; Karim, A.R. Extending the frontier of chatgpt: Code generation and debugging. In Proceedings of the

2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sydney, Australia, 25–27 July 2024;
IEEE: Piscataway, NJ, USA, 2024.

24. Dong, Y.; Jiang, X.; Jin, Z.; Li, G. Self-collaboration code generation via chatgpt. ACM Trans. Softw. Eng. Methodol. 2024, 33, 1–38.
25. Liu, Z.; Tang, Y.; Luo, X.; Zhou, Y.; Zhang, L.F. No need to lift a finger anymore? assessing the quality of code generation by

chatgpt. IEEE Trans. Softw. Eng. 2024, 50, 1548–1584.
26. Feng, Y.; Vanam, S.; Cherukupally, M.; Zheng, W.; Qiu, M.; Chen, H. Investigating code generation performance of ChatGPT

with crowdsourcing social data. In Proceedings of the 2023 IEEE 47th Annual Computers, Software, and Applications
Conference (COMPSAC), Torino, Italy, 26–30 June 2023; IEEE: Piscataway, NJ, USA, 2023.

27. Fonseca, P.C.; Scherer, G.W. An image analysis procedure to quantify the air void system of mortar and concrete. Mater. Struct.
2015, 48, 3087–3098.

28. Shpak, A.; Gong, F.; Jacobsen, S. Frost durability of high-volume fly ash concrete: Relation liquid transport-damage. Cem. Concr.
Res. 2023, 163, 107017.

29. Shpak, A. Production and Documentation of Frost Durable High-Volume Fly Ash Concrete: Air Entrainment, Cracking and
Scaling in Performance Testing. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2020.

Buildings 2024, 14, 3712 29 of 29

30. Shpak, A.; Jacobsen, S. Effect of AEA-SP Dosage Sequence on Air Entrainment in FA Concrete. Nord. Concr. Res. 2019, 61, 1–21.
31. Thomas, M. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007; Volume 5420.
32. Du, L.; Folliard, K.J. Mechanisms of air entrainment in concrete. Cem. Concr. Res. 2005, 35, 1463–1471.
33. NS-EN 206:2013+NA:2014; (NO) National Annex NA (informative). Use of NS-EN 206:2013 in Norway [Translated from

Norwegian]. Standards Norway: Lysaker, Norway, 2014.
34. Riley, N.A. Projection sphericity. J. Sediment. Res. 1941, 11, 94–95.
35. Gallagher, C.; Kerr, E.; McFadden, S. Particle size distribution for additive manufacturing powder using stereological

corrections. Powder Technol. 2023, 429, 118873.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

